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ABSTRACT

Periodic autoregressive moving average PARMA preadend the classical autoregressive moving
average ARMA process by allowing the parametersaiy with seasons. Model identification is the
identification of a possible model based on an labde realization, i.e., determining the type oéth
model with appropriate orders. The Periodic Auteetation Function (PeACF) and the Periodic
Partial Autocorrelation Function (PePACF) serve useful indicators of the correlation or of the
dependence between the values of the series sthénaplay an important role in model identificatio
The identification is based on the cut-off propesfythe Periodic Autocorrelation Function (PeACF).
We derive an explicit expression for the asymptotariance of the sample PeACF to be used in
establishing its bands. Therefore, we will get imst study a new structure of the periodic
autocorrelation function which depends directly ttoe variance that will derived to be used in
establishing its bands for the PMA process overctiteoff region and we have studied the theoretidé
and we will apply some simulated examples with Rolvkagrees well with the theoretical results.

Keywords: Periodic Models, PARMA Model, Identification, Pedic Autocorrelation Function

1.INTRODUCTION flows have significant periodic behavior in the mea
standard deviation and skewness. In addition teghe
The time series has been found that manyperiodicities, they show a time correlation struetu
meteorological variables (such as rainfall, global which may be either constant or periodic, for more
temperature) are nonstationary. The theory anddetails see (Anderson and Vecchia, 1993; Bartig46).
practice of time series analysis have developeitiiap Many macroeconomic time series display a trend and
since the appearance in 1970 of the seminal work ofmarked seasonal variation, while many variables in
(Box et al, 2013). finance and marketing display seasonality but no
We Know that the time series analysis and trend. If there is a trend in the data, then ofoee is
modeling is an important tool in many areas inlofér  jnterested in examining the nature of this trersithas
like water resources. It is used for building can have implications for forecasting and for
mathematical models to generate synthetic hydrelogi subsequent model building, (Igelan, 2011).
records to forecast, determine the likelihood, dete The fundamental aim of periodic time series analysi
trends and shifts, and to interpolate missing datd  is generally two-fold: To understand and identifye t
extend records in hydrologic records. The stattic stochastic process that produced the observeds samid
characteristics of hydrologic series are importantin turn to forecast future values of a series frpast
deciding factors in the selection of the type ofdalo values alone. The common procedure in modeling such
For example, in most cases known in nature, riverperiodic river flow series is first to standardiae filter
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the series and then fit an appropriate stationasgighto Of specific importance to this study is to estdbbs
the reduced series, for more details see (Hipel anddentification of a possible model based on an lajt
McLeod, 1994). Most estimation techniques dependrealization, i.e., to decide the kind of the moseéth

on the assumption that the series is stationary. Acorrect orders by using two statistics functionslety
special class of nonstationary time series has beensed for identifying PARMA time series models which
defined by (Gladyshev, 1961), called periodically gre peACF and PePACF. Also, we will get some
correlated time series (also known as cyclostatipna ,roperties of the variance summarized which arelege
time series). These time series are nonstationary, ¢, the assessment of the cut-off property of gm@ssnal

hav_l?hgerr:;(jj(i)(r: g;a?)? fmsd gﬁj\:ja;/riinfr?es.PARMA model ACF for a season s which follows a M#§)) and then
apply this establish on some simulated examples.
identification, i.e., the determination of the smzaly PRl P

varying orders of the PARMA model, and to develop a 2. STEPS FOR MODEL

practical computer program which performs model IDENTIFICATION

identification for any given actual periodic staiwy

series. An important class of periodic models usgfu In time series analysis, the periodic autocorrefati
such situations consists of PARMA models, which are ¢, tion PeACE and the periodic partial autocotiefa
extensions of commonly used ARMA models that allow function PePACF serve as useful indicators of the

periodic parameters.  PARMA  models  explicitly correlation or of the dependence between the vabfies

e e e o he seres o tat they ply an important rle e
’ ’ identification (Boxet al., 2013).

