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Abstract: The major challenges on the statistical analysis of microarray 

data are the limited availability of samples, large number of measured 

variables and the complexity of distribution of the data obtained (e.g., 

multimodal). These phenomena could be considered in Bayesian method, 

used Bayesian Mixture Model (BMM) methods and Bayesian Model 

Averaging (BMA) methods. Modeling of Bayesian Mixture Model 

Averaging (BMMA) for microarray data was developed based on these two 

studies. One of the most important stages in BMMA is determination of the 

number of mixture components in the data setting as the most appropriate 

BMMA models. This paper proposes an algorithm for determining the 

number of mixture components in BMMA for microarray data. The 

algorithm is developed based on the simulation data generated from a case 

study of  Indonesian and it has been implemented on the outside Indonesian 

microarray data. The results have succed to demonstrate two step 

algorithms, called Preliminary Process and Smoothing Process Algorithms, 

to the Indonesian case microarray data with the accuracy rate of 99.3690% 

and 99.9094% for the outside Indonesian microarray data. 

 

Keywords: Algorithm, Number of Mixture Components, Bayesian Mixture 

Averaging, Microarray 
 

Introduction 

Microarray is an analysis technique to monitor the 

activity of thousands of gene expressions 

simultaneously. Gene expression data is the data 

obtained from microarray experiments (Ibrahim et al., 

2002; Knudsen, 2004; Chun et al., 2014; Harijati and 

Keane, 2012). The major challenges for the statistical 

analysis of microarray data are limited availability of 

the samples, large number characteristics of the 

variables would be measured and the distribution of 

the data would be very complex. It can be shown in 

various studies that have been conducted. Wholey 

(2012) was only able to replicate 3 observations to 

identify the effect of stress levels on E. Coli as a 

result of hypochlorous acid using cluster analysis. Li 

(2009) was also only able to replicate 3 observations 

to identify patterns and development of the small 

intestine of mouse through epithelial and 

mesenchymal signal using t-test couple with cluster 

analysis. In addition, the nature of the distribution of 

obtained microarray data in most cases is very 

complex (Muller et al., 2004; Eman et al., 2012). 

Bayesian method had been proposed as a statistical 

analysis that did not consider the number of samples 

and hence this method could be used for analyzing 

small or large number of samples with any distribution 

(Congdon, 2006; Ghosh et al., 2006; Ahmed et al., 

2010; Anggorowati et al., 2012; Diana et al., 2013; Amran 

et al., 2013; Astuti et al., 2014; 2015; Yuan-Ying et al., 

2014). All parameters in the model are treated as 

random variable in Bayesian method (Gelman et al., 

1995). According to Mengersen (2009), the advantage 

of Bayesian method is able to provide an inference of 

unknown variables based on the posterior distribution 

from the data directly. 
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Various studies that have been previously conducted 

for microarray data, showed that its distribution tends to 

follow multimodal distribution and a suitable arbitrary 

distribution. Do et al. (2005) used a Bayesian Mixture 

Model (BMM) methods to identify gene expression 

differences from microarray data, whilst Sebastiani et al. 

(2006) used Bayesian Model Averaging (BMA) methods 

to identify those differences. This paper would introduce 

Bayesian Mixture Model Averaging (BMMA) for 

microarray data based on these two studies, which is 

proposed to answer the challenges of modeling 

microarray data. There are several important stages that 

must be carried out in the BMMA in which, the most 

important step is to determine the number of mixture 

components which suitables to the data. If this step 

reports the wrong number of component, then BMMA 

model would fail to represent the real condition of the 

data (Iriawan, 2012). To do those purposes, this paper 

firstly proposes an algorithm for determining the number 

of mixture components in BMMA through the 

simulation data generated from a case study of 

Indonesian microarray data (Harijati, 2007) and 

demonstrates the work of this algorithm to be 

implemented on the data used in Do et al. (2005). 

