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that observed may be determined without havingely on parametric
assumptions or schemes that may be only asymgtpticarrect. The
challenge is the computational intensity associatéth these methods,
which is largely overcome with the wide availalyilibf inexpensive,
powerful computational resources. The algorithnmspmted here is given in
two versions, one a general form that can be adapte wide variety of
permutation tests and a specialized one that iseit for the exact analog
to the dependerittest. The application is illustrated using Chabeswin’s
Zea mays data, which presents a modest task of accounting'¥ = 32,768
permutations. The resultant algorithm improves bat tof Odiase and
Ogbonmwan and is presented in syntax that may heirruR, the open
source statistical package.
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I ntroduction personal computer, Fisher’s analysis can be coegliet
. i under 0.2 s, using the R package, which is nooumilfy
Permutation tests have been explicated for nearly &ptimized for speed. The availability issue is dding

century, so the premise of being able to escapbdhds as an argument.

of parametric tests that are correct only undeongir Towards that end, there have been many publicatibns

assumptions-and asympto_tically at that-is weII-kn_ow algorithms to assist in the computation of perniatests.

"‘I'he u§ual argumgnts against the use of permutggion As a specific example, Odiase and Ogbonmwan (2007)

ir?txe iﬁi\)/eteiasanare(;ré?ﬂa:;]eyp:rraemrgt(r)ii:e %?mfz:l?(t]gggé d outlined an algorithm suitable for the matchedspaiase of
score comparisons. This article presents an imgrove

nonparametric tests; and (b) they are not always . ) o -
avaiFI)abIe in standard statisti(c;I pagkages. In first Y algorithm and mildly optimized method for the Rtistical

instance, Fisher (1966) noted that his analysiGherles ~ Package that can be used with data sets of any size
Darwin’s Zea mays data set of 15 paired corn plant Permutation Tests

heights required 2 = 32,768 permutations. It has been . )
suggested (Ludbrook and Dudley, 1998) that thereffo ~ AS far back as Pitman (1937a; 1937b), the logic of
required may have proved a deterrent to Fisherthédu permutation tests has been well-explicated. More
use of permutation tests. That's a conclusion cbeist ~ recently, excellent explanations from Edgington and
with the first argument. However, since that time, Onghena (2007; Manly, 2007) are available. Thecbasi
computational power has increased dramatically andlogic is to compare the observed results (“base”he
large-scale, voluntary operations have been estali ~ sample space of all permissible permutations of the
for tackling massive problem sets, such as thed@eyk  scores-what defines permissible permutations depend
Open Infrastructure for Network Computing (BOINC; on the nature of the test. If the number of pertiuta
http://boinc.berkeley.edu/), which currently boastgarly instances in which the results are as extreme aemo
300,000 volunteers and exceeds 7.3 peta FLOPS oéxtreme than the base results is a sufficiently lisma
computing power on a daily average. Even on a niodesfraction of the sample space (e.g., less than one’s

/// Science © 2014 The David T. Morse. This open access aiisiaiiistributed under a Creative Commons Attribu{6C-BY) 3.0 license.
/// Publications



David T. Morse / Journal of Mathematics and Sta8s2014, 10 (4): 448-452
DOI: 10.3844/jmssp.2014.448.252

threshold for classifying a result as non-chanttesn we
characterize the result as statistically signiftcahnot,
then the result is declared non-significant. laisimple
framework that can easily be extended.

1978), though those often must be called once dche
permutation cycle. The general form below assuinas t
(a) the data vector being process¥(, represents the
difference scores (X3-Xy) for each of theN pairs of

For comparisons involving two sets of scores, therecasesj = 1,2,...N and there are no missing values; (b)

are three principal sets of permissible permutatidfor

for a paired cases (dependent) data set, the digois

an independent groups comparison (analogous to thexternally calledN times, forr = 1, 2, ...,N and the

independent t-test), the population of permissible

results within each cycle recorded appropriatelstiast

permutations is “n choose r" (Edgington and Onghena the base (initially observed) result, which repnésethe