a more realistic time series model that leads taemo . . . .
The most crucial steps are to identify and build a

reliable simulations of natural river flows, for neo . . . .
. model based on available ddf&ig. 1). This requires a

details (Ula and Smadi 2003; Vecchia, 1985). . .
Since PARMA models are quite new, many questionsgood understanding of the processes, particulhgythie
' characteristics of these processes in terms ofr thei

about them are still unanswered and need furthelies. i
It is known that there exists general methods for t PeACF and PePACF. In practice, these PeACF and

identification of standard ARMA models of mixed gp P€PACF are unknown, so they have to be estimated by
however no such satisfactory method is available fo the sample PEACF and PePACF. _
PARMA processes. In the application part of thiglgt Thus, in model identification our goal is to match
PARMA models may be more suitable for some seasongatierns in the sample PeACF and PePACF for the
(Tab'e 1) This Study involves On'y the periodic PARMA models, for more details (W|”|am, 2006)
stationarity case and the programs work only faiqoic
stationary processes. There exists well-known nuktho
like differencing or filtering to achieve statioitgr of Test
standard ARMA models, such methods for achieving T
periodic stationarity should also be investigated. Compute
PeACF. PePACF
Table 1. Behavior of the PeACF and PePACF for PARMA
models, where the PeACF have values before bgtq |
it is zero for lags beyond, épr pure PMA processes and Plot
the order of the process can be decided according t
the sample PeACF. Also the PePACF have values | Tyatg |
before lag pbut it becomes zero for lags beyondqy
pure PAR processes and the order of the procedsecan
decided according to the sample PePACF

Fig.1. Summary of steps for model identification which

PAR (p PMA (9 PARMA (R, &) } ) . .
PeACE Tails off Cuts-off after Tails off summarize in collecting data then plot the time
lag g series data then compute and examine the sample
PePACF  Cuts-off after Tails off Tails off PeACF and the sample PePACF of the series and
lag g finally test the deterministic terms

////4 Science Publications 359 JMSS



Hazem I. El Shekh Ahmeet al / Journal of Mathematics and Statistics 10 (88-367, 2014

Step 1: Plot the time series data and choose propeperiodic variances%(s) and g;, &; are the autoregression
transformation, where the most commonly used and moving average coefficients respectively.

transformation
transformations

are variance-stabilizing

For the univariate periodic stationary PARMA
process ¥s.q}, the Periodic Autocovariance Function

Step 2: Compute and examine the sample PeACF and th(PEACVF) is defined as Equation 3.2:

sample PePACF of the original series to further

confirm a necessary degree of them

Step 3: Compute and examine the sample PeACF and th
sample PePACF of the properly transformed =

series to identify the orders of p =
max{py,....pgy and g = max{q...,q¢ Iin
PARMAd (pl: A1, P2: G2, ----, Pas Cld)

Step 4: Test the deterministic termas, and 8,0 when

d>0

Alternatively, one can includg,andé,, initially and
discard it at the final model estimation if the lipnnary
estimation result is not significant. This steph applied in
section of simulation with R program.

3. PEACF OF PARMA MODLS

We consider the identification of seasonally vagyin
orders of PARMA time series models by making use of
periodic version of the functions ACF and PACFgti
a periodic autocorrelation function PeACF and pido
partial autocorrelation function PePACF.

Definition 3.1

Gladyshev (1961) We say that the proces$ s a
periodically correlated time series, if:

[ 02750 =

Hisd W(SY) = i(std,t+d) (Bt 17 Z,

where:

H =EX <wandyy (s)= B( X- EX)( X- EY]<e

We will write the time index parameteast(s, r) = s
+ rd such thats = 1,...d refers to season amd+ 1( =
0,...N-1) refers to yeard is the number of seasons and
N is the number of years with total sample sizeNd.

Let {Xsrg} be a zero-mean periodically correlated
time series of period = 2, 3, ... . The PARMA(p1, g1,

P2; 02, ----» Pds ) has representation Equation 3.1:
ds
Xsird Z%. S+rd_i:DS”d_iZ=;LHs Og g (3.1)

where {{L.q} is an uncorrelated periodic white noise
process and normally distributed terms with meaa aed
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ys(h) = E(xs+rd Xs+rd—h)
ds=h

2

o, if h>gq.

i . 3.2
S|+hgs—h,iai—h—i' if Osh qu, ( )

where, 6., is defined to be 1 for all seasosst lag
h=0. This is similar to the cut-off property of the
ACVF of the MA processes.

