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ABSTRACT

Horserace win and place returns have yet to beideresl seriously as portfolio inputs in financiading
markets. However there exist technical and fundaahetochastic models of parametric and nonparaenetr
distribution that appear to optimize expected metifrom win and place investing in the horseracgesiag
market. In this study, a complex number optimizattechnique is introduced and applied to develop a
deterministic betting model that calculates actetirns from the win and place betting. Using aassf
models mentioned, field win bet payoff results wgemerated for a sample of successive global gallop
races from Australasia, Asia and the United Kingddnwas noted double digit returns exceeding 10%
were consistently achieved within minutes of haserinvesting, with arbitrage opportunity locketbin
prerace from the deterministic model. The resulisfthis study provide evidence for serious inggton

into the inclusion and benefit of Institutional Beg) Funds into the local stock market.

Keywords: Models on Horserace Outcomes, Institutional Betkngds, Stock Market, Horserace Betting

1.INTRODUCTION billion. The amount can be compared to the ASX ®qui
annual turnover of AUD $1.6 trillion (ASXG, 2008).

‘Financial markets are typically defined by having Global horserace wagering facilities have evolvedf
transparent pricing, basic regulations on tradicmsts  the track and Licensed Betting Office (LBO) outléts
and fees and market forces determining the prides oonline tote or fixed odd betting and person-to-per§p2p)
securities that trade’ (Investopedia, 2013). Thesti@ce  betting exchange operations (Laffey, 2005). A bagtti
wagering market inherits uncertain investment retur  exchange is an entity that provides trading faditfor
many participants and supply expansive informationretail or bookmaker customers to buy or sell catgra
concerning participants and products typical oaficial (Koning and Van Velzen, 2009). Horserace wagerraoty
markets (Ali, 1998). Betting Market elements ingud are structured as binary options (typically Europstyle)
institutional  regulators  (International Horseracing where the payoff is either some fixed amount frowiraor
Federation), the participants (breeder, trainernesw  place bet or nothing from a loss. One party is ldyer
jockey and bettor) and the betting products (wiace, (acceptor) of the bet and the counterparty ardéteaker.
quinella, trifecta). Global horserace annual waggri Betting exchange products include horserace wagerin
turnover is significant; for example, for year 200® contracts, financial spread betting and contract fo
turnover was AUD$0.25 trillion (AGC, 2011), while difference financial derivatives. The betting exules can
theAustralian horserace annual turnover was AUD&12. be claimed to have brought transparency and trading
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innovation to horserace betting markets necessary f system optimization theorem over the complex number

institutional investment (Laffey, 2005). field is presented and the deterministic horsetsaténg
Betting activity on the exchange may be classiiied model developed from the theorem is used to gemerat

speculative, hedging or arbitrage trading (Arn@@2). In returns from win and place betting. The model tepts

2011, the UK-founded Betfair betting exchange medran  then conducted on a random sample of global haresra

annual sale activity of 916 million bets matchedpmerage by simulating continuous trading and recording gayo

of 7 million transactions on the betting exchangdlyd  results. The deterministic model payoff results ten

Moreover, Betfair recorded a new peak load of 30@€#ts  compared with payoffs from selective technical

per minute during the 2011 Grand National steeplseh stochastic models and the final section presents a

event (Betfair, 2011). Several factors appear tweha discussion of the application of the new deterntimis

contributed to Betfair's growth that include reddiamline  betting model in institutional betting fund trading

bettor transaction costs, the implication from Mostaw-

more affordable computing gives firms and customers 2 TECHNICAL AND FUNDAMENTAL

access to enormous processing power; and the &dapta STOCHASTIC BETTING MODELS

from Metcalfe’s Law of Networks that as the numbér

customers using Betfair multiplies, so does thétyif 2.1. Racer Rank Notation

each customer. Others such as greater liquiditthe

market and hence greater efficiency also aidedaB'stf The rﬁnk forlthef OUtE.O me fOf an gvent expressed by a
growth (Davies, 2005). rater is the result of ranking of a random varidhten an