Materials and Methods  

Data Sets 

To develop the algorithm, the simulation data 

generated based on the pattern of some genes expression 

differences of Chickpea (Cicer Arietinum) plant tissues 

which was researched by Harijati (2007) in Indonesia. 

Her data was collected only for 3 observations on each 

gene ID to all of 4,000 genes ID. There were only 62 

genes ID of those 4,000, however, were expressed 

completely. Among these 62 genes ID, there were found 

fifteen genes ID with the very important function (as the 

defence function). These fifteen genes ID, which are 

normally distributed, were taken for the simulated data 

in this research. The characteristics of these fifteen data 

are then used to simulate the number of 10,000 simulated 

genes ID and repeated 10 times to guarantee the 

accuracy of these algorithms. Implementation of the 

algorithms would be done on Do et al. (2005) data by 

taking a sample size of 3-combination. 

Bayesian Analysis  

The concept of Bayesian analysis using Bayes 

theorem was invented by Thomas Bayes in 1702-1761, 

where in this analysis, model parameter, θ∈Ω, is treated 
as a random variable. This concept explains that the 

Bayesian analysis is a statistical analysis method based 

on the posterior probability distribution model. This 

distribution is a blend of two information i.e., the 

information of past data as prior information and the 

information of observations (samples) data as a constituent 

likelihood function to update the prior information (Box and 

Tiao, 1973; Zellner, 1971; Gelman et al., 1995; Aitkin, 

2001; Iriawan, 2003). 

The process of Bayesian analysis can be described as 
follows: Suppose if there are observational data x with a 

likelihood function f(xθ)
 
then the information known 

about the parameters θ before observations were made is 
referred to as the prior θ, namely p(θ). Furthermore, to 
determine the posterior probability distribution of θ, 
namely p(θx) based on the rules of probability in Bayes' 
theorem as in Equations 1 (Ghosh et al., 2006): 
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f(x) is a normalized constant (Gelman et al., 1995) so 

Equations 1 can be rewritten as: 
 

( | x) (x | ) ( )p f pθ ∝ θ θ   (2) 

 
Based on the Equations 2 we obtain that the posterior 

probability is proportional to the product of the 
likelihood function and the prior probability of the model 
parameters. This means, it updates the prior information 
using the information of samples in the data likelihood to 

obtain the posterior information that will be used for 
decision making (Iriawan, 2003). 

Mixture Models 

Mixture model is a special model for the data having 
the characteristics of multimodal i.e., data consisted sub-

sub-population or groups, where each proportion of sub-
population or group is a constituent component of the 
mixture models. Mixture model called the particular model 
because this model is able to combine some different data 
but still retains the characteristics of the original data 
(McLachlan and Basford, 1988; Gelman et al., 1995; 

Astuti, 2006). This model will able to provide flexible 
parametric framework in modeling and statistical 
analysis (Marin et al., 2005). 

According to McLachlan and Basford (1988); 
Gelman et al. (1995) and Iriawan (2001), mixture 
probability function of an observation x=(x1,x2,…,xn) 

taken from a number of k-sub-population can be 
expressed as in Equations 3: 

 

1
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where, f(xθ,w)
 
is a function of the probability mixture, 

gj (xθj is a j
th
 probability function of k  number of sub-

population that make up a model and θ is a mixture 
model parameters containing of (θ1, θ2, …θk). Parameter 
θj, j = 1,2,…,k represents the characteristic distribution 

of gj
 
on each component in mixture models. While w is 

the parameter vector of proportions (weighted) mixture 

model containing of (w1, w2,…, wk), where 0 1w
j

< < , 

∀j and 
1

1

k

j

j

w

=

=∑  for each model parameter θj. Mixture 

model described in Equations 3 would be applied to 

model a finite mixture of k-particular number of 

components (Astuti, 2006). 

