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Abstract: The present paper is aimed at developing Bayesian and 

Maximum Likelihood estimations (ML) of the Burr type-X model of 

distribution when data are gathered from Type-II cumulative censoring with 

binomial eliminations. The procedures for getting the (ML) evaluations of 

the parameters are examined. The Bayes technique to get both point and 

interval estimators of the parameters are illustrated. The expected 

termination time for Type-II cumulative censoring with binomial 

eliminations is analyzed after carrying out the computation. Classical and 

Bayes procedures are improved in the case of parameter estimation and 

evaluated the expected test time for Burr-X model under cumulative 

censoring wit binomial sweep. A simulation study is performed to compare 

the implementation of the various procedures and for the expected 

termination time of the test. Finally, illustrative examples are given and the 

results from emulation studies determining the achievement of the 

suggested techniques are presented. 
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Introduction 

Censoring is normal in life-distribution research due 

to limits and other constraints on data gathering. 

Censoring happens when exact lifetimes are recognized 

only for a part of the individuals or units under 

investigating while for the rest of the lifetimes data on 

them is partial. It is known that the most common 

censored tests are type-II censoring for reserving money 

and time. For more details about the progressive 

censoring schemes and applications, we refer to the 

monograph Balakrishnan and Aggarwala (2000). The 

assessment of parameters from various lifetime models 

in the context of cumulative Type-II censored samples 

have been considered by many authors including 

Balakrishnan et al. (2003; Fernandez, 2004; Ng et al., 

2004; Soliman, 2005; Wu et al., 2007; Ku and Kaya, 

2007; Banerjee and Kundu (2008). However, there is 

some work presented in the Bayesian model. Amin (2008) 

expanded Bayesian techniques in the case of parameter 

appreciation and assessment of future surveillances from 

the classical Pareto model. In Bayesian framework, many 

authors, see among others, Zellner (1995; Torney, 2005; 

Yan et al., 2009; Naranjo et al., 2014) had done some 

work. For some related classical estimation on 

cumulative Type-II censoring with random cancellations 

or binomial eliminations, one may refer to Tse et al. 

(2000; Wu, 2003). Also, we may mention the following 

related researchers for different hypotheses: Cohen 

(1963) illustrated the gradually censored specimens in 

life testing. Efron (1982) studied the bootstrap and other 

resembling plans. Balakrishnan and Sandu (1995) gave a 

simple computation algorithm for generating gradually 

Type-II censored specimens. Soliman et al. (2011; 

Mahmoud et al., 2013) discussed Bayesian inference and 

expectation of Burr types model for cumulative first 

failure censored pattern. Al-Hossain (2015a) considered 

generalized and inverse Gaussian distributions for the 

power inverse Gaussian. Al-Hossain (2016) studied the 

inference from the Exponentiated Weibull distribution 

given adaptive cumulative censored information. 

Sutikno and Ratih (2014) presented the Gaussian 

Copula Marginal degradation for design maximum 

information with implementation. 
Recently, many appreciation issues for the Burr-X 

model Bayesian and non-Bayesian approaches, when the 

duration of life is gathered in the case of Type-II 

cumulative censoring, where the number of units taken 
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away at each failure time obeys a binomial model of 

distribution is illustrated. For example, Clifford et al. 

(2015) proposed a Bayesian approach to person 

perception which outlining the theoretical position and a 

methodological framework for testing the predictions 

experimentally. Ahmad et al. (2015) obtained a Bayes 

estimates of the parameters and MLE for Burr-X model 

in the case of double type-II censored specimen of dual 

generalized order statistics. AL-Hussaini et al. (2014) 

studied the Bayesian expectation bounds of order 

statistics established on gradually type-II censored 

competing risks information from a common class of 

distributions. Ali (2014) presented a mixture of the 

inverse Rayleigh distribution with properties and 

estimation in a Bayesian framework. Okasha and Matter 

(2015) discussed more parameters burr-XII model and 

its application to heavy tailed lifetime information. 