The Betfair model is based upon the open Outcryunderlymg nonparametric or parametric distribution

system whereby backers and layers stakes are poc%P ‘Elia, 290.3)' Assigning the propability to the.toqme
matched (Davies, 2005). Goldman Sach’s technolbgica rom ar.].h field horserace is qulvalent 1o assigning the
division provides services concerning the develafinoé prob{;\bmty for the rank permutation of the first facer;.
both technical and fundamental model based algoith " this study.X; denotes an independent, non-identically
trading software. The models generate automatic,?'sktrIbUted cqtnhtlnuous ra”dom variable o represent
execution strategies that can be used by the banker aken for thei™ rank racet, with proba_b|||ty 9|str|but!on
internal equity businesses, as well as externahtglisuch F(Xi; &). The order of finish for a field size af ‘racers is

as fund managers and hedge funds (Goldman Sachggpresented by the permutation (z....) whereby
2011). Research in recent times has focused omapti represents the first placed racer aiglthe last placed racer

horserace betting models that forecast horseracemes from the field. The probability assigned to rankmetatic_)n
based on both ‘technical’ and ‘fundamental’ analysi is p( )=p(12..-n) = F( X <Xg, <..< X&) This
techniques (Edelman, 2007). The technical bettindels ¢|ass of rank models is described as order statistbdels
utilize horserace market odds that are the bettor'sinat share the property that the order of any suifséne
probabilities with assumed market efficiency. Timedel items is independent to the ordering of any digjsimsets
guantifies both historical and current horseracealée (Critchlow et al., 1991 Ali, 1998). Permutation growp:
data; while the fundamental modelling techniquekzet 0, nel, represents the set of complete and partial rank
selective researched variables for race forecash as a order permutations for then” racer field andp() the
Support Vector Machine/Conditional Logit (SVM/,CL), parametric or nonparametric distribution on permiorter.
horserace betting modelthat can generate doublé dig"  hg technical and fundamental models revised @ thi

return trial re;sults_ (Lessma_lenal., 200.9)' study share a multistage sequential process toragene
The main aim of this study is to develop and : o :
) L .~ permutation probability from bettor win odds toaadhate
demonstrate a new technical deterministic betting . .
expected payoff. For examplejn(,), quinella(s,,) and

model. The analysis will show that consistent » i betti K d |
profitable trading at an acceptable reward-to-teslel trifecta (1,2q) illustrate betting market products. In

for the institutional betting fund can be achievatie  Particular, parametric distribugions based upon the
significance of deterministic models to lock in ggee ~ Normal random variablX;; «;, ¢°), the gamma random
guaranteed payoff for the fund is critically exaedn  Vvariablef(X;; a;, r) and the exponential random variable

In the first section a review of the existing laarre on  f(Xi; @, r = 1) have been proposed for technical betting
stochastic technical and fundamental rank ordermodel application. These technical models sharelthe

horserace betting models used to develop tradingdecomposability property that the probability altied to
algorithms is presented. In the next section, atiplel  the ranking of a racer is independent from thetirada

/////Sdencemblications 391 JMSS



C.G.L. Hopf and G.A. Tularam / Journal of Mathemmtind Statistics 10 (3): 390-400, 2014

ordering of the higher ranked racers (Critchlewal.,
1991). The fundamental betting models revised ia th
study utilize a two stage process to combine sgkect
horserace variable data with the bettor odds viriad
generate win (or place) probability. These includek
order Multiple Linear Regression/Conditional Logit
(MLR/CL) and Conditional Logit/Conditional Logit
(CL/CL) models and classifier Support Vector
Machine/Conditional Logit (SVM/CL) model (Edelman,
2007; Lessmanst al., 2009).

2.2. Technical Betting Model
Techniques

Optimization

g,

Bi = {i.n} is the set remaining at stage '‘i’; with

Zin_l p(j)=1. These multistage sequential processes
utilize the bettor win oddsp(;=1) :}6 (O :winodds) to
|

calculate win, place and compound betting products.
The technical betting models attempt to achieve
consistent profitable betting return, which chagles
the semi-strong market efficient hypothesis that
historical and publicly available horserace data ha
been correctly factored into the current bettor sodd
The HZR wagering system calculates optimal place
bets to maximize expected logarithm of final wealth
from place wagering (Hausch and Ziemba, 1985). The