The PeACF ofpi(h) for season s at lag=0 is
defined as Equation 3.3:

Os— h 2
Z s i+nOs 1hiTs b i

, if 1sh<qq;
ps(h) = Jys (0)/s_,(0)
0, if h>qs.
qu_hg N (3.3)
i=0 Ys,i+hYs-hi“s hi if lshsqs;
q 2 q 2
\/Z:s 6 S, i Os |Z| S0‘95—h.| s hi
0, if h>qs.

where, )¢(0) is the variance for th&' season.

This is an important property of the PeACF. That
is, for a season following a pure MdJ processps(h)
= 0 Jh>qs, which is called the cut-off property of the
periodic autocorrelation function of a pure PMA
processes. Also, this function does not play thmesa
role with PARMA and PAR models.

Definition 3.2

The PeACF of ¥...q} for seasons is defined as

Equation 3.4:

os(h)=E Xstrd “Hs Xsrrg-n"Hs
W0y (0)

=E (Zs+rd Zs+ rd— h)

= & h>0

NAGYARG)

where, )¢(0) is the variance for the" season andZ..q}
denotes the periodically standardized time series.

(3.4)

JMSS
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We can define a function called peacf which that {¢} is d-periodic. Then the autocovariance
summarizes the steps of periodic autocorrelatioetfan function p(h) = E[XswraXsa-n] iS given by Equation 3.7:
PeACF to identify the seasonally varying orders of
PARMA time series models. This function, which , (s s-H=

implements formula (3.3), is representedigorithm 1.

Algoritm 1. peacf of PeACF for PARM#O;qs) process
Input: ( os_ h_.,ys(h)), s=1.,d

fors-1tod do
fori-0to g-h do

& lshsaﬁ-
£,(N) <14y, (Q)y,.,(0)
0, h>q,.//cut - off
end

end
Output: ps(h)

Although, as for the ACF of a stationary ARMA
model, it can be shown for a periodic stationaryRIRAA
model thatlimy, _ .0, () = 0 (i.e., PeACF of a stationary
series goes to zero as time lag increases) (Ul&aratli,
2003). The cut-off property opy(s) for an arbitrary
season s following the PM4(s)] process Equation 3.5:

X (3.5)

s+rd

ds
:Ds+ rd ‘;93 i Ds+ rd- i
where is thajp, (s) = 0 for allh>q(s). This is analogous to
the cut-off property of the ACF of an ordinary M£opess.
Definition 3.3

The sequences of ¢} is called absolutely
summable sequences (i.e., convergeY if || < .

Definition 3.4

o0
The periodic autoregressive moving-average process Z

for the time seriesX..q} is said to be causal function of
{Us+g, if for each seasors = 1, 2,...d, there exist
sequences ofgf;}, such that Equation 3.6:

Xeorg = Z‘/’w Ogr gy fOreach s1,.., d =0,1,2,.. (3.6)

where, ¢, = 1 and all the valueg/; ared-periodic and
satisfy” |w;| < for each seasam

Proposition 3.1

Let {Xswa} to be periodically correlated time series

and the absolutely summable sequencgs}{be such
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idZi sh—l+r‘ﬂs—hr}'t|(s h-r+l,s—h-1) 3.7)
=hr=09=0

Pr oof

Let {Xsrg} be a zero-mean periodically correlated
. Then:

n
E[Xs+rd Xs+ rd— h:| = A'mm ELZ(:)ws,i DsL rd- }
n
{Z s hi s+rd h—|:|

“m E|: Z ws st hj s+rd |Ds+rd—h— J:|

i,j=0

lim ZI/ISII,UShJVD(S i,s—h-}

nﬂoo

Z GsiWsn, jVD(S— i,s— h— )

i.7=o0

Since the autocovariance function of/§.q} is
bounded by max. (1, 1),...y«(d, d)] and the

elementwise product of absolutely summable
sequences is absolutely summable.
Now, let us change the indéby| = h+j-i to get:

m

[ Xs+ rd Xs+ ro- h} =

> Zl//sh+J Wsn po(s—h-j+ls-h- D}

m
B
11|

o

I:Z:wsh—I+r+qd¢’s—h|+qc}/E|(U"'I qu qd)}

where,j =r + qd andv = s-h-r. Therefore:

m

[Xs+ rd xs+ rd- h} =

oo d-1| oo
zzl[;)ws.h—lwmuws— hr qd}'ﬁ(UH’U)