Silva and Cordeiro (2015) introduced a new family of 

distributions by compounding the Burr-XII and power 

series distributions. Wang and Lee (2014) displayed the 

M-estimator procedure founded on the Bisquare 

objective function to evaluate the Burr-III parameters. 

Okasha (2014) considered the E-Bayesian method for 

computing estimates of the unknown parameter and some 

survival time parameters e.g., hazard and reliability 

functions of Lomax model in the case of type-II censored 

information. Pathak and Chaturvedi (2014) derived an 

Estimation of the reliability function for two-parameter 

exponentiated Rayleigh or Burr type X distribution. 

Karam and Jbur (2014) offered Bayesian analyzes of the 

Burr type distribution under double type censored samples 

using different priors and loss functions. Furthermore, a 

short version of this paper has been previously published 

in conference proceedings (Al-Hoaasin, 2015b). 

In this study, classical and Bayesian techniques are 

expanded in the case of parameter assessment and 

evaluated the expected test time for Burr-X distribution 

under cumulative censoring with binomial eliminations. 

Finally, this paper is arranged as the model formulation of 

the problem is given in section 2. In section 3, the 

techniques for finding the (MLE) of the parameters θ and 

p are presented. Interval estimations of the parameters and 

both point are obtained. Bayesian techniques are using to 

illustrate point and interval estimations in sections 4. In 

section 5, the prospective duration in the case of Type-II 

cumulative censoring with the influence of different p is 

examined. Illustrative examples and the outcomes from 

emulation studies imposing the implementation of our 

suggested technique have been shown in section 6. In the 

end, we conclude the work in section 7. 

Model Description 

Assume the lifetime of a specific unit has a Burr-X 

model with probability density function (pdf), the 

corresponding cumulative distribution function (cdf) and 

the conditional likelihood function may be expressed as 

in Al-Hossain (2015b): 

 

( ) ( ) ( )( ) 1
2 2, 2 exp 1 expf x x x x

θ
θ θ

−
= − − −  (1) 

 

( ) ( )( )21 expXF x x
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= − −  (2) 
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where, x,θ>0. For more details see Al-Hossain (2015b). 

From (1) and (2) into (3), we obtain: 
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Assume that a single unit being taken away from the 

test at the ith failure, i = 1, 2,⋅⋅⋅, m-1 is independent of 

the others but with same probability p. After that, the 

number Ri of units extracted at the ith failure, i = 1, 2, ⋅⋅⋅, 
m-1, follows a binomial distribution with parameters 

1

1

i

ll
n m r

−

=
− −∑ and p. Therefore: 
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with i = 1, 2, 3, ..., m-1 and where 0≤r1 ≤ n-m and 0 ≤ ri 

≤ n-m -
1

1

i

ll
r

−

−∑ for i = 1, 2, 3, ⋅⋅⋅, m-1. 

Moreover, let that Ri is independent of xi for all i. 

Then the likelihood function becomes: 
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Employing (4), (6) and (7), the full likelihood 

function is given by: 
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And: 
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With: 

 

( )

( ) 11

1 1

!
*

! !
mm

i il i

c n m
c

n m r r
−−

= =

−
=

− −∑ ∏
 

 
And: 
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2
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It is easy to see that both c* and T(x) is independent 

of θ and p. For more details see Al-Hossain (2015b). 

Maximum Likelihood Estimation 

The methods for getting the MLE’s of the 

parameters θ and p in the context of gradually Type-II 

censoring information with binomial eliminations are 

considered. Interval and both point estimations of the 

parameters are obtained. 

Point Estimation 

The functions L1 and L2 are estimators of p and θ 

respectively. Consequently, the (MLE) of θ may be 

written as maximizing Equation 9 directly due to L1 in 

Equation 9 does not depend on p. Similarly, L2 in 

Equation 10 independent of θ so the MLE of p may be 

gotten directly by maximizing Equation 10. Therefore, 

by considering the logarithms of L1 (θ) and L2 (p), the 

MLE’s of θ and p may be obtained as in Al-Hossain 

(2015b). 