The ranking processes of the L-Decomposable model$,ggel calculates the expected return from one

of Luce (1959; Harville, 1973; Hausch and Ziemtg85L
Stern, 1990), all determine the conditional produicthe
choice probabilities (i.e., preferred racer fronmagning
racers) across the multistage sequence Equation 1:

P() =Pz a)={R, (D B, (I}

{p( (n—l)}: (1)

n—l..n)

n-1 PG)

p()= |_|i=l ZjEBi p(;)

additional dollar bet to decide racer selectionaiast

a breakeven benchmark and optimal bet sizes for the
selected racers are calculated to maximize final
wealth. The modern online betting portals shoultyon
enhance this model's performance from the
presumption that pool wagering occurs just prior to
the close of the betting period (Hausch and
Ziemba, 1985). A modified version of the HZR
model for algorithm development using bothwin
and place totalizer bettor odds is as follows
Equation 2:

Wq; G

p_ N2 W a0 . WG
= _ZiﬂZkﬂH(l-q)(l—qi—qj)} {(1-qj)(1-qj-qi)

P+1) - (1+R;

10 L | AP =@ R o
3R+1)

EXiP - expected place return racer i’

W :win odds racer i :placeoddsracer 1,

EX[ = =1,y :breakeven benchmerk parameter ,

Maximize n n-1
{p} EX (Wf ) :Zi=12j¢i,j=1

n-2 Wq; Ok

xlog + Pj R

K#i ;kzlm

n

Q(P+zlzlﬁj‘(ﬂjk + Pijk) [ n
EX (wf ) :expected logarithm final wealth from place wagering ,
W, :initial wealth;Q :track payback,

P: place pool ,Ry =R + P + R,

p :optimal place bets;p = p +p %P
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The Logistic model generates permutation  The normal rank order model is a class of rank
probabilities from the logarithm of win probabilitatios model that is a function of a single independent
(Plackett, 1975). The first-order logistic model variable of parametric distributioN(X;; ;) with joint

corresponds to the L-Decomposable  model, n I

P 0(2) P(o).. B) P . . pdf |_|i—lf (Xi —ai)(ai - average timeiracer) .
p( )= 1782/ Pn . An interpretation . =

(1= p()) (1= p(1) = P(2)-- Pn) Permutation probability for the normal rank mbde
of the model is that a racers rank is independeint IS represented by the multivariate integral

earlier selections in accordance with the L- EQquations:
decomposability property.

A second-order logistic model illustration for a - YzplXo <Xo <. <X
four racer field has permutation probability (Damsi P()=Pliom) p( RTTR R“)'

1983) Equation 3: I 1)[ ). I: £(X, -an) (5)
p( )= p[{12<ij aIIi,j¢1,2}and{23<2”, dX_ ..dX (cr 1)

®3)
P( )= Pl123d SLILEON

P(23) + P(24) The win racer i* probability forXy (expected win

. . .. time is expressed
The probability association between racer pairs is ) - P

considered by the second-order logistic model. A p(izl):J.XR f(x_;ai)l_l'?'% [1—|:(x_ -a, )}dx, .
third-order logistic model illustration for a fiveacer 0 ' 1#=1 : '

D(125) P(sd Henery (1981) derived the normal rank approximate
field is p( ):#. A model derived from the model from first degree Taylor expansion to caltaela
P(34) + P(35) the permutation probability as

extension of the L-Decomposable and gamma models
is the discount model, which includes a discount 1 zl 1 ditin ,

) . L ()= (ZaI 0) The win, place and
factorj; (decrease function ask’* increases and
dependent on shapeparameter’) ‘ to discount trifecta probablhty approximations are illustratbyg the
diminished racer performance with decrease in pici  following forms in Equation 6:
(Lo et al., 1995). The log odds ratio assumption that

racer i’ beats racerj’ for k" place being a discounted 1, iy,

function of racer i defeating racer j' for the p(;=1)= n (n 1’

win, LO(i, j \k) =LO(i, j \1)4& . A discount model trifecta _ o1, Tibn 5
probability approximation is provided (Lei al., 1995) p(,—— ) n (n 1)’ ©)
Equation 4:

) EOWVE
G [ e ST

@ (n-3)

r

pu A
X ) ||, (pl0)
The gamma rank order model class is a function of

The discount model is a function of the win bivariate independent variables with gamma
probabilities of all the racers in the field, udikhe L- distribution /(X;; @, r) and joint pdf
Decomposable model which is a function of the win F " =layo(—a X
probabilites of only selective racers. The inverse " [alx‘ ixp( @ % W(a:rate;r:distance).
hypergeometric model similarly applies a sequential )
comparison criterion of bettor win or place odds to  The gamma rank permutation probability (Stern,
investigate ranking process outcomes (D’Elia, 2003) 1990) is Equation 7:

p(ijk): p(;)
|
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p(1,2,...,n)=j dX_.dX_ (7

X, [a{ X;"lexp(—alx 1)_[ X, [arzxrz"lexp(—azx 2) Jum[a',ﬂxﬁ_lexp(—a'nxn)
. .

r(r) 0 r(r) Jo r(r)

And the racer probability to win (Henery, 1983) is p(x1=minxj)

® n-1
p(i=1)=J' f(xi;ai,r)n,ﬂzl[l—l:(xi;aj,r)}dxi. T
0 L _ =J'J' j ae % X ,dX,.. dX, (1= 1),
The gamma density function Equation 8: 0 x| b !
X1 =minX;
(i) oo ) P
pE r(r) 8) :J’O P(X| 2 XqlXy)ae @ 1 dXy j=[2.1, (10)
EeXp{‘"’ixi +C(Xi )+ D(a )} p(Xl :minxj)E.rot.rle_zizlaj)(l dxy,
0
—mi I
X1 = Xi)= ,
From which a first degree Taylor expansion p( 1=min ') "4

approximation for the model is derived (Henery, 398 =1}

as follows Equation 9:
p(i)
p

u p( ): P(1i25n )= n__l ;B ={;n}
12 |_||_1 ngBi (J)

p()=nm( )+ 3" (g ap)

i=1 aai
These technical rank order models for horserace

1
po( )==(0a; =ap). . . .
n! betting adopt permutation conditional probabilitesd

a()_ o . n . bettor odds to determine expected outcomes focaypi
da.  oa Inf(Xia ,r)l_l oy (Xi a7 X horserace betting products, such as quinellactgfand
() 1 , (9) first four horserace wagering. These elementary
oa. :m(_ﬂi;n+D(ai))v probabilities can be combined to optimize expected
: return from field betting.
n
p( )=i+zi=l{r_”i?”}{ai 1 2.3. Fundamental Betting Model Optimization
n! n! Techniques
(D(ai):lna{,ai *l) The fundamental model analysis utilizes relevant

racer variables for win and place forecast basexhup
publicly available information. The predictive mdsle

A gamma rank probability approximation for tk& ' : ! i
that attempt to achieve a consistent profitabldimgt

placed racer (Henery, 1983) is ! S| :

1 {r . }{a -1 return do not satisfy the conditions of the semost
p(i=k)==+1 2P0 7 The exponential model market efficiency theory that publicly availablecea

n (n-1) information has been factored into bettor odds

with density function f (X;;a ) =a exp(-@ X;) denotes  (Lessmannet al., 2009). The inclusion of selective
the gamma rank order model with shape paranmreter fundamental variables relevant to current and previ
1. The exponential model is equivalent to the L- race information combined with current market odds

Decomposable model (Stern, 1990). The mathematicablata is one attempt to develop profitable stochasti
derivation of the L-Decomposable model from the models. CL/CL, MLR/CL and SVM/CL models

gamma rank order model with shape parameterl,  possess such a two stage design; the first stage
using conditional probability first principles is quantifies racer’'s ability based upon previous and
accordingly Equation 10: current racer data and the second stage utilizebéttor
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odds to provide consideration for within-race The second stage of the MLR/CL model determines
competition. The nonparametric MLR/CL technique win probability forecasts for the individual racers
models racer rank as a linear function of selective Equation 12:

fundamental multivariable data to produce a

winningness index forecast (score ability) in thestf L(61.62)

stage. Within-race competition is excluded from the ex +1In

first stage of the MLR/CL model but included in the =ma |_| N Racesl_l P M' 1a+ing 62”

second stage. Stage two develops a probabilitycéste

for a racer win or place estimated in conjunctioithw
competitors (within-race competition) by using a L(81,8,)= (51,52) regularization parameter estimat
mu!tinomia_ll Io_gif[ technique, Which models a raceaas 4 ‘binary(0,1) ,

entity; maintaining racer relationship and factgrim o .
market bettor odds. The MLR/CL, CL/CL and by = exp(Yijd, + InG; 5) '