I=hr=0

Corollary 3.1

If { [&.q} in proposition (3.1) is periodic white noise
PWN(O,G’SZ,d), then Equation 3.8:

JMSS
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d-1 o h-1
yx(ss- f'):;)l//s,m.lﬂs_h O bt (3.8) Xs(Erdl)—hzizlbh—l,iXs& rd- i (4.4)
4. PEPACFE OF PARMA MODELS where, by, i = 1,..h-1 are the backward coefficients of

the prediction.
i i i iodi i h-1) _ & (h-1
In time series analysis, the periodic partial Also, letp"Y Xt h™ x(3 m{ {0 be the

s+rd-h ~
autocorrelation function is well adapted to the : : ; .
identification of pure PAR processes. Lét.4q} be a backward residual of,.q.n and define Equation 4.5:

zero-mean periodically correlated time series ofookd (h-1) \_ b2 _
= 2, 3, .... The PAR (p...,.pq) has representation Var('75+rd—h)_ Tsra(h=1) (4.5)
Equation 4.1:
Definition 4.2
Ps - . .
Xer 1 :Z%ixs+ - Oae rg (4.1) qulan (2011)_The periodic _partlal autocorrelation
i=1 function S(s, s-h) is the correlation betweexs,y and

o Xs+ra-n With the effect of the intermediate variables
Definition 4.1 Xserd-15 - Xsrra-(ne1) “filtered out”, which is defined on

The conditional expectation of, given X, s<t is zxz by Equation 4.6:
denoted byE(X{Xs, s<t) and defined as followE(X|Xs,

S<t) =ayXiy + @Xp t... . B(ss- =

The conditional expectation can be replaced by the Var(Xg, ) if h=0; 46
linear projection. The best linear predictionXf s<t Corr (X X N if h=1 (4.6)
i . strd’ “*strd-
is denoted by predX{Xs, s<t), for more details see 5 (h-1) S(h-1) .
(Igelan, 2011). Corm (Xgurg = Xst rd» X 1 n™ Xg a1 h22.

Consider the discrete time serigq;
Xstrahy Kstrd-(het)s - - Xstrd-15 Xsaras --. - HENce, for anp>1, Notice that, settingX(s, s) = Var(Xs+q) instead of 1 in
define X "V =proj (X 41X X to the above definition. Also, we can rewrfs, s-h) at lag

d o( 1 . R
st S ¥ 1o )) h of one variable to be as Equation 4.7:

be the best forward linear predictor ¥f,q from the
intermediate variablesXsirq.; t0 Xsig.(r1y, Where the R = _
upper indices refer to quantities connected to the'BS( )_'B(SS ')

strd-1'"""

predictor of Xs,q based on thér-1 observations right  =corr(x_ - XD x - x(-D
before or right after it. So Equation 4.2: ( strd - Terrd? Tsrdh e rd ') (4.7)
h-1) . (h-1)
- (h) h-1 - CO\'( +rd Tt rd- h)
Xsird = i;am,ixy rd-(h- i) (4.2) \/fagﬂd(h—l)\/ba; «(h=1)
whereay;, i = 1,...,h-1 are the forward coefficients of Theorem 4.1
the prediction. "
Let 0 D=x  —x(MD 5 pe the forward residual 1. If {Xs:q} is @ causal periodic autoregression of order

s+rd~ “Nstrd s rd

of Xs+rq @and define Equation 4.3: ps at seasos thenf(h) = 0 wheneveh>p,

2. If {Xs+rqg} is @ periodic series with periatiand£y(h) =
Var( (rl—ré)) - f0.§+ 4(h=1) (4.3) O for aII_h>_p5 andSypy) ¢_0 for each seasanthen {Xs..q}
is a periodic autoregression of orgeat seasos; 1<s<d.