Interval Estimation 

Bootstrap Confidence Intervals 

Here, the parametric bootstrap percentile technique 

assumed by Efron (1982) to build confidence intervals 

for the parameters is used. For more details see      

(Al-Hossain, 2015b). 

Approximate Interval Estimation 

In this section, the MLEs of θ and p based on the 

approximate confidence intervals under asymptotic 

distributions are presented. Also, the MLEs of the 

parameters θ and p, in the case of the asymptotic 

variances and covariances are obtained considering the 

elements of the inverse of Fisher data matrix: 
 

2

; , 1,2ij

L
I E i j

pθ
 ∂

= − = ∂ ∂ 
 (11) 

The approximate (observed) asymptotic variance 

covariance matrix for the MLEs can be derived by 

neglecting the anticipation factor E. Then we have: 
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To compute the approximate confidence intervals for 

θ and p, so the asymptotic normality of the MLE may be 

used. Then, (1-δ) 100% approximate confidence 

intervals for θ and p yield: 
 

( ) ( )/ 2 / 2
ˆ ˆ ˆ ˆvar varZ and p Z pδ δθ θ± ±  (15) 

 

where, Zδ/2 is the percentile of the standard normal 

distribution with right-tail probability δ/2. 

Bayes Estimation 
The choice of the Loss Function (LF) is determining 

by an integral part of Bayesian estimation methods. In 

literature, many various kinds of loss functions have 

been considered to describe different types of loss 

structures. The symmetric Square Error Loss (SEL) is 

one of the most common loss functions. A loss function 

should display the consequences of various errors. Many 

asymmetric (LFs) may exist in the literature, however, 

LINEX Loss Function (LLF) is excessively utilized due 

to a natural expansion of SEL. Mathematically 

representation of LLF can be written as: 
 

( ) 1; 0cL e c c∆∆ ∝ − ∆ − ≠  (16) 

 

where, ∆ = ( u u−ɶ ), uɶ is an estimate of u. 

It is simple to prove that the value of uɶ  that 

minimizes Eu(L( u u−ɶ )) in Equation 24 is: 
 

( )( )1
log expuuBL E cu

c
= −  −  ɶ  (17) 

 
One more advantageous of asymmetric loss function 

is the General Entropy (GE) loss: 
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( ) ( ) ( )2 / log / 1
q

L u u u u q u u− ∝ − −ɶ ɶ ɶ  (18) 

 

where, the lower value happens at u u=ɶ  and the Bayes 

expectation value 
BG

uɶ  of u is: 

 

( ) 1/ q
q

BG uu E u
−

− =  ɶ  (19) 

 

Under GE loss (Soliman, 2005). 

Point Estimation 

In this section, due to θ and p considered as 

independent random variables, we use the gamma prior 

distribution with the parameters α, β  for θ, in some 

equations which are found in (Al-Hossain, 2015b). 

Symmetric Bayes Estimation 

Square-error loss function is so-called briefly as SEL 

function. The estimator of this function is the posterior 

mean. So, applying of the posterior densities and the 

Bayes estimators of the variables θ and p are given in 

(Al-Hossain, 2015b). 

Asymmetric Bayes Estimation 

LINEX loss function if replacing u by θ and then θ 

by u, respectively, the Bayes estimate 
BL

θɶ  of the 

variables θ and p comparative to LINEX loss function 

may be expressed as: 
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where, the integration of Equation 21 is obtained by the 

numerical integration methods. 

