

© 2014 The David T. Morse. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Mathematics and Statistics

Original Research Paper

Exact Permutation Algorithm for Paired Observations: A
General and Efficient Version

David T. Morse

Department of Counseling and Educational Psychology, Mississippi State University, Mississippi State, MS 39762, USA

Article history
Received: 2014-12-02
Revised: 2014-12-15
Accepted: 2015-01-03

Abstract: For the better part of a century, methods have been illustrated for
the enumeration of all possible permutations of cases from which an exact
characterization of the likelihood of obtaining results as or more extreme as
that observed may be determined without having to rely on parametric
assumptions or schemes that may be only asymptotically correct. The
challenge is the computational intensity associated with these methods,
which is largely overcome with the wide availability of inexpensive,
powerful computational resources. The algorithm presented here is given in
two versions, one a general form that can be adapted to a wide variety of
permutation tests and a specialized one that is efficient for the exact analog
to the dependent-t test. The application is illustrated using Charles Darwin’s
Zea mays data, which presents a modest task of accounting for 215 = 32,768
permutations. The resultant algorithm improves on that of Odiase and
Ogbonmwan and is presented in syntax that may be run in R, the open
source statistical package.

Keywords: Algorithm, Paired Observations, Permutation, Exact Test, P-
Value, R

Introduction

Permutation tests have been explicated for nearly a
century, so the premise of being able to escape the bonds
of parametric tests that are correct only under strong
assumptions-and asymptotically at that-is well-known.
The usual arguments against the use of permutation (or
“exact”) tests are: (a) they are more computationally
intensive than ordinary parametric or rank-based
nonparametric tests; and (b) they are not always
available in standard statistical packages. In the first
instance, Fisher (1966) noted that his analysis of Charles
Darwin’s Zea mays data set of 15 paired corn plant
heights required 215 = 32,768 permutations. It has been
suggested (Ludbrook and Dudley, 1998) that the effort
required may have proved a deterrent to Fisher’s further
use of permutation tests. That’s a conclusion consistent
with the first argument. However, since that time,
computational power has increased dramatically and
large-scale, voluntary operations have been established
for tackling massive problem sets, such as the Berkeley
Open Infrastructure for Network Computing (BOINC;
http://boinc.berkeley.edu/), which currently boasts nearly
300,000 volunteers and exceeds 7.3 peta FLOPS of
computing power on a daily average. Even on a modest

personal computer, Fisher’s analysis can be completed in
under 0.2 s, using the R package, which is not uniformly
optimized for speed. The availability issue is also fading
as an argument.

Towards that end, there have been many publications of
algorithms to assist in the computation of permutation tests.
As a specific example, Odiase and Ogbonmwan (2007)
outlined an algorithm suitable for the matched-pairs case of
score comparisons. This article presents an improved
algorithm and mildly optimized method for the R statistical
package that can be used with data sets of any size.

Permutation Tests

As far back as Pitman (1937a; 1937b), the logic of
permutation tests has been well-explicated. More
recently, excellent explanations from Edgington and
Onghena (2007; Manly, 2007) are available. The basic
logic is to compare the observed results (“base”) to the
sample space of all permissible permutations of the
scores-what defines permissible permutations depends
on the nature of the test. If the number of permutation
instances in which the results are as extreme or more
extreme than the base results is a sufficiently small
fraction of the sample space (e.g., less than one’s

David T. Morse / Journal of Mathematics and Statistics 2014, 10 (4): 448-452
DOI: 10.3844/jmssp.2014.448.252

449

threshold for classifying a result as non-chance), then we
characterize the result as statistically significant. If not,
then the result is declared non-significant. It is a simple
framework that can easily be extended.

For comparisons involving two sets of scores, there
are three principal sets of permissible permutations. For
an independent groups comparison (analogous to the
independent t-test), the population of permissible
permutations is “n choose r” (Edgington and Onghena,
2007; Manly, 2007; Pitman, 1937a), in which all
possible combinations of n1 and n2 cases are created
from the combined set of scores, N. For a correlation
coefficient, the population of permissible permutations is
n! (Pitman, 1937b), in which each “x” score is
systematically paired with a different “y” score. Finally,
for a dependent or matched-pairs design, the population
of permissible permutations is 2n (Fisher, 1966;
Ludbrook and Dudley, 1998). The definition of
permissible permutations in some classes of designs,
however, may require careful thought (Heyvaert and
Onghena, 2014) for the class of designs called single
subject design.