It was mentioned that for a pure PMA processes, the
PeACF is zero for lags beyoid Likewise, for pure PAR
processes, the PePACF becomes zero for lags bpysul
if the correct order i for seasors, thengy(h) = 0 for all
backward linear predictor OKsirgn from Xeirg.(r1) t0 h>ps This is the cut-off property of periodic partial
Xs+d-1- SO Equation 4.4: autocorrelation function for PAR processes.

We can also obtain the best backward linear
prediction if we reversing the time index, say

(D) _pro
Xsrdoh = PO} (Xg g nl X g 1o pay X s a1 ) 10 DE the
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Actually, the PePACF for PMA models behaves
much like the PeACF for PAR models.

Also, the PePACF for PAR models behaves much

like the PeACF for PMA models.

Also, we can define a function called pepacf which
summarizes the steps of periodic partial autocaticei
function PePACF to identify the seasonally varying
orders of PARMA time series models which implements
formula (4.7) to be represented in Algorithm 2.

Algoritm 2. pepacf of PePACF for PARM#ps, 0)
process
Input: ' o2, ,(h-2),°2, (-0 g3 nCov(D B S

S

)

fors—1tod do

A(h) - OO (X =Xy X -1 X3 ot 1< e
0, h>p..// cut- off
end
Output: Ss(h)

5. SAMPLE PERIODIC
AUTOCORRELATION FUNCTION

Assume that Xy, Xs,....Xngt be a series of size Nd
from a periodic stationary proces¥{q}. Then . (s) is

the sample periodic autocovariance function which
calculated from Equation 5.1:

R 1 N-1 1 N-1
yh(s)zﬁrz‘o[xsﬂd_ﬁrzb Xs+rdj
Nt 5.1
[Xsﬂd—h_i X st rd- hJ ( )
N =0
1 N-1 _
:W (Xs+rd XS)(Xs+rd—h_ Xs—h)
r=0
where, the sample mean for seasom is
o _ 1N
XS_NZT=O Xs+rd :

Also, the sample periodic autocorrelation function
can be given by Equation 5.2;

Vi (9) hs>0

Jo®(s-h

Since 1 and y(s) are periodic with periodi, also
Xsand j (s) are so.

(5.2)

N (s)=

Let the white noise terms to be independent and

normal, so that Xs..q} is @ Gaussian PARMA process,
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then in (Pagano, 1978) it is proved th#t(s) are

consistent, asymptotically independent, joint ndrma
unbiased estimates, efficient and converge almostys
to y(s) for all s and h. Also, X, is consistent and

unbiased estimator gf; and it can be shown that it also
consistent under the periodic stationarity assumnpti

For stationary processes, the asymptotic joint
normality and unbiasedness of the sample AQB)
with d = s = 1 have been shown by (Bartlett, 1946)
and the asymptotic variancecovariance matrix has
been specified in which Equation 5.3:

var[r,(s)] O
L , . (5.3)
Wm;w{pm+pm+hpm—h_4prpmpm— nt 20 mP }

where, the symbol[™ wherever appears means that the
statement is true for lard¢ (Box et al., 2013).

In Vecchia (1985) an approximate solution for the
first- and second-order moments rgfs) were obtained
by pretending that the sample meaKsand variances

¥,(s) in ry(s) are equal to their population counterparts

s and p(9), respectively. This assumption will obviously
be well justified only for large samples due to the
consistency of these estimators. In that case,angake
rn(s) as Equation 5.4:

1 N-1
T(S) N r;) ZsrdZsr rd-h (54)

It then follows thatry(s) is asymptotically unbiased
with asymptotic variance Equation 5.5:
var[r,(s)] 0

L e (5.5)
N2 [Pna(Pma(S= W+ 2 {90 mg 5 D]

Which by utilizing ps(h) = psn(-h) and the fact that

Pind(S) Pnd(S-h)+0ma+r(S) Pman(s-h) is an even function
of m, reduces to Equation 5.6:

1
Var[1,(9)] 05

1+] p, (s)]2 +2 (5.6)
{3 o900k s 0 2y 30 5 )
JMSS
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Now, the Equation 5.5 and 5.6 is used, only thet fir
two terms are retained in these Equation. The neingi
last two terms containing the third-and higher-orde
autocorrelations disappear forq(l) if the first season
follows a MA(@Q(1)) process. Therefore, for the
assessment of cut-off in seasonal autocorrelatiat,is
for checking whether season s is a M@A() or not, for
example, for whichp,(1) = 0, forh>q(1).

