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Abstract: The current paper proposes the sliced inverse quantile regression 

method (SIQR). In addition to the latter this study proposes both the sparse 

sliced inverse quantile regression method with Lasso (LSIQR) and 

Adaptive Lasso (ALSIQR) penalties. This article introduces a 

comprehensive study of SIQR and sparse SIQR. The simulation and real 

data analysis have been employed to check the performance of the SIQR, 

LSIQR and ALSIQR. According to the results of median of mean squared 

error and the absolute correlation criteria, we can conclude that the SIQR, 

LSIQR and ALSIQR are the more advantageous approaches in practice. 
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Introduction 

In many statistical applications, the number of 

variables becomes huge. Consequently, many of 

statistical data analyses become hard. A familiar way to 

cope with this issue is to shrinkage the dimension of the 

regression model, without much loss of information on 

regression. This has been obtained via the Sufficient 

Dimension Reduction (SDR) theory. 

The SDR theory (Cook, 1998) aims to reduce the p-

dimensional predictor X with a d-dimensional vector 

βT
X, where β is a p×d matrix with d≤p, without much 

loss of information on regression and putting only a 

few assumptions. The subspace spanned by the 

columns of β, Span (β), is called a Dimension 

Reduction Subspace (D.R.S). The minimal subspace is 

usually uniquely defined in practice and coincides 

with the intersection of all of the subspaces (Cook, 

1996). Such an intersection is a parsimonious 

population parameter that contains all regression 

information of Y given X and thus it is the central 

matter of concern in Dimension Reduction (D.R). This 

intersection is called the Central Dimension Reduction 

(CDR) space and is written as SY|X and its dimension, 

d = dim (SY|X), is called the structural dimension of 

regression (Cook, 1998). 

There have been a number of methods suggested to 

find the SDR in regression through estimating the 

Central Subspace (C.S) and one of the well-known 

methods for estimating C.S is Sliced Inverse Regression 

(SIR) (Li, 1991). The SIR is especially practical in 

dealing with high-dimensional covariates, and it has 

been shown to be an powerful D.R tool in high-

dimensional regression problems (Zhu et al., 2006).  

Li (1991) suggested that an estimate of the SY|X can be 

achieved by the first d eigenvectors υ1,…..,υd for the 

eigenvalue problem of the form: 

 

,i i x iMυ ρ υ= Σ   (1) 

 

where, ρ1≥⋅⋅⋅≥ ρd>0 are the eigenvalues, ∑x = Cov(X) and 

M = Cov{E(X|Y)}. 

Aragon and Saracco (1997) studied the finite sample 

properties of SIR. The Lasso has been combined with 

SIR in (Ni et al., 2005; Li and Nachtsheim, 2006) to 

produce sparse estimates. Li (2007) proposed to combine 

a regression-type formulation of SDR methods with 

shrinkage estimation to produce sparse and accurate 

solutions. This strategy can be applied to SIR and many 

of SDR methods. 

Li and Yin (2008) suggested a penalized SIR based 

on the Least-Squares (L.S) formulation of SIR. Cook 

(2004) rewrote SIR in (1) as a L.S minimization problem 

and SIR estimates can be obtained by minimizing: 
 

( )
1

2ˆ,
h

y y y

y

L B C f Z BC
=

= −∑  (2) 

 

where, 
1

2ˆ ˆ ( ( ))Z X E X
−

= Σ −  with yZ denoting the mean of 

Ẑ  in the yth slice, ny is the number of observations within 

each slice and ˆ /y yf nn= is the observed fraction of 

observations in slice y and h is the number of non-

overlapping slices. Over B∈R
p×d

 and C = (C1,…,Ch)∈R
d×h

 

the values of B which minimize L(B,C) form an estimation 
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of the central space SY|X. Equation 2 requires 
1

2ˆ
−

Σ . The 

inversion is not possible and a penalization approach 

has to be used in case of high correlations between the 

predictors or small sample sizes compared to the 

dimension. The L.S formulation of SIR in the original 

predictor X scale has been derived in (Li and Yin, 

2008) in order to avoid the singularity of ˆ
x

Σ as follows: 

 

( ) ( )
1

2
ˆ ˆ,

h

y y x y

y

L XB C f BX C
=

= − − Σ∑ɶ   (3) 

 
The mechanics of the alternating L.S algorithm 

which is suggested by Li and Yin (2008) to minimize (3) 

can be described as follow. 

Given B the solution of C can be obtained by: 
 

( ) ( ) ( )
1

2

1
ˆ ˆ ˆ ˆ ˆ ˆ, , where T T

h y x x y
C C C XC B XB B

−
= … = Σ Σ −   (4) 

 
Thereafter, rewrite (3) in the following form: 

 

( ) ( ) ( )
2

1/ 2 1/ 2 ˆ, T

x
B C A A C vec BL Y − ⊗Σ= ɶɶ ɶ ɶ   (5) 

 
where, vec(.) is a matrix operator. 