General Entropy loss function replacing u by θ in 

Equation 19, the Bayes estimate 
BG

θɶ  of the variable θ 

comparative to the general entropy loss function (19) 

becomes: 
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And using Equation 25 in (Al-Hossain, 2015b), one 

can get: 
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Replacing also u by p in (19), the Bayes estimate 
BG

pɶ  

of parameter p relative to the general entropy loss 

function becomes: 
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Interval Estimation 

Highest Posterior Density Interval (HPDI). In 

general, the Bayesian procedure to interval estimation is 

highly more direct than the ML method, for more details 

(Al-Hossain, 2015b). 

Expected Duration 

In many industrial processes, life test is conducted in 

order to assess the quality of a product. Typically, n 

products are placed under test and their times to failure 

are observed. These observed lifetimes are then used to 

estimate the life distribution of the product. However, in 

many applications, life tests are usually terminated 

before the complete lifetimes of n products are observed. 

Data from this censored test consist of times to failure of 

failed units and running times on unfailed units. 

Following Balakrishnan and Aggrawala (2000), under 

progressive interval type II censored with random or 

binomial eliminations conditioning on R, the expected 

the value of Xm is presented by (Al-Hossain, 2015b): 
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where, 
1

m

i

i

al l
=

=∑ and h (li) = l1 + l2 + ... + li + i. 

Setting the ri = 0 for all i = 1,..., m-1 and rm = n-m in 

Equation 25, one may get the expected time of a type II 

censoring test without removals as follows: 
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By the same way, setting m = n and ri = 0 for all i = 

1,..., m in Equation 25, the anticipated time of an entire 

sampling case with n test units may be written as: 
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Finally, carrying out the expectation on the life hand 

side and the right side of Equation 25 with respect to the 

R, the anticipated ending point for gradually type-II 

censoring with binomial cancellations is estimated from 

the following equation: 
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where, g(r1) = n-m, g(ri) = n-m-r1-⋅⋅⋅-ri-1, i = 2,⋅⋅⋅, m-1 and 

P (R, p) is given in Equation 7. 

The ratio of the expected time under various 

schemes to the expected time under entire sampling, 

i.e., Ratio of Expected Experiment Times (REET) is 

defined in (Al-Hossain, 2015b). 

A Simulation Illustration 

Example 1 

In this case, the tests with n = 30, 40, 60 and 100 

units generated from Burr-X model with variable θ is 

examined. The test is finished when the number of failed 

subjects attains or overtakes a specific value m, where 

m/n = 40, 60, 80 and 90%, Data for the dropouts ri were 

produced from the binomial model as shown in this 

example. 1000 samples are produced considering the 

variables (θ, p) = (0.321, 0.4). The MLEs, symmetric 

Bayes and asymmetric Bayes estimates of θ and p and 

their Mean Square Error (MSE) are computed. 

Considering the results in subsections (3.2) and (4.2), the 

Approximate Confidence Interval (ACI) in the context of 

asymptotic distributions of the MLEs and HPDI of the 

variables are computed and compared in the case of their 

Coverage Probabilities (CVP). Table 1a-2b show the 

simulation results for θ and p, respectively. 

 

Table 1a. The MSE of θ for (θ, p) = (0.321, 0.4) with CVP of 

95% ACI and 95% HPDI 

    LINEX 

    ----------------------- 

    a 

    ----------------------- 

n m ML SE -1 1 

30 27 0.0645 0.0644 0.0656 0.0633 

 24 0.0685 0.0683 0.0696 0.0671 

 18 0.0727 0.0730 0.0747 0.0714 

 12 0.0785 0.0791 0.0811 0.0773 

40 36 0.0573 0.0575 0.0585 0.0566 

 32 0.0578 0.0580 0.0589 0.0571 

 24 0.0617 0.0620  0.0631 0.0610 

 16 0.0657 0.0663 0.0676 0.0651 

60 54 0.0455 0.0455 0.0459 0.0451 

 48 0.0479 0.0480 0.0485 0.0475 

 36 0.0506 0.0509 0.0516 0.0503 

 24 0.0528 0.0534 0.0541 0.0526 

80 72 0.0400 0.0401 0.0404 0.0398 

 64 0.0411 0.0413 0.0416 0.0409 

 48 0.0431 0.0434 0.0438 0.0430 

 32 0.0479 0.0485 0.0490 0.0479 

100 90 0.0338 0.0338 0.0340 0.0337 

 80 0.0362 0.0363 0.0365 0.0361 

 60 0.0363 0.0365 0.0367 0.0362 

 40 0.0399 0.0403 0.0407 0.0400 

 