SVM/CL techmque; dlffer- in the f|rst._stage_. T.he zr.]_eXp(YAijé-l+|an32)

CL/CL model considers within competition with its =1

modelling of publicly available racer informatiort a  pj : probabilty racer ' j* wins event' |,
stage one. The SVM/CL technique derives a Oj : bettor win odds racer 'j 'wins event 1",
classification model to identify race winners osdeos
and intentionally eliminating reliance upon ranider Y;
regression. The SVM/CL model utilizes a win or non-

win indicator variable rather than a finishing gisi in The probability forecasts are combined with the
stage one (Lessmanet al., 2009). To construct petior win odds to calculate optimal field bets to

nonlinear decision surfaces, support vector machinemaximize expected logarithmic return (Edelman, 3007
methodology map input fundamental data into a high-in Equation 13:

dimensional feature space using a mapping fundton

minimize intensive calculation in the transformed Maximize n
feature space (Lessmasnal., 2009). Kernel functions {b} EX(R)=Zj:1|o,j log
can be employed to compute the scalar product of

transformed vectors in the feature space. The Gauss {q, i (z _1q, ﬂ

Radial Basis Function (RBF) kernel has been appbed

n
, IEXP(Yij 9, +1InQ 52)

12)

:winningness index forecast

horserace modelling with output values lying betwee EX (R):expected logarithm return, (13)
zero and one (Edelman, 2007). The model below is aQ; : bettor win odds
field win bet optimization strategy to determinetioyal b; : optimal bet for racer’ | event ‘i

field bets to maximize expected logarithmic retard
utilizing the MLR/CL two stage technique to foretas The stochastic fundamental and technical horserace

racer win probabilities. Stage one produces apeiing market models, analogous to capital market
winningness index as follows Equation 11: models, optimize expected return on individual ietdf
win and place assets. Furthermore, a property af pa

Yij = fo+ BXy+ BX o+ ..+ B Xy, mutuel betting to beconsidered, is zero return - tol
+£;Xq..X,, :racer variables, risk field betting is achievable from the grossttwebdds

o (before commission); subsequently positive actual
Y; = n+”1)_ z i = 0¥ 0[-0.5,0F, returns can be achieved from favourable trading.
Y; :normalized flnlsh(vwnningneﬁsindex)racer (1) 3. COMPLEX NUMBER MULTIPLE
"jlinevent i, SYSTEM OPTIMIZATION

fpij :rank finish order racer 'j'inevent 14 ) ) )
_ ) ; A set of algebraic elements and relations thatngefi
n:number of racersin event the set constitute a mathematical system. Compheix a
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hypercomplex (quaternions, octonions) number system
are finite dimensional vector spaces over the real

numbers that satisfy many of the real number systemdz _
mathematical dc ~

axioms. Complex analysis extends
application beyond restrictions evident with thealre
number system’s incapacity to describe all featwks
physical science. Consideration is given to horsera

betting payoff represented by a complex number to

separate field payoff from individual racer payoK.
deterministic model is one in which every set afiatale
states is uniquely determined by parameters imthéel
and by sets of previous states of these variaMasd,
2008). In fact, deterministic modelling of futurgeats
through known parameters has significant applicafio
financial market investment payoff, as evident e t

capital debt markets. Schochetman and Smith (1998)
develops an algorithm to generate average optimal

solution in deterministic infinite horizon. The Miple

System Optimization (MSO) model is developed irs thi

study.The model optimizes multiple complex system
inputs,Z(C";), over a finite horizon.