2007; Manly, 2007; Pitman, 1937a), in which all
possible combinations af; and n, cases are created
from the combined set of scords, For a correlation
coefficient, the population of permissible permiatas is
n! (Pitman, 1937b), in which eachx™ score is
systematically paired with a differeny™score. Finally,
for a dependent or matched-pairs design, the ptipnla
of permissible permutations is" 2(Fisher, 1966;
Ludbrook and Dudley, 1998). The definition of

permissible permutations in some classes of designs
however, may require careful thought (Heyvaert andg,

Onghena, 2014) for the class of designs calledlesing
subject design.

Materials and Methods

. . . 7.
In this presentation, the goal is to present ang

improved and general algorithm to serve as thestfasi
permutation tests. It can be used for either inddpet

or matched pairs (dependent) data sets, though the

application presented here is strictly for matclpadrs
sets. In this section, more detailed informatiorgiigen
about: (a) the algorithm presented; and (b) efficie
considerations for implementation of the algoritimthe
circumstance of matched pairs data sets.

Permutation Algorithm

case ofr = 0; and (c) the user accumulates the
appropriate computation or outcome for each cycle
(represented by “PROCESS DATA" in the algorithm).

Algorithm allnr: n Choose r Function in R Syntax

1. allnr <- function(n, r, X)

2. # nis number of cases; r is number to be permuted;
x is vector of difference scores

3. # initialize local variables

“#” signifies a comment in R)

nmr <- (n-r)# n minus r. R can use either “=" ¢ “

“ for assignment statements

5. i<-1 #index.

6. j<-c(lr) # create vectorstore the

chosen case index numbers for a cycle

# main loop cycles ‘n choose r’ times

(note:

. while (i>0) {
9. #reset the loop indices, then process the cases
10.if (il=1){ # “1=" is the “not egal to”
operator in R
11. ipl <-i+1 # R does not have an incremen

function like C (e.g., + =)

12. for (kinipl:r) {j[K] <-j[k-1] +1}

13.} # end of if loop

14. # PROCESS DATA call or insert the data
processing here, on chosen cases j[1],j[2],.--,][r]

15.i<-r

The general form of the algorithm presented below 16,
can be used to process cases for the paired cases
permutation test, or it can also be easily adagted 17, j[i] <- j[i] +1 # otherwise, incremerhe
independent group tests. The algorithm presented by index and continue
Odiase and Ogbonmwan (2007) relied on hard coding 018. }
for loops, one for each case in the data set. Themurr 19. }
algorithm may be applied to any sample size without
additional coding and is therefore much more pdetab Efficiency Considerations for Paired Observations
The logic is based on the FORTRAN algorithm AS 88
by Gentleman (1975). The result of a single calth®e

while (j[i] >=nmr +i) {i<-i-1; if (i==0)break }
# exit routine when i reaches 0

# end of maimile loop
# endfahction

There are several ways that the generation of a
algorithm is that, internally, all subsets of siztkom the ~ permutation test for paired data may be made more
N cases are generated in lexicographic order erg:5 efficient. First, the number of permutation cyckest
choose 3", the 10 resulting sets of cases would beactually have to be generated is only22 not 2. The

{1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {2, 3,4}
{2,3,5}{2,4,5} and {3,4,5}). These subsets are saived

in memory; rather, after each is generated, thenptd
data set is processed and a running tally of redgslt
updated. Other solutions to enumerating thetfoose™
options have also been published (Nijenhuis and, Wil

449

reason is, in the permutation analog to the pawoed
dependent-test, the exchange under investigation for a
given case is only considering the second scoee pir

to come first for an instance, instead of the fgsbre.