In the following proposition some properties of the
variance of Van(s)], which follow from (5.6), are
summarized which are needed for the assessmeheof t
cut-off property of the seasonal ACF for a season
which follows a MA@(s)) process.

Proposition 5.1

Ula and Smadi (2003) LetX.} be a periodic
stationary PARMA(p(s), q(s)) process.

If sis an arbitrary withp(s) = 0, then for positive
integerh, we have the following results for Va(s)];

(i) for g(s)<d Equation 5.7:

= 1+[pn(9)1?). h< o9
N(
1

N’

Var[rh(s)] O (5-7)

h>q(s)

(ii) for rd=q(s)<(r+1)d,r =1, 2, ..., then:

Var[r,(s)] O
08 O #2 X g3 P 5™
#Prpaen(&)P e (5~ DD.LS s d 3= rd

RINOISESWINERMES B

mi:lpmd*“(s)pm"’ {s= h},

4(9)-(j+1)d < h< q(9- jd = 1,...(r— 1)
L@, O +2{mrz:1pmd( 3 P (5~ MO,
a(9)-d< hs o 3;

A2 g €09 (5~ 1), (3.

Pr oof

For more details see Ula and Smadi (2003).
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Settingd = s 1, it can be easily seen from
Proposition (5.1) that, fan>q(s) = g, case (i) reduces to
the white noise process Equation 5.8:

Var[rh(s)] =—,h=1 (5.8)

1
N

Also, case (ii) reduces to the MHW( process
Equation 5.9:

Var[1,(9)] D;(h er: pﬁ]] h>r (5.9)

m=1

These are the well-known formulas for the
identification of white noise and MA processes,
respectively, in the context of stationary processe
(Box et al, 2013). However, note that farq(s) the
formulas for Vart}) in case (ii) of Proposition (4.1) are
rather approximate as they are base on (5.6).

The identification bands for the M4(s)) process
utilize ry(s) being asymptotically normal with zero
mean and variance Equation 5.8 and 5.9 over the cut
off regionh>q(s).

Following the same methodology applied to the
sample ACF of a stationary process, for a seasuich
follows a MA(q(s)) process, we start checking values of
q(s) successively, starting witt(s) = 1. Then for large
N, as long ag|(s)<d, Equation 5.8 implies that(s), for
h>q(s), is normally distributed with mean zero and

variance 1IN, so that the 95% band(ﬂs ﬂﬁj is

YN JN
applied to those autocorrelations. dfs)=d, which is
unlikely for moderate or large values df Equation
5.9 should be utilized, withp,(s) estimated byr(s).

let s, to denoted the sample value g¥ar[r (9] , the

95% band is .96 s, 1.96 s,), which should be
applied forry(s), for h>q(s), the accuracy of these
bands are verified through simulation next section.

6. SSIMULATION RESULT

In this section we will illustrate some simulatistudies
to investigate the usefulness in practice of theoriétical
results stated earlier and to demonstrate theifidation
procedure. Th& programming language was used in this
simulation study in conjunction with the pear pagka

Example 6.1
Consider the model PARMAQO, 1; 2, 2; 3, 0; 0, 4):

JMSS
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Xprgr =040y Tl g (ag(s):l;szl,z,s,z). Ten thousand realizations each

Xosar Z0.7Xyy 4 + 08Ky g+ 0.6]y 4 of lengthN (years), i.e., &N values, forN = 2500; 5000;
+1.20 + 7500, are simulated from the above 4-period PARMA
2 ae-1 T v -

model. For each realization, the sample PeAgE), for s
Xarar LK 4 = 06Xy 4 + 0.5, 46+ U3 0 =1,2,3,4anth=1,...,10 are computed Fable 2. Only
the first and fourth seasons here follow a pure pidcess,
MA (1) and MA (4), respectively. For the first seaswe
. . . ) expect a cut-off behavior for the sample PeACHidr and
__Which is chosen to be periodic stationary and fq the fourth season fdr4. These can be observed from
invertible - (for determining periodic stationaritynd ¢ \aues inTable 2. Only for these first seasons, we
invertibility of such processes, the first seasoA K1), observe an apparent sudden drop in the valuesndoe
second season ARMA (2,2), third season AR (3) andanalysis seBig. 3.