⊗ is the Kronecker product, 

( )1 , , hXc Xe X XY v= − … −ɶ , 1/ 2 1/ 2

f PD IA = ⊗ɶ  and 

( )1
ˆ , ˆ,

f h
fD ag fdi= … . Given C, the solution of B in (5) is: 

 

( ) ( )2 1 ˆ)ˆ ˆ( T

f x f xBvec C C YD CD−Σ ⊗Σ= ⊗ ɶ   (6) 

 
and this procedure will continue between minimizing B 

and C until convergence: 

 

( ) ( ) ( )
2

1/2 1/ 2

,

ˆ, arg miˆ n T

x
B C

BL C CY A cA ve B= Σ− ⊗ɶ ɶɶɶ   (7) 

 

where, ( )ˆ ˆ,B C  denote the SIR estimator that minimizes (7). 

Also, Li and Yin (2008) proposed shrinkage SIR 

estimator of SY|X as ( )( )ˆ ˆSpan diag Bα , where 

( )1, ,ˆ ˆ ˆ
T p

Pα α α= … ∈R  is obtained by solving: 

 

( ) ( )
2

1 1

ˆˆ ˆar ˆg min
h P

y y x y j

y j

f diagX X BC
α

α λ α
= =

− − Σ +∑ ∑   (8) 

 

where, λ > 0 is the penalty tuning parameter. 

The authors wrote: 

 

( )
( ) ( )

1

1
ˆ ˆˆ

, ,

, ( , , )ˆˆ ˆ

h

ph T ph p

x y x

Y X X X X

BC B

vec

X diag diag C ×

= − … −

∈ = Σ Σ… ∈

ɶ

ɶR R

  (9) 

Then α is the Lasso estimator for the regression of 

Yɶ on the p-dimensional “data matrix” Xɶ . 

Quantile Regression (QR) has become well-known 

approach to describe the distribution of a response 

variable given a set of predictors. QR gives a complete 

analysis of the stochastic relationships among random 

variables. The QR has been used in different areas such 

as finance, microarrays and many other fields (Yu et al., 

2003). While QR has become very attractive as a 

complete extension of the mean regression; however, it 

suffers from the ‘curse of dimensionality’ (C.D). 

There are a number of approaches tried to shorten the 

dimension and then estimate the Conditional Quantile 

(C.Q). For example, Chaudhuri (1991; Horowitz and 

Lee, 2005; Dette and Scheder, 2011; Yebin et al., 2011). 

Wu et al. (2010) suggested modelling the conditional 

quantile by a single-index function to tackle the 

dimensionality problem. Alkenani and Yu (2013) proposed 

penalized single index QR to reduce the dimensionality. 

Gannoun et al. (2004) used SIR to tackle the 

dimensionality problem of the predictors in order to 

obtain a more efficient estimator of C.Q. Specifically, 

the authors employ SIR method as a pre-step to avoid 

C.R. and then conditional quantile estimators are 

obtained by inverting the conditional distribution. 

In this study, one step sliced Inverse Quantile 

Regression (SIQR) has been proposed, which will inherit 

the same advantages as in the SIR. In addition, sparse 

sliced inverse quantile with Lasso and Adaptive Lasso 

penalties have been suggested. This paper is arranged as 

follows. The SIQR is proposed in section 2. The LSIQR 

and ALSIQR are suggested in sections 3 and 4, 

respectively. Simulation examples and real data are 

presented in section 5 and 6, respectively. The 

conclusions are summarized in section 7. 

SIQR 

We can write the equation (7) as follows: 

 

( ) 2
* * *

,

ˆ, arg miˆ n
B C

C YL B X β= −ɶ   (10) 

 

Where: 

Y
*  

= 1/2A Yɶ ɶ , ( )* 1/2 ˆT

xX A C= ⊗Σɶ , β* = vec (B) 

Y
* 

= n
*×1 response vector, n

* 
= (ph) 

X
* 

= n
*×pd predictors matrix 

β* 
= pd×1 coefficients vector 

 

Then, we can propose SIQR as follows: 

 

� ( )
*

* * * *

,
1

arg min
n

i i
B C

i

Y Xτβ ρ β
=

= −∑   (11) 
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where, ρτ (.) is the check function defined by 

( ) [ ) ( ) ( ) ( )( ,0)0,
1u u I u u I uτρ τ τ −∞∞= − − . 

Then we will replace B by �*β  in Equation 4 to 

compute Ĉ . The new values of Ĉ  will be put in Equation 

11 to compute a new �*β . This procedure will continue 

between minimizing B and C until convergence.  

The algorithm has been summarized as follows: 

 

• Initialization step) Obtain the initial β0 from SIR 

methods where β0 is p×1 estimated vector 

coefficients. Set B = β0 

• Given B = β0 find Ĉ  from equation (4) 

• Given Ĉ  find ( )* 1/2 ˆT

xX A C= ⊗Σɶ  where 1/2Aɶ is 

defined in Equation 5 

• Now, we have X
* 

and Y
*
. �*β can be obtained by 

solving (11) as standard linear QR. We can use 

rq(Y
*∼X

*
,tau, method = “fn”) function in quantreg 

package to find �*β  

• Set �*B β= and repeat steps 2,3 and 4 until 

convergence is attained 

LSIQR 

Tibshirani (1996), Lasso has been proposed for 

simultaneous variable selection and parameter 

estimation. It minimizes the residual sum of squares with 

a constraint on the l1 norm. Li and Zhu (2008) extended 

Lasso Tibshirani (1996) to work with QR models. 