Materials and Methods

In this presentation, the goal is to present an
improved and general algorithm to serve as the basis for
permutation tests. It can be used for either independent
or matched pairs (dependent) data sets, though the
application presented here is strictly for matched pairs
sets. In this section, more detailed information is given
about: (a) the algorithm presented; and (b) efficiency
considerations for implementation of the algorithm in the
circumstance of matched pairs data sets.

Permutation Algorithm

The general form of the algorithm presented below
can be used to process cases for the paired cases
permutation test, or it can also be easily adapted to
independent group tests. The algorithm presented by
Odiase and Ogbonmwan (2007) relied on hard coding of
for loops, one for each case in the data set. The current
algorithm may be applied to any sample size without
additional coding and is therefore much more portable.
The logic is based on the FORTRAN algorithm AS 88
by Gentleman (1975). The result of a single call to the
algorithm is that, internally, all subsets of size r from the
N cases are generated in lexicographic order (e.g., for “5
choose 3”, the 10 resulting sets of cases would be
{1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {2, 3,4}
{2,3,5} {2,4,5} and {3,4,5}). These subsets are not saved
in memory; rather, after each is generated, the permuted
data set is processed and a running tally of results is
updated. Other solutions to enumerating the “n choose r”
options have also been published (Nijenhuis and Wilf,

1978), though those often must be called once for each
permutation cycle. The general form below assumes that:
(a) the data vector being processed, Xi, represents the
difference scores (= X1i-X2i) for each of the N pairs of
cases, i = 1,2,…,N and there are no missing values; (b)
for a paired cases (dependent) data set, the algorithm is
externally called N times, for r = 1, 2, …, N and the
results within each cycle recorded appropriately against
the base (initially observed) result, which represents the
case of r = 0; and (c) the user accumulates the
appropriate computation or outcome for each cycle
(represented by “PROCESS DATA” in the algorithm).

Algorithm allnr: n Choose r Function in R Syntax
1. allnr <- function(n, r, x)
2. # n is number of cases; r is number to be permuted;

x is vector of difference scores
3. # initialize local variables (note:

“#” signifies a comment in R)
4. nmr <- (n-r)# n minus r. R can use either “=” or “<-

“ for assignment statements
5. i<- 1 # index.
6. j<- c(1:r) # create vector to store the

chosen case index numbers for a cycle
7. # main loop cycles ‘n choose r’ times
8. while (i > 0) {
9. # reset the loop indices, then process the cases
10. if (i != r) { # “!=” is the “not equal to”

operator in R
11. ip1 <- i +1 # R does not have an increment

function like C (e.g., + =)
12. for (k in ip1:r) { j[k] <- j[k-1] +1 }
13. } # end of if loop
14. # PROCESS DATA call or insert the data

processing here, on chosen cases j[1],j[2],…,j[r]
15. i <- r
16. while (j[i] >= nmr + i) { i <- i-1; if (i == 0) break }

exit routine when i reaches 0
17. j[i] <- j[i] +1 # otherwise, increment the

index and continue
18. } # end of main while loop
19. } # end of function

Efficiency Considerations for Paired Observations

There are several ways that the generation of a
permutation test for paired data may be made more
efficient. First, the number of permutation cycles that
actually have to be generated is only 2n/2, not 2n. The
reason is, in the permutation analog to the paired or
dependent t-test, the exchange under investigation for a
given case is only considering the second score of a pair
to come first for an instance, instead of the first score.
So, if a case’s values are exchanged, the resulting
difference is the negative of the original difference (e.g.,

David T. Morse / Journal of Mathematics and Statistics 2014, 10 (4): 448-452
DOI: 10.3844/jmssp.2014.448.252