fourth season MA (4). ] ) Equation 5.8 follows and the relative frequencies (
To process our simulation study an R-code wasesritt freq.) of rp(1), h>q = 1, going outside the 95% band
to generate 10000 independent replicates. Eaclesiet (_1 96 1.96

replicates has sizés= 2500,N = 5000 andN = 7500. —J for N = 2500; 5000; 7500, are given in
In all cases, the white noise terms are indepehdent N UN

and normally distributed with mean zero and vamanc Table 2 respectively and shown fig. 4, which agree

equal to one. Iffig. 2 we see that one of simulated series Well with the theoretical asymptotic value of 5%her

which corresponds tid = 10000. relative frequency is the percentage of autocotiaia
The white noise terms are assumed to bevalues over all realizations falling outside the

independently and normally distributed with zeroame ~ corresponding bands. The asymptotic property also
(our basic assumptions) and unit varianceslustifies the improvement in the valuesMséncreases.

Xgoap =030 4 +0.15 4 + 0814y + 08, 4 )*U 4

] , ] i )
0 2000 4000 6000 8000 10000
Time

Fig. 2. Line graph of 10000 observations

10 10 10
8 8- 8
36 g 6 36
4 4 4
2 24 5

0 o ‘ 0 ‘

0 1 2 3 4 0 i 2 3 4 0 1 2 3 4

Period Period Period

Fig. 3. The PeACF for the size data séts{ 2500,N = 5000 andN = 7500 respectively). In season one PeACF shaveft after
lag 1 and since PeACF shows better cut-off, thésee is said to follow MA (1) model. Also, in seagour PeACF show
cut-off after lag 4 and this season is said twfelMA (4) model
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()
1(z)
1(7)

| /—\ —— /\
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Fig. 4. The 95% confidence interval size data s&ts=(2500,N = 5000 andN = 7500 respectively). It can be said that the
first, second, third and the fourth seasons (for 2500) follow white noise process without any bgusince all
values fall inside the bands for PeACF, but forsemaone, ¥ lag in PeACF is outside the bands and since thatev
is close to band limits, it may be ignorable. Alshe seasons (foN = 5000) follow white noise process, but for
season one and fourf'lag in PeACF may be ignorable. Finally, the seas(or N = 7500) follow white noise

process, but for season one, two and fotldaty in PeACF may be ignorable

Table 2. Average sample PeAQf(s) for lag h = 10 withag =1

N = 2500 N = 5000 N = 7500

h\s 1 2 3 4 1 2 3 4 1 2 3 4

1 0.605 0.378 0.000 0.430 0.592 0.388 0.232 0.4370598 0.384 -0.003 0.455
2 -0.003 0.008 -0.031 0.020 -0.002 -0.007 0.647 -0.0320 0.000 -0.044 -0.606 -0.009
3 0.006 -0.005 0.000 -0.020 0.002 -0.018 -0.104 -0.0209 -0.001 -0.058 -0.126 0.000
4 -0.03 -0.002  -0.002 0.039 -0.007 -0.067 -0.199 -0.0270 -0.002 -0.040 0.000 0.003
5 0.019 -0.005 -0.023 0.036 -0.015 0.009 0.052 -0.0070 0.008 -0.006 0.007 -0.000

6 0.003 -0.019 0.008 -0.005 0.033 -0.001 -0.261  0.0080 -0.001 0.220 0.132 -0.001

7 0.016 0.013 0.004 0.001-0.001 0.023 -0.048 -0.0150 0.002 -0.003 0.007 -0.019

8 -0.014 0.011 0.018 0.004 0.0410.009 0.012 -0.0110 0.008 0.030 0.022 0.001
9 -0.021 0.030 -0.008 0.003 -0.001 0.391 -0.007 0.0040 0.001 -0.001 0.000 0.009
10 -0.022 0.008 -0.008 0.000 0.005 0.040 0.021-0.0060 0.000 0.041 0.007 0.008
Rel. freq. 1.220 1.580 1.320 0.680 0.240 0.420 ®.520.8500 0.680 0.590 0.790 0.290