From Equation 8, we can propose LSIQR as follow: 

 

( )
1 1 1

ˆarg min
p ph

y yj yj j

j y j

Y Xf τα
ρ α λ α

= = =

− +∑∑ ∑ɶ ɶ   (12) 

 

where, Yɶ  and Xɶ  were defined in equation (9). 

The optimization problem in (12) has been solved by 

employing a standard Lasso QR. 

The algorithm has been summarized as follows: 

 

• Let B̂  and Ĉ  represent the convergent values for B̂  

and Ĉ  which we obtained from the previous 

algorithm 

• Given B̂  and Ĉ  find 

( ) ( )1
ˆ ˆ( , ˆ, )ˆ ˆˆ T ph p

x y x
diag dX B a Ci BgC ×= Σ … Σ ∈ɶ R  

• Now, we have Xɶ  and Yɶ . Where 

( )1 , , ph

hY X X Xvec X= − … − ∈ɶ R . α̂ can be obtained 

by solving (12) as Lasso linear QR. We can use 

( ~ , ,method "lasso")rq Y X tau =ɶ ɶ function in quantreg 

package to find α̂  

ALSIQR 

Fan and Li (2001) proved that Lasso produces 

biased estimates and the oracle properties do not hold 

for the lasso. Adaptive Lasso method, in which 

adaptive weights are used for penalizing different 

coefficients in the l1 penalty, has been suggested in 

(Zou, 2006). The Adaptive Lasso benefits from the 

oracle properties that the Lasso does not have (Zou, 

2006). The Adaptive Lasso QR has been suggested in 

(Wu and Liu, 2009). 

ALSIQR has been proposed as follows: 

 

( )
1 1 1

ˆarg min
p ph

y yj yj n j j

j y j

Yf X wτα
ρ α λ α

= = =

− +∑∑ ∑ɶ ɶ ɶ   (13) 

 

where, the weights are set to be 
1

j

j

w γ
α

=ɶ
ɶ

 , j = 1,…,p; 

for some appropriately chosen γ>0, αɶ is the quantile 

sliced inverse regression estimates. 

We can summarize the algorithm as follows: 

 

• Let B̂  and Ĉ  represent the convergent values for 

B̂ and Ĉ which we obtained from the previous 

algorithm 

• Given B̂  and Ĉ  find 

( ) ( )1
ˆ ˆ ˆ( , , )ˆ T ph p

x y x
diag dX BC BCiag ×= Σ … Σ ∈ɶ ɶ ɶ R  

• Now, we have Xɶ and Yɶ . Where 

( )1 , , ph

hY X X Xvec X= − … − ∈ɶ R . αɶ can be obtained 

by solving (13) as Adaptive Lasso linear QR 

 

The LARS algorithm (Efron et al., 2004; Zou, 2006) 

has been applied to get the Adaptive Lasso estimate of 

αɶ  in (13), which is described as follows: 

 

Step 1. yjXɶ is the jth coordinate of yXɶ . For any given λ, 

define ** /yj yj jX X w= ɶ ɶ , y = 1,…,h and j = 1,.., p; 

where, X
**

 is the re-scaled predictor matrix. 

Step 2. Obtain �*α  by solving the standard lasso QR 

problem for all λn by using LARS as follows: 

 

� ( )
1

* **

1 1

ˆarg min
p ph

y yj yj j

j y j

f XYτα
ρ α λ αα

= = =

= − +∑∑ ∑ɶ  (14) 

 

The minimization problem in (14) can be solve by 

using **( ~ , ,method "lasso")rq Y X tau =ɶ function in 

quantreg package to find �*α . 

Step 3. Output �*ˆ /jj jwα α= ɶ . 
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Simulation Study 

A-The performance of SIQR has been checked via a 

numerical study. SIQR estimators have compared with 

linear QR (LQR) and nonlinear QR (NQR) estimators 

for τ = (0.10, 0.25, 0.50). To make comparisons, the 

mean and Standard Deviation (SD) of the absolute 

correlation (|r|) between the estimated predictor ˆT Xβ and 

the true predictor βT
X and the Median of Mean Squared 

Errors (MMSE) for ˆT Xβ  have been reported. 

Example 1: R = 500 samples with size n = 400 

observations from y = βT
X+σε have been generated, where 

β = (1,1,1,1,1,1,1,1,1,0)
T
, X∈R

10
 and xi (i = 1,…,10) and ε 

are independently and identically distributed (i.i.d) 

standard normal. We take σ = 1 and σ = 3. 