Table 1b. The MSE of θ for (θ, p) = (0.321, 0.4) with CVP of 

95% ACI and 95% HPDI 

  GE  

  ----------------------- 

  b  CVP CVP 

n m -1 1 ACI HPDI 

30 27 0.0644 0.0609 0.950 0.971 

 24 0.0683 0.0646 0.944 0.970 

 18 0.0730 0.0679 0.957 0.972 

 12 0.0791 0.0734 0.939 0.966 

40 36 0.0575 0.0542 0.956 0.965 

 32 0.0580 0.0550 0.958 0.976 

 24 0.0620 0.0589 0.941 0.971 

 16 0.0663 0.0626 0.945 0.966 

60 54 0.0455 0.0442 0.948 0.972 

 48 0.0480 0.0464 0.937 0.967 

 36 0.0509 0.0489 0.944 0.974 

 24 0.0534 0.0511 0.957 0.968 

80 72 0.0401 0.0391 0.940 0.981 

 64 0.0413 0.0400 0.947 0.978 

 48 0.0434 0.0420 0.956 0.975 

 32 0.0485 0.0466 0.951 0.971 

100 90 0.0338 0.0332 0.951 0.977 

 80 0.0363 0.0356 0.941 0.972 

 60 0.0365 0.0357 0.961 0.986 

 40 0.0403 0.0391 0.952 0.985 
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Table 2a. The MSE of p for (θ, p) = (0.321, 0.4). With CVP of 