Bayesian Mixture Model (BMM) Analysis 

According to Richardson and Green (1997), to model 

such data into a mixture model, each observation xi 
would be classified on each unknown number of sub-

population. If the allocation of each observation on each 

sub-population in Equations 3 is denoted by z, then the 

allocation of each observation z
i
, i= 1, 2,…,n could be 

determined based on Equations 4: 

 

,( ) 1,2, ,
j

p z j w j ki = = = ⋯   (4) 

 

Given the value of z
i
 then the observation data xi can 

be derived from the sub-populations as in Equations 5: 
 

| ~ (x | ), 1,2, ,x z f i nzi i i
θ = ⋯  (5)  

 
Thus the resulting joint posterior distribution of all 

parameter in the mixture model can be expressed as in 
Equations 6: 
 
( , w, , ,x)

( ) (w| ) ( | w, ) ( | ,w, ) (x | , ,w, )

p k z

p k p k p z k p z k p z k

θ =

θ θ
 (6)  

 
The next process is to estimate each parameter in 

Equations 6 by employing the full conditional distribution 
of each parameter (Richardson and Green, 1997). 

Full Conditional Distributions 

Suppose there is a parameter θ which has a stationary 
distribution of p(θ). Full conditional distribution of 
parameter θ is constructed by making a partition of θ as 
shown in Equations 7 (Wati, 2006): 
 

( , )
s s

θ θ θ=
−

                                               (7) 

  

where, θs denotes the-s
th
 parameter to be estimated and 

s
θ
−

denote the complement of θs 
that is parameter θ 

without including the-s
th
 component. 

Gilks (1995) and Wati (2006) explains that the full 

conditional distribution can be established based on the 

joint posterior distribution as in Equations 8: 
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Bayesian Model Averaging (BMA) Analysis 

The basic principle of BMA is to form the best single 

model by considering all possible models. BMA is a 

Bayesian solution for uncertainty model, where the 

completion of the model is done by averaging the 

posterior distribution of all best models (Madigan and 

Raftery, 1994; Montgomery and Nyhan, 2010; Kuswanto 

and Sari, 2013; Astuti et al., 2014; 2015). 

According to Hoeting et al. (1999), parameters 

estimation using BMA approach is done by combination 

of all best possible hierarchical models to data. If {M1, 

M2,…, Ml} are the set of models from M and ∆ is 
paramters that would be estimated, then BMA estimation 

will begin with determining model Mk, k =1,2,…,l and 

each prior probability distribution of all parameters in 

each model. Implicitly, probabilityy of each model, Mk, k 

=1,2,…,l to fit the data (x) would influence to the 

expected value of the parameter ∆. Therefore, this 
parameters can be obtained by averaging all of model 

Mk, k =1,2,…,l, that is as in Equations 9: 

 

1

( | x) ( | x) ( | ,x)
l

k

E P M E M
k k

=

∆ = ∆∑  (9) 

 

Equations 9 shows weighted expected value of ∆ in 
every possible combination models, whilst the variance 

of (∆x) is shown in Equations 10: 

 

2 2
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( | x, )
( | x)

l

k
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var M
k

Var
=

 
 
 ∆ − ∆ 

∆ +

∆ =∑

    
(10) 

 Bayesian Mixture Model Averaging (BMMA) Analysis 

BMMA is proposed method which is build by 

combining the two methods, BMM and BMA, wherein 

the model parameter estimators are obtained by 

averaging all of the possible mixture models. Therefore, 

the form of BMMA can be determined by applying 

Equations 9 and 10 to the some mixture models. This 

finding BMMA, therefore, have the value of E(∆x) as 
the weighted value of the parameters in any combination 

of mixture models and P(Mkx) is the posterior 

distribution of the k
th
 mixture model. 
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Results and Discussion 

Differences of Gene Expression Data in Harijati 

(2007) 

Gene expressions differences data in Harijati 

(2007) are used as the basis pattern for simulation 

data. The Pattern of data for 15 genes ID of Chickpea 

(Cicer Arietinum) plant tissues from Harijati (2007) 

are shown in Fig. 1. 