450

if a pair of scores was 7, 4 then the original difference =
7-4 = 3 and the exchanged values difference would be 4-
7 = -3). Thus, if the original set of differences was all
positive (the r = 0, or first permutation) then the last
possible permutation (or r = N instance) will necessarily
have all N cases having exchanged scores, yielding all
negative differences (if the permutations are generated in
lexicographic order). The second permutation (r = 1,
reversing only scores for case #1) will therefore be the
negative of the 2n-1th permutation (r = N – 1, last
instance), in which all cases except #1 have scores
exchanged, and so will have negative differences. For
example (-1, 2, 3, 4, 5) sums to 13; (1, -2, -3, -4, -5)
sums to -13. The rest of the permutations may be thought
of as pairs, each member of which also has a negative
counterpart. Thus the sum of differences, or the average
difference, or the t-statistic for that set of mean
differences will be the negative of the corresponding
value in the first permutation. In this way, the
distribution of permutation test results will be symmetric
around zero. Only half of the permutations (which
means, calling the allnr routine only for r = 1,2,...,N/2)
need to be generated. When N is odd, one simply stops
processing after the r = N/2th call is complete. When N
is even, we need to track within the r = N/2th call to
function allnr until half of the 2n permutations have been
generated. That will save time, even though we have to
build in a check on total permutations. In my
comparisons using R, this reliably yields a reduction in
processing time of about 34%.

A second consideration for efficiency is that, for the
permutation analog to the dependent t, the sum of the
differences is a sufficient statistic for determining
whether the results of a permuted data set would equal,
exceed, or be less than the originally observed result for
a data set. Thus, all the processing step need involve is
computation of the sum of the difference scores for a
given permutation. This brings up a third efficiency step.
In generating that sum, one can sum the exchanged
differences only, then subtract twice that sum from the
base sum of differences (e.g., permutation sum of
differences = base difference-2*sum of exchanged
scores). As an example, let the original differences set be
(2, 4, 1.5, 1, 3), summing to 11.5. If we exchange the
values for cases # 2 and 5, the resulting differences
would be (2, -4, 1.5, 1, -3), summing to -2.5. The short-
cut described here is to instead take 11.5-2*(4 + 3) =
11.5-14 = -2.5. In other words, we need only sum the
exchanged differences, not the full set. These three
considerations have been incorporated into the
exact.dep.t function and its corresponding version of
function allnr, presented in the Appendix. A sample call,
using the Darwin data set, also is included.

Appendix: R Code Implementing the allnr and
exact.dep.t Functions
allnr <- function(n, r, data, base, outcome) {
 # R implementation of Algorithm AS 88 by J.F.
Gentleman (1975). Applied Statistics, 24, 374-376.

 # n = number of elements in set
 # r = number of elements to be drawn
 # data = vector of scores from which to draw

 # base = base statistic from data set as recorded
 # outcome[1] = number of instances wherein permuted
result = base result
 # outcome[2] = number of instances wherein permuted
result > base result
 # outcome[3] = number of instances wherein permuted
result < base result
 # outcome[4] = number of permutations generated thus
far
 # outcome[5] = target number of permutations to
generate (= 1/2 of 2^n)

 # This procedure generates all subsets of r cases out of
the set of n.
 # Current processing is set up for matched pairs
permutation test.

 # Local variables
 # i = index
 # ip1 = i plus 1
 # j = vector to store case number/index of chosen
cases (1..r) for a given cycle
 # nmr = n minus r
 #
 # initialize local variables
 nmr <- (n - r)
 i <- 1
 j <- c(1:r)
 ndiv2 <- n %/% 2 # integer division

 # loop processes 'n choose r' times
 while (i > 0) {
 # reset loop indices
 if (i != r) {
 ip1 <- i + 1
 for (k in ip1:r) j[k] <- j[k - 1] + 1
 }
 # for dependent t, sum of difference values is
sufficient statistic for magnitude
 x <- base - 2.0 * sum(data[j]) #
reverse values for selected cases
 if (abs(x-base) < 1.0e-7) { outcome[1] <- outcome[1]
+ 1 # equal to base value
 } else if (x > base) { outcome[2] <- outcome[2] + 1
more extreme than base

David T. Morse / Journal of Mathematics and Statistics 2014, 10 (4): 448-452
DOI: 10.3844/jmssp.2014.448.252