95% ACI and 95% HPDI 

    LINEX 

    ------------------------- 

    a 

n m ML SE -1 1 

30 27 0.1713 0.1030 0.1070 0.1001 

 24 0.1329 0.0995 0.1019 0.0974 

 18 0.1000 0.0864 0.0877 0.0853 

 12 0.0766 0.0695 0.0703 0.0683 

40 36 0.1571 0.1026 0.1062 0.0997 

 32 0.1161 0.0937 0.0955 0.0920 

 24 0.0858 0.0764 0.0774 0.0753 

 16 0.0653 0.0611 0.0616 0.0607 

60 54 0.1368 0.1018 0.1045 0.0994 

 48 0.0991 0.0854 0.0868 0.0842 

 36 0.0649 0.0604 0.0610 0.0598 

 24 0.0527 0.0505 0.0507 0.0502 

80 72 0.1232 0.0984 0.1005 0.0964 

 64 0.0818 0.0737 0.0745 0.0730 

 48 0.0571 0.0543 0.0546 0.0540 

 32 0.0455 0.0437 0.0439 0.0435 

100 90 0.1102 0.0919 0.0935 0.0904 

 80 0.0740 0.0682 0.0690 0.0675 

 60 0.0505 0.0484 0.0487 0.0482 

 40 0.0423 0.0412 0.0413 0.0410 

 
Table 2b. The MSE of p for (θ, p) = (0.321, 0.4) with CVP of 

95% ACI and 95% HPDI 

  GE 

  ------------------------- 

  b  CVP CVP 

n m -1 1 ACI HPDI 

30 27 0.1030 0.1140 0.973 0.982 

 24 0.0995 0.1006 0.936 0.978 

 18 0.0864 0.0857 0.928 0.966 

 12 0.0695 0.0685 0.953 0.982 

40 36 0.1026 0.1026 0.922 0.982 

 32 0.0937 0.0937 0.958 0.979 

 24 0.0764 0.0747 0.942 0.972 

 16 0.0611 0.0607 0.952 0.984 

60 54 0.1018 0.1012 0.937 0.976 

 48 0.0854 0.0842 0.930 0.963 

 36 0.0604 0.0596 0.956 0.981 

 24 0.0505 0.0504 0.950 0.982 

80 72 0.0984 0.0966 0.945 0.983 

 64 0.0737 0.0734 0.943 0.977 

 48 0.0543 0.0539 0.952 0.975 

 32 0.0437 0.0434 0.952 0.978 

100 90 0.0919 0.0907 0.928 0.955 

 80 0.0682 0.0673 0.940 0.980 

 60 0.0484 0.0481 0.948 0.976 

 40 0.0412 0.0410 0.941 0.965 

Table 3a. a Presents E[Xm] for type-II when θ = 1 

n m p = 0.1 p = 0.2 p = 0.3 p = 0.4 

6 6 1.5203 1.5203 1.5203 1.5203 

 5 1.2537 1.3162 1.3618 1.3941 

 4 1.0043 1.0635 1.1235 1.1825 

 3 0.7925 0.8365 0.8844 0.9367 

10 10 1.6757 1.6757 1.6757 1.6757 

 9 1.5057 1.5771 1.6114 1.6271 

 8 1.3358 1.4549 1.5256 1.5631 

 7 1.1586 1.2927 1.4013 1.4719 

 6 1.0060 1.1082 1.1981 1.2714 

 5 0.8667 0.9684 1.0799 1.1854 

15 15 1.7914 1.7914 1.7914 1.7914 

 14 1.4617 1.6105 1.7098 1.7521 

 13 1.2286 1.4340 1.6046 1.6928 

 12 1.1335 1.3766 1.5755 1.6725 

 11 1.0939 1.3261 1.5268 1.6313 

 10 0.9943 1.0772 1.2417 1.3968 

 9 0.9039 0.9929 1.1738 1.3372 

 8 0.6164 0.7063 0.9518 1.2154 

 7 0.5360 0.5979 0.8036 1.0596 

 

Table 3b. Presents E[Xm] for type-II when θ = 1 

p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9 

1.5203 1.5203 1.5203 1.5203 1.5203 

1.4160 1.4304 1.4394 1.4449 1.4482 

1.2363 1.2810 1.3144 1.3366 1.3498 

0.9931 1.0514 1.1080 1.1580 1.1970 

1.6757 1.6757 1.6757 1.6757 1.6757 

1.6341 1.6373 1.6390 1.6399 1.6406 

1.5817 1.5908 1.5955 1.5981 1.5999 

1.5114 1.5317 1.5421 1.5479 1.5516 

1.3305 1.3809 1.4259 1.4637 1.4884 

1.2719 1.3346 1.3757 1.4009 1.4161 

1.7914 1.7914 1.7914 1.7914 1.7914 

1.7657 1.7692 1.7700 1.7704 1.7706 

1.7288 1.7416 1.7458 1.7473 1.7479 

1.7072 1.7174 1.7204 1.7219 1.7228 

1.6724 1.6862 1.6910 1.6934 1.6950 

1.5140 1.5909 1.6344 1.6552 1.6631 

1.4513 1.5268 1.5781 1.6109 1.6264 

1.4048 1.5085 1.5565 1.5772 1.5859 

1.2787 1.4213 1.4943 1.5245 1.5362 

 

From the above tables which give the simulation 

results, we may conclude that: 

 

• The ML technique gives preferable assessments of 

θ, it means that it has smaller MSE, whereas the 

Bayes assessments of p getting smaller MSE 

• The MSE accompanying with both MLE and Bayes 

assessments of the variables go down with 

increasing the specimen size n. In addition, it 

diminishes while the percentage of censoring 

becomes small (i.e., m becomes large) 

• The procedure considers highest posterior density 

accomplishes better than the asymptotic normality 
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based on a method of obtaining closer coverage 

probability to the normal value 

• In general, we remark that the MSEs of all estimates 

of the variables θ and p become smaller while the 

elimination probability p is large 
 

Example 2 

Example 2 calculates the anticipated test time E[Xm] 

for the different parameters n, m, p and θ numerically 

based on Type-II progressive censoring with binomial 

eliminations. We examined some values like: n = 6, 10, 

15, θ = 1, 2, 3 and p = 0.1,⋅⋅⋅, 0.9. The results are 

presented in Table 3a-4b with remarking that when m = 

n be in agreement with the complete sample plan. 