Based on the Fig. 1, it can be seen that the data 

looks as unimodal or multimodal distribution. As an 

example, gene ID LS0024-Dfc represents a bimodal 

distribution. Therefore the mixture distribution 

approach must be applied. The detection to number of 

components in the mixture, the two step algorithms is 

proposed, called Preliminary Process Algorithm and 

Smoothing Process Algorithm. 

The Proposed Preliminary Process Algorithm 

Preliminary Process Algorithm is proposed as an 

algorithm for determining the boundary value as the 

separator of different mixture components. The 

algorithm has 5 steps of the Proposed Preliminary 

Process Algorithm. 
 
Algorithm 1: Preliminary Process 
 
Step (1). Sort each observed gene ID, from smallest to 

largest,  namely 
(1) p

X , 
(2) p

X , 
(3) p

X  with  

p= 1,2,3,…, q and q is the number of gene ID. 

Step (2). Determine the mean of the data of each gene 

ID based on the results of step (1) using 

( )

3

1

3

i p

i

p

X

X
=

=

∑
  

Step (3). Determine the grand mean of all gene ID from 

step (2) using
1

( )

q

p

j

total
q

X

X
=

=

∑
. 

Step (4). Determine the first boundary value using 

1

( )
0.017485114

2
total

boundary

X
c

 
 
  

= +

              

 

Step (5). Determine the second boundary value 

using
( )

0.021175691
3

total

boundary2

X
d

 
 
  

= −    

 

Based on the Algorithm 1, it can be seen that the 

boundary value would be as the separator of different 

mixture components in the microarray data. Derived 

from Algorithm 1, we propose an algorithm for 

determining the number of mixture components in the 

microarray data, called Smoothing Process Algorithm. 

The Proposed Smoothing Process Algorithm 

This algorithm is used to determine the 

optimization of  the number of mixture components. 

The steps of the Proposed Smoothing Process 

Algorithm are as in Algorithm 2. 

 

 
 

Fig. 1. The mixture pattern of Harijati (2007) data



Ani Budi Astuti et al.  / Journal of Mathematics and Statistics 2015, 11 (2): 45.51 

DOI: 10.3844/jmssp.2015.45.51 

 

49 

Algorithm 2. Smoothing process 

 

Step (1). Do step (1) to step (5) on the Preliminary 

Process Algorithm in Algorithm 1. 

Step (2). Calculate the standard deviation value for 

each p
th
 gene ID from 

(1) p
X and 

(2) p
X   

namely stdev12p calculated as 

( )

2

( ) (1)( 2)

2

1

12 2 1

( )

stdev
i p p

i

p

X X

=

−

−

=

∑
 and standard 

deviation for each p
th
 gene ID from (2) p

X and 

(3) p
X  namely stdev23p calculated as 

( )

( ) ( 2)(3)

3

2

23

2 1

2
( )

stdev
i p p

i

p

X X

=

−

−

=

∑
. 

Step (3). Determine the minimum value of standard 

deviation for each p
th
 gene ID based on the 

result of step (2) that is stdevmin_p = min 

(stdev12p, stdev23p). 

Step (4). Calculate the value of the lower limit and 

upper limit of the data X(i) for each p
th
 gene 

ID using the formula X(i)p 

±(1.96×stdevmin_p/sqrt(3)). This lower and 

upper limit for X(i)p called lwX(i)p and upX(i)p. 

Step (5). Determine the value of a1p = abs(X(1)p-X(2)p), 

a2p = abs(X(2)p-X(3)p), cp = abs(X(1)p-X(3)p) and 

dp = abs(a1p-X(3)p) dp = abs(a1p-a2p) of each 

p
th 
gene ID. 

Step (6). Check if the value of cp<c boundary1then the 

data is unimodal.  

Step (7). Check if the value of cp ≥
1

c
boundary

 and dp 

≥ d
boundary2

and upX(1)p<lwX(1)p  and 

lwX(3)p ≤ upX(2)p then the data is left skewed 

and forms a mixture distribution with 2 

components. 