451

 } else outcome[3] <- outcome[3] +1 #
less extreme than base

 # process symmetric case result
 x <- -x
 if (abs(x-base) < 1.0e-7) {outcome[1] <- outcome[1]
+1 # equal to base value
 } else if (x > base) {outcome[2] <- outcome[2] +1
more extreme than base
 } else outcome[3] <- outcome[3] +1 #
less extreme than base

 outcome[4] <- outcome[4] + 1 #
increment total 'cycles' processed
 if (r == ndiv2)
 {if (outcome[4] == outcome[5]) break}
early exit if half of all permutations done
 i = r
 while (j[i] >= nmr + i) { i = i - 1; if (i == 0) break}
exit main loop when i = 0
 j[i] <- j[i] + 1

 } # main loop end

 return (outcome)
} # end function

exact.dep.t <- function (data) {

 n <- length(data) # number of cases, no check
for missing values
 base <- sum(data) # total of difference scores;
used as referent (e.g., r = 0th case)
 if (base > 0) {
 outcome <- c(1,0,1,1) # vector of comparisons.
[1] = results equal to data obtained (base value)
 } else if (base < 0) { # [2] = results more
extreme than base
 outcome <- c(1,1,0,1) # [3] = results less
extreme than base
 } else outcome <- c(2,0,0,1) # [4] = number of
permutations processed. stop at tot_perm / 2
 outcome[5] <- sum(choose(n,0:n)) %/% 2 # [5] = half
of the total possible permutations; this is number needed.

 for (i in 1:(n %/% 2)) # lexicographic
distribution of outcomes is symmetric; only need to
process half
 { outcome <- allnr(n, i, data, base, outcome) } # cycle
allnr for instances r = 1, 2,...,n (0 is base case)

 total <- sum(outcome[1:3]) # number of
comparisons recorded

 prob1 <- (outcome[1] + outcome[2]) / total # 1 tail
probability
 prob2 <- 2.0 * prob1 # 2 tail
probability
 if (prob2 >1.0) prob2 <- 1.0 # cap
probability at 1

 # output results
 print (paste0('Observed mean difference ', base / n))
 print (paste0('More extreme instances ', outcome[2]))
 print (paste0('Equal instances ', outcome[1]))
 print (paste0('Less extreme instances ', outcome[3]))
 print ('')
 print (paste0('One-tail probability ', prob1))
 print (paste0('Two-tail probability ', prob2))

} # end function

Sample call in R, using Darwin data (diff = vector,
Cross-fertilized plant height – Self-fertilized height)
diff = c(6.125, -8.375, 1.0, 2.0, 0.75, 2.875, 3.5, 5.125,
1.75, 3.625, 7.0, 3.0, 9.375, 7.5, -6.0)

exact.dep.t(diff) # diff is a vector of differences
in matched pairs observations

Results

The full implementation of the permutation test was
evaluated using the Darwin data on corn plant heights
(N = 15). As reported by Odiase and Ogbonmwan
(2007), there were 835 permutations in which the results
were more extreme than those observed in the original
data, 28 permutation trials in which the results were
equal to the original data and 31,905 instances in which
the results were less than those originally observed.
Thus, as a directional (“one-tailed”) probability under
the null hypothesis of no difference, the p-value is
computed as (28+835)/32,768 = 863/32,768 = 0.026337.
The non-directional (“two-tailed”) result would evaluate
as a p-value of twice as much, (2 * 863)/32,768 =
0.0526733. These values agree with Odiase and
Ongbonmwan, who correctly reported that the dependent
t statistic, applied to the same data, yields p-values of
0.02485 and 0.04970, respectively, for the directional
and non-directional tests. Thus, the dependent t test tends
to be close, but mis-represents the exact test results.

The performance of the R package is reasonably
quick for data sets of moderate size. Some examples of
processing speed on an ordinary desktop running
Windows 7 (64 bit) via an Intel i7 CPU (3.4 Ghz) are: N =
20 (2n = 1,048,576), approximately 5.7 s; N = 25 (2n =
33,554,432), about 185.8 s (approximately 32.5 times
longer, which is consistent with the change in size),
which is not unreasonable for an interpreted language

David T. Morse / Journal of Mathematics and Statistics 2014, 10 (4): 448-452
DOI: 10.3844/jmssp.2014.448.252

452

interface, as R is. For data sets that are substantially
larger, it would well be worth the effort to convert the
provided code into a compiled form, which would
execute more quickly. There are also some vectorized
function operations available in R that could profitably
be applied, but one design consideration was to keep the
code snippets as simple to convert to a different language
or framework as possible.