Theorem 1

Multiple System Optimization (MSO) over am’*
finite series of complex systems generates a congal
component over each consecutive system in Equation

{max/ mir} Z; ,, (Cf”r; ) ="

Zin (CQCQC,T) . nmultiple system complex functio 14)

C": complex vector inpyt set of operators

1n (éf_n) :complex outputRe( ,) = A"

Proof of Theorem 1

The proof for the MSO theorem is by mathematical
induction. The proof by induction involves a twage
process; firstly the base stage that is followedthwy
inductive stage. The base stage verifies that th
optimization over a complex system, which compriaes

complex vector argument and accompanying relations,

generates & real constant value. The inductive stage
verifies that for a finite series ofi*consecutive complex
systems, the optimal solution i§" for the multiple
system complex function.

Maximizing or minimizing on the spac@' of n-tuples

of complex numbers must satisfy the n-dimensional

az _

(15)

|

(c™)=z(Cr.Con s G IC) = )y IO 1 1}
dZ _| 9Z 9% 0Z 0%,
0z dy, 0Z dy, }
dz_l{az_iaz 0z _. 0z 4
oy,
0z _0z _ _0Z_ of Cauchy— Riemanh ,

@z @ @
dc,'dc, 'dc, |
=|920x 0Z 0x; 0 0%,
dC | dx dC, 9x,dC, ~'dx, oC,
+| 9Z 9 0Z 0y, OZ Oy,
dy; 0C; 9y, 0C, ' dy;, 0C,
z_1 9z o2 _,9Z 9z _,0Z
dC 2| dx Oy, 0x, Ay, oOx,
0z _ _ _oz
aXl BXZ " 6Xn
Re( )= A = constant

Mathematical Induction step Equation 16:

Z1 x (CTCS--CI??)=}IK ={21(Cn?)}k{“: Kb Z1ken
=2, (clcs.al) zi ) =12 P 4 &)

=A% =g = Zl..k+1(crfcg"qr<1+ 1;){ QED

(16)

3.1. Deterministic Betting Model: An

Application of MSO

It would seem that a deterministic model would be
relevant for modelling betting market payoffs. The
betting market assets (wager) possess defined fgayof
with limited liability that is in contrast to eqyitand
derivative market asset forecast payoff that
determined from the systematic and diversifiabktdes
(Williams, 1999). A zero risk horserace field bredti
provides an arbitrage opportunity for the traded an
institutional betting fund. Optimization of the cplax,
nonlinear payoff function provided in Equation 17
determines racer field win and place returns frdm t
cavailable bettor fixed and totalizer odds:

are

{max} Payoﬁ(H“,d;)=Zn:| Qb |‘Zn: b,
i1 i=1

subject tgmin} (b b.. p), )
IOk FIQ K [Oiz j,
“set of operators,ly :betting arnount(bn DC“),

(17)

Cauchy-Riemann equations in order for the complexo,:win/placeodds(O”DR”)

function to be complex differentiable Equation 15:
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Table 1.TrackinvesBmodel-win and place payoff race results: R R3)=(12,3,4); win payofiZ(R1) = g = 30.30%; place payoff
Z(Rl Rz R3) ==5.9%

Racer Mkt Net Racer Mkt Max-min Payoff

(R) odds Bet Win (B return Payoff (R odds Bet Place(®@ return (max-min)

1 17.8 $12000 $213600 $48600  (29.45%,0) 1 3.4 $210871400 ($13600,-$43600)(6.6%, -21.3%)

2 20.8 $10000 $208000 $43000 (26.06%,0) 2 3.6  $200872000 ($14200,-$43000)(6.9%, -21%)

3 4.9 $45000 $220500 $55500  (33.64%,0) 3 1.6 $450802000 ($14200,-$43000)(6.9%, -21%)

4 16.6 $13000 $215800 $50800  (30.79%,0) 4 7.3 $100873000 ($14200,-$42000)(6.9%, -20.5%)

5 17.4 $12000 $208800 $43800 (26.55%,0) 5 5.3  $140874200 ($14200,-$40800)(6.9%, -19.9%)

6 0.0 6 69)

7 0.0 7 ®

8 47 $47000 $220900 $55900  (33.88%,0) 8 1.9 $370800300 ($12500,-$44700)(6.1%, -21.8%)

9 24 %0 $0 -$165000 (0%, -100%) 9 1 $20000 $20000(-$37800,-$44700)(-18%, -21.8%)

10 135 $16000 $216000 $51000 (30.91%,0) 10 3.5 0@20 $70000 ($12200,-$44700)6%, -21.8%)