Example 2: R = 200 data-sets with size n = 400 

observations have been generated from the following 

model: 

 

( )
sin

u A
y

C A

π
ε

 −  
= + 

−  
 

 

where, u = βT
X, X = (x1,…,x8), (1,1,1,1,1,1,1,1) / 8Tβ = , 

3 1.645

2 12
A = − , 

3 1.645

2 12
C = + , xi i.i.d.~ Unif(0,1), i = 

1,2,…,8; ε∼N(0,1) ; 
ix '  s and ε are i.i.d. β is estimated 

withτ = (0.10, 0.25, 0.50).  

B- In term of variable selection, the performance of 

LSIQR and ALSIQR has been tested through a numerical 

study. The LSIQR and ALSIQR have compared with Lasso 

linear QR (LLQR) and Adaptive Lasso linear QR 

(ALLQR) forτ = (0.10, 0.25, 0.50). The average number of 

zero coefficients (Ave 0’s), the mean and SD of |r| between 
ˆT Xβ and βT

X and MMSE for ˆT Xβ have been reported. β̂  

is assumed zero if ˆ| |β  is smaller than 10
−6

. 

Example 3: R = 500 samples have been generated 

with n = 400 from = βT
X+σε, where β takes the 

following different forms: 

 

Model 1: β = (1,1,0.1,0.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
T
 

Model 2: β = (1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
T
 

Model 3: β = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.1,0.1,)
T
 

Model 4: β = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1)
T
 

Model 5: β = (1,1,0.1,0.1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.1,0.1)
T
 

Model 6: β = (1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1)
T
 

 

X∈R
20

 and X = (x1,…,x20) are generated from N(0,∑) 

and the (i,j) element of ∑ is 0.5
|i-j|

. The error term ε is 

generated from standard normal distribution. We take σ 

= 1 and σ = 3. 

Example 4: R = 500 samples has been generated with n 

= 400 from y = exp(-0.5 βT
X)+0.2ε, where X = (x1,…,x6), 

and X and the error ε are independent standard normal 

variables. The C.S is spanned by ( )1, 1,0,0,0,0 / 2
Tβ = − . β 

is estimated with τ = (0.10, 0.25, 0.50). 

According to the mean and SD of |ri| between 
ˆT

j Xβ and T

j Xβ and MMSE for ˆT Xβ (From Table 1-9), it 

can be seen that ALSIQR, LSIQR and SIQR have a 

better performance than the LLQR, ALLQR, LQR and 

NQR for all studied cases. It is obvious from the Table 1 

and 2 the preference of SIQR, when it compares with 

LQR and NQR, depending on MMSE for both σ values 

and all values of τ. Furthermore, when the values of τ go 

up the values of MMSE go down. 

From Table 3-8 we find that ALSIQR and LSIQR 

give MMSE and SD values less than the other methods. 

Also, the results show that the MMSE values for the all 

considered methods increase when σ = 1 move to σ = 3 

for all τ values. Moreover, the values of MMSE for all 

methods increase when the values of τ decrease. 

 
Table 1. Simulation results for the SIQR and LQR based on the linear model in example 1 

  τ = 0.10  τ = 0.25  τ = 0.50 

  ------------------------------ -------------------------------- ------------------------------- 

  LQR SIQR LQR SIQR LQR SIQR 

σ = 1 Mean |r| 0.9915 0.9966 0.9920 0.9977 0.9924 0.9981 

 SD |r| 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 

 MMSE 0.0007 0.0005 0.0005 0.0002 0.0006 0.0001 

σ = 3 Mean |r| 0.9700 0.9753 0.9768 0.9785 0.9764 0.9823 

 SD |r| 0.0003 0.0001 0.0002 0.0001 0.0002 0.0001 

 MMSE 0.0044 0.0014 0.0014 0.0010 0.0020 0.0002 

 
Table 2. Simulation results for the SIQR and NQR based on the nonlinear model in example 2 

 τ = 0.10  τ = 0.25  τ = 0.50 

 --------------------------------- --------------------------------- ---------------------------------- 

 NQR SIQR NQR SIQR NQR SIQR 

Mean |r| 0.8822 0.8911 0.8740 0.8966 0.9037 0.9201 

SD |r| 0.1048 0.0889 0.0940 0.0863 0.0627 0.0450 

MMSE 0.0067 0.0060 0.0061 0.0059 0.0063 0.0055 
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Table 3. Simulation results for the ALSIQR, LSIQR, SIQR, ALLQR, LLQR and LQR based on the linear model in example 3 model 