Discussion

Whenever an algorithm is presented, a pertinent
question is that of whether alternative methods or routines
already exist. The R package has a built-in function, combn,
which will generate a set of indices (as column vectors) for
an “n choose r” problem. For example, the call, “x<- combn
(15,5)” would generate a 5×3003 matrix containing the
indices of all combinations in lexicographic order (i.e., x[,1]
would include 1,2,3,4,5; x[,2] would be 1,2,3,4,6; and
x[,3003] would be [11,12,13,14,15]). That function could
be used in lieu of the allnr function presented here.
However, there must be sufficient memory to hold the
resultant array. As N increases, this could become
problematic; the allnr implementation minimizes memory
requirements. The Coin package in R is a more fully
developed set of easily-called routines, but these are all for
independent group tests. The StatExact package (Cytel
company), available in stand-alone or as an add-on to IBM
SPSS and Systat, is well-known, but is costly and has just
recently added the permutation test for matched pairs cases.

This algorithm was developed to allow researchers a
simple, no-cost method for implementing the
permutation test for matched pairs data sets. By choice,
the code was developed to run in the R statistical
package, an open-source software project. However, it
can easily be converted to many other languages or
platforms. The algorithm by Odiase and Ogbonmwan
(2007) is functionally satisfactory, but must be revised,
by adding or deleting for loops for each possible
sample size that one would encounter, which is a slight
nuisance for users. No such modification is needed for
the present algorithm.

Conclusion

The method described herein yields an exact
representation of the permutation method for judging the
equivalence of matched pairs data sets. The memory
requirements are minimal, the method runs in the most
widely used open-source statistical package on the planet
and can easily be made a bit more efficient, as shown in
the implementation presented in the Appendix.
Resampling methods, while easier to program and quick
to run, will always yield an approximate result to an
exact distribution.

Acknowledgement

The preparation of this manuscript did not involve
any external financial support nor any external
technical assistance.

Funding Information

There was no financial support involved in any
aspect of this study.

Ethics

There are no financial or personal conflicts of interest
involved in any aspect of this study.

References

Edgington, E. and P. Onghena, 2007. Randomization
Tests. 4th Edn., Chapman and Hall/CRC, Boca
Raton, FL., ISBN-10: 1584885890, pp: 376.

Fisher, R.A., 1966. The Design of Experiments. 8th
Edn., Hafner, New York.

Gentleman, J.F., 1975. Algorithm AS 88: Generation of
all NCR combinations by simulating nested Fortran
DO loops. J. Royal Statistical Society, Series C
(Applied Statistics), 24: 374-376.
DOI: 10.2307/2347110

Heyvaert, M. and P. Onghena, 2014. Analysis of single-
case data: Randomisation tests for measures of
effect size. Neuropsychological Rehabilitation, 24:
507-527. DOI: 10.1080/09602011.2013.818564

Ludbrook, J. and H. Dudley, 1998. Why permutation
tests are superior to t and F tests in biomedical
research. Am. Statist., 52: 127-132.
DOI: 10.1080/00031305.1998.10480551

Manly, B.F.J., 2007. Randomization, Bootstrap and Monte
Carlo Methods in Biology. 3rd Edn., CRC Press, Boca
Raton, FL., ISBN-10: 1584885416, pp: 480.

Nijenhuis, A., and H.S. Wilf, 1978. Combinatorial
Algorithms: For Computers and Hard Calculators.
2nd Edn., Academic Press, New York, ISBN-10:
0125192606, pp: 302.

Odiase, J.I. and S.M. Ogbonmwan, 2007. Exact
permutation algorithm for paired observations: The
challenge of R. A. Fisher. J. Math. Stat., 3: 116-121.
DOI: 10.3844/jmssp.2007.116.121

Pitman, E.J.G., 1937a. Significance tests which may be
applied to samples from any populations.
Supplement J. Royal Stat. Society, 4: 119-130.
DOI: 10.2307/2984124

Pitman, E.J.G., 1937b. Significance tests which may be
applied to samples from any populations. II. The
correlation coefficient test. Supplement J. Royal
Stat. Society, 4: 225-232. DOI: 10.2307/2983647