11 0.0 11 )]

12 215 $10000 $215000 $50000  (30.30%,0) 12 4 ¥180672000 ($14200,-$43000)(6.9%, -21%)
$165000 $205000

source: Unitab — Riccarton ZS1 (24 February 2012)

Table 2. Trackinvest© model-multibet win payoff racer rasuR" (R, R, Rs) = (12,3,4), R (R, R, Ry) = (1,11,12);win payoff Z,
= (R' R?) = (1+1)? = (1+0.3030)(1+0.09) = 1.42= 1.42°-1=19%

Racer Mkt Win Net Mkt Net
(R) Odds  Bet (B return Payoff Racer(R odds Bet Win(R return Payoff
1 17.8 $12000 $213600 $48600 (29.45%,0) 1 4.4  $120§62800 $4500 (9%,0)
2 20.8 $10000 $208000 $43000 (26.06%,0) 2 0.0
3 4.9 $45000 $220500 $55500 (33.64%,0) 3 6.7 $750850250 $1950  (4%,0)
4 16.6 $13000 $215800 $50800 (30.79%,0) 4 9.3  $55(#b1150 $2850  (6%,0)
5 17.4 $12000 $208800 $43800 (26.55%,0) 5 10.7  $46(49220 $920 (2%,0)
6 0.0 6 26.0 $2000 $52000 $3700 (8%,0)
7 0.0 7 18.0 $2800 $50400 $2100 (4%,0)
8 4.7 $47000 $220900 $55900 (33.88%,0) 8 3.2 $400RL2800  -$35500 (0%, -73%)
9 24 $0 $0 -$165000 (0%, -100%) 9 16.6 $3000  $@98@51500 (3%,0)
10 13.5 $16000 $216000 $51000 (30.91%,0) 10 50.6 0081 $50600 $2300 (5%,0)
11 0.0 11 19.6  $2600 $50960 $2660  (6%,0)
12 215 $10000 $215000 $50000 (30.30%,0) 12 14.9 30863 $49170 $870 (2%,0)
$165000 $48300

Source: Unitab-Riccarton ZS1 and ZS2 (24 Februaf2}

Table 1 and 2illustrate field win and place payoff A trader could source the global market of betting

results generated from algorithm, which uses ontine exchanges and bookmakers for preferred win or place
fixed horserace bettor odds and attempts to lock in odds. Bet taking win market odds of 4.7 for the
pre-race positive optimal payoff over the racetldfifor favourite would have achieved arbitrage and a 3%
a total minimum investment. The complex payoff is payoff over the entire fieldTable 2 displays the
determined using the MSO-the derived algorithm return-to-risk trade-off from multiple betting ovexo
displays a return-to-risk trade-off that typifieedncial consecutive races. The horserace results shown in
market investments. This technical deterministittibg Table 2 generated a feasible payoff of 19% for the
model’'s output separates field payoff from indivédlu  fund from consecutive race investing.