 
Table 4. (a) Presents E[Xm] for type-II when θ = 2 

n m p = 0.1 p = 0.2 p = 0.3 p = 0.4 

6 6 1.7285 1.7285 1.7285 1.7285 

 5 1.4870 1.5436 1.5850 1.6142 

 4 1.2592 1.3092 1.3617 1.4154 

 3 1.0678 1.1067 1.1485 1.1945 

10 10 1.8698 1.8698 1.8698 1.8698 

 9 1.7149 1.7800 1.8112 1.8255 

 8 1.5611 1.6691 1.7333 1.7674 

 7 1.9374 1.5178 1.6179 1.6836 

 6 1.2609 1.3457 1.4200 1.4824 

 5 1.1370 1.2286 1.3290 1.4244 

15 15 1.9754 1.9754 1.9754 1.9754 

 14 1.6289 1.7832 1.8904 1.9365 

 13 1.3870 1.5967 1.7800 1.8759 

 12 1.2989 1.5442 1.7553 1.8596 

 11 1.2767 1.5032 1.7114 1.8216 

 10 1.1895 1.2416 1.4048 1.5688 

 9 1.1087 1.1662 1.3440 1.5137 

 8 0.7774 0.8479 1.1056 1.3891 

 7 0.6990 0.7406 0.9559 1.2306 

 

Table 4b. Presents E[Xm] for type-II when θ = 2 

p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9 

1.7285 1.7285 1.7285 1.7285 1.7285 

1.6341 1.6472 1.6553 1.6603 1.6632 

1.4659 1.5086 1.5407 1.5618 1.5742 

1.2451 1.2987 1.3516 1.3988 1.4354 

1.8698 1.8698 1.8698 1.8698 1.8698 

1.8319 1.8348 1.8363 1.8372 1.8378 

1.7843 1.7925 1.7968 1.7992 1.8008 

1.7202 1.7388 1.7483 1.7536 1.7570 

1.5359 1.5851 1.6317 1.6721 1.6987 

1.5030 1.5600 1.5975 1.6204 1.6342 

1.9754 1.9754 1.9754 1.9754 1.9754 

1.9512 1.9550 1.9558 1.9562 1.9564 

1.9152 1.9291 1.9336 1.9350 1.9356 

1.8969 1.9075 1.9105 1.9118 1.9127 

1.8648 1.8790 1.8837 1.8859 1.8873 

1.6956 1.7797 1.8273 1.8499 1.8581 

1.6350 1.7164 1.7723 1.8080 1.8245 

1.5942 1.7064 1.7578 1.7795 1.7880 

1.4674 1.6217 1.7002 1.7316 1.7430 

From Table 3a-5b, it is noticed that the anticipated of 
ending time for Type-II cumulative censoring sample is 
getting close to that of the entire sample when m is 
getting bigger. For a constant value of m, the expected 
experiment time of type-II cumulative with binomial 
eliminations goes down while the sample size n getting 
bigger. Also, with respect to binomial eliminations, it is 
obvious that for constant values of n and m, the REET 
becoming close to one faster for going up of p. All results 
are because of the fact that a high cancellation of 
probability shows a large number of dropouts. Therefore, 
the cancellation of the probability p plays a considerable 
factor in the time needed to accomplish the experiment. In 
all cases, a large number of test units n would abbreviate 
the experiment period of the test while the underlying 
schedule is Type-II with binomial eliminations. 
 