So, if a case’s values are exchanged, the resulting
difference is the negative of the original diffecer(e.qg.,
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if a pair of scores was 7, 4 then the originaletiéhce =
7-4 = 3 and the exchanged values difference woeld-b
7 = -3). Thus, if the original set of differencegavall
positive (ther = 0, or first permutation) then the last
possible permutation (or= N instance) will necessarily
have allN cases having exchanged scores, yielding all
negative differences (if the permutations are gateerin
lexicographic order). The second permutation=(1,
reversing only scores for case #1) will therefoesthe
negative of the 21th permutationr(= N — 1, last
instance), in which all caseexcept #1 have scores
exchanged, and so will have negative differences. F
example (-1, 2, 3, 4, 5) sums to 13; (1, -2, -3,-5)
sums to -13. The rest of the permutations may beght

of as pairs, each member of which also has a negati
counterpart. Thus the sum of differences, or therage
difference, or thet-statistic for that set of mean
differences will be the negative of the correspaogdi
value in the first permutation. In this way, the
distribution of permutation test results will bavayetric
around zero. Only half of the permutations (which
means, calling the allnr routine only for= 1,2,...N/2)
need to be generated. Whins odd, one simply stops
processing after the = N/2th call is complete. WheN

is even, we need to track within the= N/2th call to
function allnr until half of the 2permutations have been
generated. That will save time, even though we have
build in a check on total permutations. In my
comparisons using R, this reliably yields a redrctin
processing time of about 34%.

A second consideration for efficiency is that, fbe
permutation analog to the dependgnthe sum of the
differences is a sufficient statistic for determiupi
whether the results of a permuted data set woulhleq
exceed, or be less than the originally observeditrésr
a data set. Thus, all the processing step needvinve
computation of the sum of the difference scoresdor
given permutation. This brings up a third efficigratep.

In generating that sum, one can sum the exchanged

differences only, then subtract twice that sum fribvm
base sum of differences (e.g., permutation sum of
differences base difference-2*sum of exchanged
scores). As an example, let the original differaneet be

(2, 4, 1.5, 1, 3), summing to 11.5. If we exchatige
values for cases # 2 and 5, the resulting diffexenc
would be (2, -4, 1.5, 1, -3), summing to -2.5. Ehert-

cut described here is to instead take 11.5-2*(4) =3
11.5-14 = -2.5. In other words, we need only sum th
exchanged differences, not the full set. Theseethre
considerations have been incorporated into the
exact.dep.t function and its corresponding versidn
function allnr, presented in the Appendix. A samgad,
using the Darwin data set, also is included.
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Appendix: R Code the allnr and
exact.dep.t Functions

allnr <- function(n, r, data, base, outcome) {

# R implementation of Algorithm AS 88 by J.F.

Gentleman (1975). Applied Statistics, 24, 374-376.

Implementing

# n = number of elements in set
# r = number of elements to be drawn
# data = vector of scores from which to draw

# base = base statistic from data set as redorde

# outcome[1] = number of instances wherein peechut
result = base result

# outcome[2] = number of instances wherein peechut
result > base result

# outcome[3] = number of instances wherein peechut
result < base result

# outcome[4] = number of permutations generated t
far

# outcome[5] = target number of permutations to
generate ( = 1/2 of 2*n)

# This procedure generates all subsets of r cagesf
the set of n.

# Current processing is set up for matched pairs
permutation test.

# Local variables
#i =index
#ipl =iplusl
#j = vector to store case number/index ajsem
cases (1..r) for a given cycle
#nmr = nminus r
#
# initialize local variables
nmr <-(n-r)
i<-1
j<-c(lr)
ndiv2 <- n %/% 2 # integer dioin
# loop processes 'n choose r' times
while (i > 0) {
# reset loop indices
if(il=r{
ipl<-i+1
for (kinipl:r) jlk] <-jlk-1] + 1