racer payoff. The return-to-risk trade-off shown in

Table 1is to lock in a pre-race 30% win payoff over 4, DETERMINISTIC VERSUS

the racer field, excluding the favourite, for thieos- STOCHASTIC BETTING PAYOFF-

term investment period (minutes). The risk is aslos ANALYSIS AND RESULTS

from the favourite racer winning. An optional fdasi

trade-off is locking into the lower place payoffdan A sample of fifty consecutive galloper races for
lesser absolute maximum risk. January 01 2012 from global racetracks of Australas
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(Australia and New Zealand), Asia (Singapore andddio take (t); and the net expected field win payoff fmth
Kong) and Great Britain, provided the data models isE(payoff) = -(n+t-1); n: field size, t: track take.
(http://lwww.sportsbet.com.au/results/horse_racig)f Table 3 displays model’s results for the Australasian,
testing the performance and comparison of the feahn Asian and UK sampled regions. Individual and
deterministic and stochastic betting models in shisly. accumulative race returns generated from both & D
The data gathered simulates “passing the bet dlobal and the normal approximate technique are displayie.
continuous trading on betting market races from theDBM provide two payoffs: (a) A nil trade strateghere
southern to the northern hemisphere. Although datedmaximum exposure from an individual racer losing is
both Loet al. (1995) and Ali (1998) tests show that the 100%; and (b) a case where the maximum risk of loss
normal model forecasted horserace rank probalilitie from an individual racer is capped at a maximum of
more accurately than the gamma rank or L-10%. Uniform unit bets on the field for the normal
decomposable models. Based on the data, the riatibr f approximate model resulted in sample payoff
win betting payoff from the deterministic model is comparison with the DBM payoff resulfBable 3results
compared with payoff from the normal rank approxiena demonstrate the superiority of the DBM over the
and L-decomposable models. The deterministic modelstochastic model. The DBM consistently generated
optimizes racer field payoffs)-to-risk trade-off for  double digit bettor race return. Similar to thecstastic
minimum betting amount on consecutive races; zisio r model results, the accumulative payoff generatedhfr
reflects arbitrage opportunity and locks in a peer  the DBM over a series of races is affected wheosa |
positive return independent of winning racer outeom occurs with high exposure. Interestingly howevée t
Both the normal approximate and L-decomposableDBM optimizing field win bets with betting exchange
stochastic models recorded the same expected payotiade to maximize exposure to 10%, resulted in both
results. The net expected win return per $1 urtitfimen exceptional positive accumulative payoffs £)% and

a winning racer for both the L-decompose and normalsuccessive racer retutf achieved for the series of
approximate models equals the negative of thettatdk races in all the regions.

Table 3. Technical models-field win bet payoff

DBM Results (%)

Region race 1 race 2 race 3 race 4 race 5 race6 ce7ra race8 (1)" S1(%)
UK (Cheltenham) 1.82 59.36 (@) -29.16 8.21 15.81 (a) 1.44 (@)7.6
(b) -10 (b) 1.83 (b) 12.8
SGP (Kranji) 7.87 (a) -75.52 (@) 0.382 (a).5L
(b) -10 26.12 7.49 6.79 (b) 1.405 (b)) 7
HKD (Sha Tin) 5.46 (a) -62 17.46 6.55 11.98 @62 (a)-11
(b) -10 (b) 1.33 (b) 5.9
AUS (Inverell) 12.62 9.08 4.44 (@) -70.59 6.21 14 (a)-78.46 6 (@) 0.093 (a)-26
(b) -10 (b) -10 (b) 1.186 (b) 2.16
AUS (Mornington) 14.22 4.89 10.63 11.17 (a) -81.38.01 (@)-75.2 (a)-76.98 (a)0.02 (a)-39
(b) -10 (b) -10 (b) -10 (b) 1.418 (b) 4.46
AUS (Murray Bridge) ~ 31.78 16.48 (@)-81.25 4291 521  (a)-65.87 6.69 10.09 (@) 0.184 (a)-19
(b) -10 (b) -10 (b) 2.328 (b) 11.14
AUS (Sunshine Coast) (a) -25.4 52.28 3.17 (a)762.13.62 (@)-71.33 0.32 2.64 (@ 0.18  (a)-19.3
(b) -10 (b) -10 (b) -10 (b) 1.34 (b) 3.73
NZD (Waikouaiti) (a) -45.45 27.55 (a) -72.86 a) 0.19 (a) -42.5
(b) -10 (b) -10 (b) 1.033 (b) 1.09
Normal (approximate) Model Results (%)
UK (Cheltenham) -65 6.67 -50 -17 41.25 0.219 -26
SGP (Kraniji) -2.5 -78 439 -53.6 -24.2 0.407 516.
HKD (Sha Tin) 44.6 -69.3 147.1 -70 42.1 0.468 4-1
AUS (Inverell) -31.25 2.3 -54.3 -74.5 -60.8 21.1 8.y 21.4 0.01 -44
AUS (Mornington) -56.25 -15.6 -46.4 8.6 -69.2 -375 -78.3 -67.8 0.003 -52
AUS (Murray Bridge)  25.7 238.2 -66 8.3 -30 -64.3 71. 62.9 0.65 -5
AUS (Sunshine Coast) -82.9 -33.3 -48 -74.3 -11 -69  -63.1 -54 0.0007 -60
NZD (Waikouaiti) -77.5 25 -70 0.084 -56.2

Source: NSW TAB (01 January 2012) (a) max risk9%0(®) max risk 10%
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