1, σ = 1 and σ = 3 

  LQR LLQR ALLQR SIQR LSIQR ALSIQR 

τ = 0.10 
 Ave 0’s 2.4300 8.7700 13.1300 3.6300 10.2700 13.1300 
σ = 1 Mean |r| 0.9829 0.9839 0.9892 0.9693 0.9925 0.9952 
 SD |r| 0.0071 0.0073 0.0055 0.0101 0.0022 0.0021 
 MMSE 0.0027 0.0025 0.0020 0.0018 0.0017 0.0010 
σ = 3 Ave 0’s 9.3000 9.8500 11.8000 9.4500 9.6000 11.4000 
 Mean |r| 0.8518 0.8600 0.8690 0.8855 0.9401 0.9552 
 SD |r| 0.0686 0.0675 0.0673 0.0301 0.0209 0.0171 
 MMSE 0.0237 0.0205 0.0206 0.0028 0.0020 0.0024 
τ = 0.25 
σ = 1 Ave 0’s 2.4500 8.7500 13.2000 2.9500 9.9000 12.6500 
 Mean |r| 0.9860 0.9871 0.9921 0.9683 0.9923 0.9947 
 SD |r| 0.0037 0.0037 0.0035 0.0111 0.0022 0.0017 
 MMSE 0.0030 0.0029 0.0027 0.0029 0.0026 0.0023 
σ = 3 Ave 0’s 3.4000 8.8000 12.0500 3.8500 10.2000 11.5500 
 Mean |r| 0.9118 0.9178 0.9295 0.8900 0.9445 0.9584 
 SD |r| 0.0343 0.0313 0.0295 0.0312 0.0158 0.0152 
 MMSE 0.0053 0.0051 0.0039 0.0037 0.0027 0.0025 
τ = 0.50 
 Ave 0’s 3.1000 8.4000 13.3000 3.3000 9.9000 12.8000 
σ = 1 Mean |r| 0.9890 0.9900 0.9942 0.9691 0.9944 0.9946 
 SD |r| 0.0033 0.0031 0.0030 0.0118 0.0025 0.0022 
 MMSE 0.0007 0.0005 0.0002 0.0010 0.0002 0.0001 
σ = 3 Ave 0’s 8.5500 8.9500 12.3000 10.1000 9.5500 11.7500 
 Mean |r| 0.9119 0.9194 0.9351 0.8989 0.9486 0.9632 
 SD |r| 0.0266 0.0264 0.0259 0.0389 0.0193 0.0180 
 MMSE 0.0009 0.0007 0.0007 0.0014 0.0005 0.0005 

 
Table 4. Simulation results for the ALSIQR, LSIQR, SIQR, ALLQR, LLQR and LQR based on the linear model in example 3 model 

2, σ = 1 and σ = 3 

  LQR LLQR ALLQR SIQR LSIQR ALSIQR 

τ = 0.10 

σ = 1 Ave 0’s 3.00000 8.15000 12.3500 3.5500 9.6000 12.0500 

 Mean |r| 0.98870 0.98950 0.9930 0.9737 0.9947 0.9967 

 SD |r| 0.00420 0.00420 0.0039 0.0103 0.0019 0.0017 

 MMSE 0.00330 0.00280 0.0028 0.0021 0.0018 0.0014 

σ = 3 Ave 0’s 8.75000 8.95000 11.1000 11.7500 11.2000 13.1500 

 Mean |r| 0.90860 0.91420 0.9225 0.9276 0.9688 0.9775 

 SD |r| 0.03710 0.03580 0.0373 0.0301 0.0149 0.0118 

 MMSE 0.03030 0.02750 0.0226 0.0110 0.0101 0.0103 

τ = 0.25 

σ = 1 Ave 0’s 3.45000 8.95000 13.3500 4.5000 9.6000 12.7500 

 Mean |r| 0.99240 0.99290 0.9960 0.9732 0.9962 0.9970 

 SD |r| 0.00330 0.00310 0.0021 0.0138 0.0020 0.0015 

 MMSE 0.00070 0.00220 0.0018 0.0031 0.0006 0.0004 

σ = 3 Ave 0’s 9.00000 8.90000 11.4500 10.3500 10.3000 11.7500 

 Mean |r| 0.93780 0.94230 0.9531 0.9222 0.9691 0.9786 

 SD |r| 0.01750 0.01670 0.0164 0.0358 0.0116 0.0106 

 MMSE 0.00590 0.00530 0.0047 0.0065 0.0045 0.0045 

τ = 0.50 

 Ave 0’s 4.65000 9.35000 14.4000 4.6000 10.8500 13.0000 

σ = 1 Mean |r| 0.99440 0.99510 0.9955 0.9781 0.9972 0.9973 

 SD |r| 0.00350 0.00320 0.0030 0.0071 0.0019 0.0016 

 MMSE 0.00520 0.00490 0.0004 0.0053 0.0001 0.0001 

σ = 3 Ave 0’s 8.40000 8.90000 12.0000 9.7000 9.4500 11.2000 

 Mean |r| 0.94919 0.95312 0.9630 0.9268 0.9683 0.9766 

 SD |r| 0.01321 0.01296 0.0123 0.0332 0.0096 0.0110 

 MMSE 0.00260 0.00300 0.0007 0.0025 0.0005 0.0005 
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Table 5. Simulation results for the ALSIQR, LSIQR, SIQR, ALLQR, LLQR and LQR based on the linear model in example 3 model 