Step (8). Check if the value of cp ≥ 
1

c
boundary

and dp 

≥ 
boundary2

d and lwX(2)p≤upX(1)p and upX(2)p < 

lwX(3)p then the data is right skewed and 

forms a mixture distribution with 2 

components.
 Step (9). Check if the value of cp ≥ 

1
c
boundary

and dp 

< boundary2
d  then the data forms a mixture 

distribution with 3 components. 

Step (10). Calculate the number of gene ID that cannot 

be identified. 

 

Derived from the proposed two algorithms above, it 

can be determined the number of mixture components 

for microarray data. If the exact number of mixture 

components for microarray data is known then the 

modeling of BMMA for microarray data could be done.  

These algorithms are only proposed and applied to 

detect the mixture distribution of 3 observations in each 

gene ID for maximum of 3 components in the mixture. 

When the observation of each gene ID more than 3, then 

the algorithm can be applied by randomly choosing of 

the data with sample size of 3-combination. 

Accuracy of Smoothing Process and Preliminary 

Process Algorithms 

Two algorithms above have been built based on the 

pattern of data Harijati (2007). Table 1 shown the 

accuracy of those two algorithms applied to 100,000 

generated observations. 

From Table 1, it can be seen that those two 

consecutive algorithms have a fairly high degree of 

accuracy, that is 99.3690%. This means that if there 

are 100,000 observations of genes ID then 99,369 

genes ID of them can be determined the number of 

mixture components, whilest 631 genes ID cannot be 

determined.

 
Table 1. The accuracy of algorithms 

Random C3a C4b Accuracy (%) Inaccuracy (%) 

1 9,933.0 67.0 99.330 0.670 

2 9,928.0 72.0 99.280 0.720 

3 9,935.0 65.0 99.350 0.650 

4 9,936.0 64.0 99.360 0.640 

5 9,930.0 70.0 99.300 0.700 

6 9,930.0 70.0 99.300 0.700 

7 9,931.0 69.0 99.310 0.690 

8 9,937.0 63.0 99.370 0.630 

9 9,953.0 47.0 99.530 0.470 

10 9,956.0 44.0 99.560 0.440 

Total  99,369.0 631.0 993.690 6.310 

Mean 9,936.9 63.1 99.369 0.631 
a
 The number of data where mixture component can be detected from 10,000 observations generated 
b
 The number of data where mixture component cannot be detected from 10,000 observations generated 
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Table 2. Implementation of algorithms on data in Do et al. (2005) 

Description Total 

The number of observations tested 9,930 
(with sample size 3-combination of patient 

Undetected mixture components 9 (0.0906%) 

Detected mixture components 9,921 (99.9094%) 

 

Implementation of Algorithms on Data in Do et al. 

(2005) 

In this section, the two algorithms above are tested by 

employing data in Do et al. (2005), which were taken at 

randomly from two groups with the size of n=10 and 

n=12 respectively. The sample size of 3 patients as an 

observation is increasingly selected from 10 patients for 

each of 30 genes ID in the first group and from 12 

patients for each of 30 genes ID in the second group. 

This scenario would give 10,200 observations with a 

sample size of 3-combination of patients. Among those 

observations, the sample of 9,930 observations were 

selected randomly. The work of the proposed couple 

algorithms have been demonstrated to this sample and 

give the result that only 9 observations of them could not 

be identified their number of mixture components. The 

accuracy of the proposed algorithms, therefore, is 

99.9094%. More results can be seen in the Table 2. 

Conclusion 

The proposed Preliminary Process and Smoothing 

Process Algorithms developed based on the pattern of 

the Indonesian case microarray data as in Harijati (2007), 

has been proven with accuracy of 99.3690% when it 

applied to the 100,000 genes ID randomly generated 

from Harijati (2007) data itself. This performance is 

increase to 99.9094% when it was implemented to the 

9,930 genes ID randomly generated from Do et al. 

(2005) data. The Preliminary Process and Smoothing 

Process Algorithms proposed and applied to detect the 

mixture distribution of 3 observations in each gene ID 

for maximum of 3 components in the mixture. 
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