# for dependent t, sum of difference valuss i
sufficient statistic for magnitude

X <- base - 2.0 * sum(datalj])
reverse values for selected cases

if (abs(x-base) < 1.0e-7) { outcome[1] <-@urne[1]
+1 # equal to base value

} else if (x > base) { outcome[2] <- outcojap+ 1

#

# more extreme than base
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} else outcome[3] <- outcome[3] +1 #

less extreme than base

# process symmetric case result

X <- -X

if (abs(x-base) < 1.0e-7) {outcome[1] <- autwe[1]
+1 # equal to base value

} else if (x > base) {outcome[2] <- outcomg[21
# more extreme than base

} else outcome[3] <- outcome[3] +1 #
less extreme than base
outcome[4] <- outcome[4] + 1 #
increment total 'cycles’ processed
if (r == ndiv2)
{if  (outcome[4] == outcome[5]) break}
# early exit if half of all permutations done
i=r
while (j[i] >= nmr +1i) {i=1i-1;if (i ==0) break}

# exit main loop wheni=0
jlil<-ji+1

} # main loop end

return (outcome)
} # end function

exact.dep.t <- function (data) {

n <- length(data)
for missing values
base <- sum(data) # total of défege scores;
used as referent (e.g., r = Oth case)
if (base > 0) {
outcome <- ¢(1,0,1,1) # vector of congmns.
[1] = results equal to data obtained (base value)
} else if (base < 0) { # [2] =3ults more
extreme than base
outcome <- ¢(1,1,0,1)
extreme than base
} else outcome <- ¢(2,0,0,1) # [4] =nmher of
permutations processed. stop at tot_perm/ 2
outcome[5] <- sum(choose(n,0:n)) %/% 2 # [5]afh
of the total possible permutations; this is numiezded.

# number of casescheck

# [3] esults less

for (i in 1:(n %/% 2)) # lexicographic
distribution of outcomes is symmetric; only need to
process half
{ outcome <- alinr(n, i, data, base, outcomé) ¢ycle
allnr for instances r = 1, 2,...,n (0 is base case)
total <- sum(outcome[1:3]) né#mber of
comparisons recorded
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probl <- (outcome[1] + outcome[2]) / total # 1 tall
probability

prob2 <- 2.0 * probl 2#tall
probability
if (prob2 >1.0) prob2 <- 1.0 CHp

probability at 1

# output results
print (paste0('Observed mean difference ', bagk /
print (paste0('More extreme instances ', ou&@iy)
print (pasteO('Equal instances ', oute[dl))
print (pasteO('Less extreme instances ', out¢8}))
print (")

print (paste0('One-tail probability
print (paste0('Two-tail probability

', prob1)
', proh2)

} # end function

# Sample call in R, using Darwin data (diff = vecto
Cross-fertilized plant height — Self-fertilized gbt)

diff = ¢(6.125, -8.375, 1.0, 2.0, 0.75, 2.875, 3$5,25,
1.75, 3.625, 7.0, 3.0, 9.375, 7.5, -6.0)

exact.dep.t(diff) # diff is a vectofr differences
in matched pairs observations

Results

The full implementation of the permutation test was
evaluated using the Darwin data on corn plant hsigh
(N 15). As reported by Odiase and Ogbonmwan
(2007), there were 835 permutations in which trselts
were more extreme than those observed in the altigin
data, 28 permutation trials in which the resultsrave
equal to the original data and 31,905 instanceshiith
the results were less than those originally obskrve
Thus, as a directional (“one-tailed”) probabilitpder
the null hypothesis of no difference, thevalue is
computed as (28+835)/32,768 = 863/32,768 = 0.026337
The non-directional (“two-tailed”) result would duate
as ap-value of twice as much, (2 * 863)/32,768 =
0.0526733. These values agree with Odiase and
Ongbonmwan, who correctly reported that the depeinde
t statistic, applied to the same data, yigtdgalues of
0.02485 and 0.04970, respectively, for the directio
and non-directional tests. Thus, the depentiardt tends
to be close, but mis-represents the exact testtsesu

The performance of the R package is reasonably
quick for data sets of moderate size. Some exanmyiles
processing speed on an ordinary desktop running
Windows 7 (64 bit) via an Intel i7 CPU (3.4 Ghzgad =
20 (2' = 1,048,576), approximately 5.7 N;= 25 (2 =
33,554,432), about 185.8 s (approximately 32.5 dime
longer, which is consistent with the change in )size
which is not unreasonable for an interpreted laggua
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