3, σ = 1 and σ = 3 

  LQR LLQR ALLQR SIQR LSIQR ALSIQR 

τ = 0.10 

σ = 1 Ave 0’s 3.4000 8.5800 12.3000 3.4100 10.3800 13.2800 

 Mean |r| 0.9807 0.9820 0.9878 0.9675 0.9923 0.9946 

 SD |r| 0.0056 0.0059 0.0048 0.0106 0.0033 0.0028 

 MMSE 0.0038 0.0033 0.0033 0.0027 0.0011 0.0015 

σ = 3 Ave 0’s 8.5800 8.9500 11.3500 9.8300 9.8000 11.6800 

 Mean |r| 0.8662 0.8715 0.8852 0.8835 0.9422 0.9574 

 SD |r| 0.0531 0.0521 0.0500 0.0403 0.0211 0.0204 

 MMSE 0.0169 0.0145 0.0128 0.0028 0.0025 0.0015 

τ = 0.25 

σ = 1 Ave 0’s 2.4300 8.8300 13.2800 2.8800 9.6800 12.0500 

 Mean |r| 0.9881 0.9888 0.9932 0.9662 0.9934 0.9952 

 SD |r| 0.0036 0.0035 0.0025 0.0136 0.0018 0.0019 

 MMSE 0.0010 0.0007 0.0008 0.0006 0.0005 0.0002 

σ = 3 Ave 0’s 8.5000 8.8300 11.7000 9.9500 9.6300 11.8800 

 Mean |r| 0.9056 0.9099 0.9217 0.8921 0.9458 0.9585 

 SD |r| 0.0315 0.0306 0.0297 0.0391 0.0195 0.0178 

 MMSE 0.0041 0.0040 0.0025 0.0041 0.0021 0.0023 

τ = 0.50 

 Ave 0’s 2.1300 8.6500 13.3300 2.5300 10.6300 13.0800 

σ = 1 Mean |r| 0.9887 0.9895 0.9940 0.9692 0.9942 0.9952 

 SD |r| 0.0036 0.0034 0.0025 0.0118 0.0023 0.0019 

 MMSE 0.0022 0.0018 0.0018 0.0020 0.0001 0.0001 

σ = 3 Ave 0’s 8.6000 9.0800 11.7800 10.2000 9.9500 12.0500 

 Mean |r| 0.9097 0.9160 0.9286 0.8869 0.9435 0.9566 

 SD |r| 0.0280 0.0261 0.0275 0.0356 0.0176 0.0186 

 MMSE 0.0024 0.0023 0.0021 0.0023 0.0005 0.0005 

 
Table 6. Simulation results for the ALSIQR, LSIQR, SIQR, ALLQR, LLQR and LQR based on the linear model in example 3 model 

4, σ = 1 and σ = 3 

  LQR LLQR ALLQR SIQR LSIQR ALSIQR 

τ = 0.50 
σ = 1 Ave 0’s 3.7800 9.2300 12.7800 3.5300 10.2500 12.5800 
 Mean |r| 0.9893 0.9899 0.9932 0.9760 0.9947 0.9967 
 SD |r| 0.0034 0.0033 0.0030 0.0075 0.0015 0.0013 
 MMSE 0.0020 0.0019 0.0016 0.0019 0.0015 0.0013 
σ = 3 Ave 0’s 8.7300 9.2000 10.9800 10.0000 10.2500 12.1300 
 Mean |r| 0.9070 0.9115 0.9201 0.9113 0.9631 0.9719 
 SD |r| 0.0288 0.0282 0.0270 0.0262 0.0110 0.0100 
 MMSE 0.0215 0.0207 0.0184 0.0034 0.0021 0.0024 
τ = 0.25 
σ = 1 Ave 0’s 3.5000 8.7300 13.2000 3.8000 9.6800 12.0500 
 Mean |r| 0.9925 0.9931 0.9951 0.9769 0.9961 0.9967 
 SD |r| 0.0023 0.0022 0.0018 0.0073 0.0017 0.0015 

 MMSE 0.0004 0.0004 0.0002 0.0004 0.0002 0.0001 

σ = 3 Ave 0’s 8.500 8.9500 11.2750 9.6250 9.925 11.5500 

 Mean |r| 0.9367 0.9412 0.9494 0.9204 0.9643 0.9737 

 SD |r| 0.0197 0.0180 0.0180 0.0265 0.0129 0.0107 

 MMSE 0.0045 0.0049 0.0036 0.0036 0.0023 0.0023 

τ = 0.50 

 Ave 0’s 3.3000 8.9500 13.0750 3.3300 10.300 12.4300 

σ = 1 Mean |r| 0.9933 0.9938 0.9947 0.9737 0.9961 0.9966 

 SD |r| 0.0018 0.0018 0.0017 0.0109 0.0015 0.0013 

 MMSE 0.0040 0.0022 0.0002 0.0048 0.0001 0.0001 

σ = 3 Ave 0’s 8.8500 9.3500 11.9500 9.7000 10.2300 12.1000 

 Mean |r| 0.9446 0.9485 0.9576 0.9266 0.9651 0.9733 

 SD |r| 0.0173 0.0161 0.0147 0.0298 0.0105 0.0115 

 MMSE 0.0055 0.0053 0.0021 0.0065 0.0014 0.0012 
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Table 7. Simulation results for the ALSIQR, LSIQR, SIQR, ALLQR, LLQR and LQR based on the linear model in example 3 model 