Table 5. (a) Presents E[Xm] for typ-II when θ = 3 

n m p = 0.1 p = 0.2 p = 0.3 p = 0.4 

6 6 1.8414 1.8414 1.8414 1.8414 
 5 1.6128 1.6664 1.7055 1.7332 
 4 1.3967 1.4418 1.4903 1.5412 
 3 1.2179 1.2538 1.2921 1.3345 
10 10 1.9754 1.9754 1.9754 1.9754 
 9 1.8283 1.8901 1.9198 1.9333 
 8 1.6826 1.7849 1.8458 1.8782 
 7 1.5260 1.6391 1.7350 1.7982 
 6 1.3982 1.4737 1.5396 1.5963 
 5 1.2832 1.3690 1.4633 1.5533 
15 15 2.0761 2.0761 2.0761 2.0761 
 14 1.7197 1.8774 1.9890 2.0372 
 13 1.4741 1.6856 1.8758 1.9760 
 12 1.3849 1.6350 1.8533 1.9616 
 11 1.3838 1.5997 1.8119 1.9251 
 10 1.2752 1.3294 1.4933 1.6622 
 9 1.2490 1.2610 1.4362 1.6094 
 8 0.8360 0.9230 1.1885 1.4831 

 7 0.8176 0.8190 1.0380 1.3229 
 
Table 5b. Presents E[Xm] for type-II when θ = 3 

p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9 

1.8414 1.8414 1.8414 1.8414 1.8414 

1.7520 1.7644 1.7721 1.7768 1.7796 

1.5899 1.6316 1.6630 1.6836 1.6954 

1.3817 1.4326 1.4835 1.5291 1.5643 

1.9754 1.9754 1.9754 1.9754 1.9754 

1.9394 1.9422 1.9436 1.9445 1.9450 

1.8942 1.9021 1.9061 1.9084 1.9099 

1.8333 1.8511 1.8601 1.8652 1.8683 

1.6469 1.6956 1.7431 1.7850 1.8126 

1.6277 1.6818 1.7173 1.7390 1.7521 

2.0761 2.0761 2.0761 2.0761 2.0761 

2.0526 2.0564 2.0573 2.0576 2.0579 

2.0170 2.0315 2.0361 2.0375 2.0381 

2.0003 2.0112 2.0142 2.0154 2.0163 

1.9696 1.9840 1.9886 1.9907 1.9921 

1.7944 1.8824 1.9322 1.9558 1.9643 

1.7347 1.8194 1.8778 1.9151 1.9323 

1.6969 1.8137 1.8671 1.8892 1.8978 

1.5695 1.7303 1.8118 1.8439 1.8550 
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Conclusion 

The problem of estimating the parameters of Burr 
distribution type-X based on a mean square error while 
data are gathered in the context of Type-II censoring with 
binomial eliminations are considered. Interval and both 
point assessments of the variables and the anticipated time 
to accomplish the test has been computed and interpreted 
for various censoring schedules. The outcomes illustrate 
that the maximum likelihood estimation for various 
estimators of the variable is going down while the 
cancellation probability p becoming large, furthermore, 
the corresponding time needed to accomplish the test 
going up significantly. A numerical example is given to 
illustrate the procedures and the accuracy of prediction 
intervals is investigated via Monte Carlo simulation. 
Furthermore, this study shows how simulation can be a 
helpful and illuminating way to approach problems in 
Bayesian analysis. Moreover, the simulation has presented 
some interesting properties of the Bayes estimates. After 
an extensive study of results. Bayesian problems of 
updating estimates can be handled easily and straight 
forwardly with simulation. Since we can express the 
distribution function of the Burr Type-X as well as its 
inverse in closed form, the inversion method of simulation 
is straightforward to implement. The study can further be 
extended by considering generalized versions of the 
distribution under the variety of circumstances. 
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