Table3. Average sample PeACH(s) for lag h = 10 withg;2 = 0.5. The variance seem to have no significafgcefon the

overall result, as theoretically expected

N = 10000

h\s 1 2 3 4
1 0.612 0.370 -0.002 0.436
2 -0.005 0.003 -0.013 0.010
3 0.002 -0.008 0.014 -0.015
4 -0.001 -0.007 0.006 0.010
5 -0.000 0.014 -0.010 0.001
6 0.015 0.003 -0.006 -0.002
7 -0.001 0.016 -0.011 0.004
8 0.006 -0.000 0.002 0.002
9 0.005 0.007 0.007 0.003
10 0.001 0.015 0.003 -0.000
//// Sci Publicati 366 IMSS

4 ience Publications



Hazem I. El Shekh Ahmeet al / Journal of Mathematics and Statistics 10 (88-367, 2014

For the fourth season, therefore Equation 5.9 appli Bartlett, M.S., 1946. On the theoretical specificat

with relative frequencies of,(4) going outside the and sampling properties of autocorrelated time-
corresponding 95% band for the thi¢ealues. series. Suppl. J. Royal Stat. Society, 8: 27-41.
Example 6.2 http://www.jstor.org/discover/10.2307/2983611?u
) id=2129&uid=2&uid=70&uid=4&sid=211044694
In this example we will to see the effect of vadan 60497

on the results, we take the same model in the guevi Box, G.E.P., G.M. Jenkins and G.C. Reinsel, 2013.
example PARMA (0, 1; 2, 2; 3, 0; 0, 4) and the white Time Series Analysis: Forecasting and Control.

noise terms are independently and normally distetbu 4th Edn., John Wiley and Sons, Hoboken, ISBN-

with mean zero and variance equal 0.5 (possible aaly 10: 1118619064, pp: 746.

value of the standard deviation). Gladyshev, E.G., 1961. Periodically and almost-
We will see the variances seem to have no periodically correlated random processes with a

significant effect on the overall result, as themaly continuous time parameter. Theory Probab.

expected. The simulation is repeated for= 10000 Applied Math., 8: 173-177. DOI:

and g;’(s) = 0.5for s = (1, 2, 3, 4). For the first season, 10.1137/1108016
we expect a cut-off behavior for the sample PeACFHipel, K.W. and A.l. McLeod, 1994. Time Series

for h>1 and for the fourth season for4. These can Modelling of Water Resources and Environmental
be observed from the valuesTmable 3 Systems. Developments in Water Science. 1st
Edn., Elsevier, Amsterdam, ISBN-10:
7. CONCLUSION 0080870368, pp: 1012.

Igelan, B., 2011. Periodically Correlated Time $eri
In this study we have made a survey on one of the ~ \Models and Examples. 1st Edn., Lambert

most important topics in identification of PARMA Academic Publishing, Saartwken, 1SBN-10:
models. An explicit expression for the asymptotic 3844301100, pp: 204.

variance of the sample process PeACF is derivézeto pagano, M., 1978. On periodic and multiple
used in establishing its bands for the PMA process  autoregressions. Annals Statist., 6: 1310-1317.
over the cut-off region and we have studied the DOI: 10.1214/a0s/1176344376

theoretical side therefore we have some application yja, T.A. and A.A. Smadi, 2003. Identification of

on it where the simulation results agree well vitile periodic moving-a\/erage models. Commun. Stat.
theoretical results. In the future research, wel wil Theory  Meth., 32: 2465-2475. DOI:
explicit expression for the asymptotic variancettod 10.1081/STA-120025388

sample process PePACF that derived to be used ivecchia, A.V., 1985. Periodic Autoregressive-Moving
establishing its bands for the PAR process over the Average (PARMA) modeling with applications to

cut-off region and therefore we have some water resources. J. Am. Water Resources Assoc.,
applications on it. Also, we will get estimation of 21: 721-730. DOI: 10.1111/.1752-
PARMA models using some ways of estimation. 1688.1985.th00167.X
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