5, σ = 1 and σ = 3 

  LQR LLQR ALLQR SIQR LSIQR ALSIQR 

τ = 0.10 

σ = 1 Ave 0’s 2.58000 6.73000 10.1300 2.1800 9.4000 11.9000 

 Mean |r| 0.99070 0.99120 0.9934 0.9743 0.9955 0.9958 

 SD |r| 0.00300 0.00300 0.9934 0.0104 0.0018 0.0016 

 MMSE 0.00670 0.00670 0.0063 0.0030 0.0029 0.0021 

σ = 3 Ave 0’s 7.45000 7.90000 9.7300 10.9300 10.8000 12.9000 

 Mean |r| 0.92380 0.92800 0.9351 0.9318 0.9698 0.9741 

 SD |r| 0.02560 0.02490 0.0252 0.0191 0.0086 0.0131 

 MMSE 0.02520 0.02390 0.0192 0.0071 0.0048 0.0059 

τ = 0.25 

σ = 1 Ave 0’s 3.23000 6.63000 10.6800 3.3300 10.7300 12.8800 

 Mean |r| 0.99360 0.99400 0.9959 0.9735 0.9960 0.9961 

 SD |r| 0.00210 0.00200 0.0014 0.0101 0.0013 0.0013 

 MMSE 0.00060 0.00060 0.0004 0.0005 0.0001 0.0004 

σ = 3 Ave 0’s 7.48000 7.95000 10.0800 10.6300 10.6800 12.7300 

 Mean |r| 0.94910 0.95280 0.9576 0.9311 0.9715 0.9767 

 SD |r| 0.01910 0.01850 0.0208 0.0268 0.0120 0.0110 

 MMSE 0.00900 0.00780 0.0076 0.0077 0.0075 0.0070 

τ = 0.50 

 Ave 0’s 2.55000 6.83000 10.7000 2.1800 9.2500 11.7000 

σ = 1 Mean |r| 0.99390 0.99430 0.9950 0.9755 0.9951 0.9954 

 SD |r| 0.00220 0.00210 0.0021 0.0082 0.0020 0.0020 

 MMSE 0.00020 0.00020 0.0002 0.0004 0.0001 0.0001 

σ = 3 Ave 0’s 7.37500 7.72500 10.3500 8.8800 8.7300 10.4800 

 Mean |r| 0.95071 0.95473 0.9618 0.9317 0.9689 0.9762 

 SD |r| 0.01593 0.01406 0.0147 0.0216 0.0104 0.0098 

 MMSE 0.00070 0.00070 0.0006 0.0008 0.0004 0.0004 

 
Table 8. Simulation results for the ALSIQR, LSIQR, SIQR, ALLQR, LLQR and LQR based on the linear model in example 3 model 

6, σ = 1 and σ = 3 

  LQR LLQR ALLQR SIQR LSIQR ALSIQR 

τ = 0.10 
σ = 1 Ave 0’s 2.0300 7.4800 10.5500 2.6500 9.6800 11.0000 
 Mean |r| 0.9944 0.9948 0.9959 0.9776 0.9967 0.9963 
 SD |r| 0.0015 0.0016 0.0018 0.0099 0.0012 0.0014 
 MMSE 0.0079 0.0075 0.0074 0.0028 0.0027 0.0016 
σ = 3 Ave 0’s 6.7500 6.9500 8.7500 9.8500 9.4300 11.0300 
 Mean |r| 0.9519 0.9544 0.9581 0.9482 0.9799 0.9824 
 SD |r| 0.0179 0.0171 0.0177 0.0165 0.0097 0.0096 
 MMSE 0.0264 0.0239 0.0220 0.0154 0.0136 0.0147 
τ = 0.50 
σ = 1 Ave 0’s 2.1300 7.4000 10.8300 2.9000 10.1000 10.1000 

 Mean |r| 0.9961 0.9963 0.9962 0.9758 0.9965 0.9963 

 SD |r| 0.0011 0.0011 0.0017 0.0051 0.0011 0.0016 

 MMSE 0.0006 0.0005 0.0005 0.0005 0.0004 0.0004 

σ = 3 Ave 0’s 6.7800 7.1500 9.5000 10.9000 10.5000 12.3500 

 Mean |r| 0.9668 0.9683 0.9720 0.9501 0.9801 0.9821 

 SD |r| 0.0111 0.0113 0.0104 0.0169 0.0070 0.0084 

 MMSE 0.0076 0.0072 0.0059 0.0064 0.0058 0.0051 

τ = 0.50 

 Ave 0’s 2.1300 7.7300 11.0000 2.4000 9.2500 11.4000 

σ = 1 Mean |r| 0.9965 0.9967 0.9966 0.9812 0.9969 0.9967 

 SD |r| 0.0014 0.0014 0.0011 0.0064 0.0010 0.0010 

 MMSE 0.0002 0.0002 0.0002 0.0003 0.0001 0.0001 

σ = 3 Ave 0’s 6.9000 7.2800 9.7300 10.4800 10.8000 12.7300 

 Mean |r| 0.9740 0.9753 0.9791 0.9548 0.9812 0.9819 

 SD |r| 0.0083 0.0082 0.0081 0.0174 0.0054 0.0073 

 MMSE 0.0021 0.0020 0.0022 0.0041 0.0018 0.0017 
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Table 9. Simulation results for the ALSIQR, LSIQR, SIQR and NQR based on the nonlinear model in example 4 

 NQR SIQR LSIQR ALSIQR 

τ = 0.10 

Ave 0’s 1.0900 1.0600 3.1000 3.2400 

Mean |r| 0.8541 0.9951 0.9987 0.9991 

SD |r| 0.0717 0.0036 0.0010 0.0007 

MMSE 0.0059 0.0003 0.0001 0.0001 

τ = 0.25 

Ave 0’s 1.0700 1.0300 3.1400 3.2500 

Mean |r| 0.8352 0.9946 0.9985 0.9991 

SD |r| 0.0788 0.0041 0.0011 0.0009 

MMSE 0.0030 0.0003 0.0002 0.0001 

τ = 0.50 

Ave 0’s 1.1100 1.0800 3.2500 3.3300 

Mean |r| 0.8235 0.9948 0.9985 0.9990 

SD |r| 0.0793 0.0036 0.0010 0.0008 

MMSE 0.0065 0.0003 0.0002 0.0001 

 
Table 10. The results of MAD and the SD of the prediction 

errors for estimated quantiles which are estimated by 

the ALSIQR, LSIQR, SIQR, ALLQR, LLQR and 

LQR based on air pollution data for τ = 

(0.10,0.25,0.50) 

   SD of the 

  MAD prediction errors 

τ = 0.50 ALSIQR 0.6532 1.0170 

 LSIQR 0.6672 1.0105 

 SIQR 0.6645 1.0154 

 ALLQR 1.2861 1.0297 

 LLQR 1.2374 1.0471 

 LQR 1.2372 1.0475 

τ = 0.50 ALSIQR 0.6443 0.9852 

 LSIQR 0.6635 0.9750 

 SIQR 0.6729 0.9751 

 ALLQR 0.7200 1.0112 

 LLQR 0.7239 1.0332 

 LQR 0.7240 1.0095 

τ = 0.50 ALSIQR 0.6464 1.0019 

 LSIQR 0.9466 1.0484 

 SIQR 1.2971 1.0699 

 ALLQR 0.5846 0.9562 

 LLQR 0.5869 0.9527 

 LQR 0.5869 0.9527 

 
LSIQR and ALSIQR as compared to NQR and SIQR 

give better results according to MMSE and SD for all 
values of τ, as Table 9 results show. 

In general, the ALSIQR, LSIQR and SIQR produce 
precise estimates and they are more significantly 
efficient than the other methods. 

It can be observed that the ALSIQR, LSIQR and 

SIQR give a lower MMSE and bigger |ri| than the other 

methods. The variations in estimates of the proposed 

methods are approximately same in the most of cases 

and less than the variations in the estimate of the other 

methods. Most noticeably, when τ = 0.10 and τ = 0.25, 

the ALSIQR, LSIQR and SIQR are more considerably 

efficient than the other methods. From Table 3-9, in term 

of variables selection and according to Ave 0’s, it is 

obvious that the Ave 0’s for the ALSIQR and LSIQR 

methods is close to the true number. 

Air Pollution (A.R) Data 

In this section, the ALSIQR, LSIQR and SIQR have 

been illustrated through an analysis of A.R data. The 

A.R data is online at the website 

http://lib.stat.cmu.edu/datasets/NO2.dat. The response Y 

is hourly values of LOG of the concentration of NO2. 

The p = 7 predictors X are LOG of the number of 

cars/hour (x1), temperature 2 m above ground (x2), wind 

speed (x3), the difference in temperature between 2 and 

25 m above ground (x4), wind direction (x5), hour of day 

(x6) and day number (x7). The predictors and the 

response have been standardized. 
Table 10 reports the results of MAD (median 

absolute difference between ˆT Xβ and y) and SD of the 
prediction errors for estimated quantiles by all of the 
studied methods based on A.R for τ = (0.10, 0.25, 0.50). 
It is clear that the ALSIQR, LSIQR and SIQR have less 
MAD and SD of the prediction errors than the other 
methods especially for τ = 0.0.10 and 0.25. This 
confirms the statement that the proposed methods do 
well in the extreme quantiles. The results of the 
numerical examples and the A.R analysis suggests that 
the ALSIQR, LSIQR and SIQR perform well. 

Conclusion 

The current study proposes three methods, SIQR, 
LSIQR and ALSIQR. The ALSIQR, LSIQR and SIQR 
have been compared with ALLQR, LLQR, LQR and 
NQR under different situations. In order to examine the 
performance of the SIQR, LSIQR and ALSIQR, 
numerical examples were conducted based on the 
models as described in section 5. It has been concluded 
based on the simulation studies and A.R data, that the 
SIQR, LSIQR and ALSIQR more advantageous in 
comparison to ALLQR, LLQR, LQR and NQR and 
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thus the authors believe that the SIQR, LSIQR and 
ALSIQR are useful practically. 
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