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ABSTRACT

One of the greatest values of Quantile Regressi@R) (is that it provides a good procedure in the
sense that QR could be much more efficient and some arbitrarily more efficient in recovering the
mean function than the Least Squares (LS) even whwéhout moment conditions. However,

heteroscedasticity definitely causes conditionalareces of parametric or nonparametric estimates of
mean functions to be large, sometimes this may tead great loss of efficiency of estimators and
affect the goodness-of-fit test substantially andtipally conditional variance of data is of more
concerned in statistical analysis these days, thetecting heteroscedasticity before further analysi
becomes essential. The virtue of QR as well aslithigation of LS motivates us to develop a new
robust detecting tool for heteroscedasticity. Maontributions of this study include three aspects:
First of all, a new Dynamic Quantile Regression @®Qs introduced. Based on this method estimators
for mean function, heteroscedastic function anddfrer distribution can be obtained simultaneously.
Second, a novel diagnostic tool is developed farcking heteroscedasticity by employing the hybrid
of QR and DQR. Theoretical properties of the prazedare investigated and we also demonstrate the
performance of the new tool on small sample powssperties. Third, further estimator of the
conditional variance can be obtained based on irgEtdDQR, when heteroscedasticity is detected.
Finally these methods are illustrated with some usited examples. Compared with the classical
testing procedures, Monte Carlo simulations indic#iat the new tool is more effective, powerful and
easy to implement. Applications to a real data gsialis also discussed.

Keywords. Heteroscedasticity, Dynamic Quantile Regressiofierémce Quantile Process, Conditional
Variance, Nonparametric Volatility

Linear regression model is used extensively in
statistical applications. A standard assumptionifas
Consider a general linear regression model withthe homogeneity of error variances and some papers

1. INTRODUCTION

heteroscedasticity Equation 1.1: even assume that errors are normally distributed.
Violation of these assumptions may invalid manythef
traditional statistical analysis techniques and leaa to
inefficiency of estimators. Thus to detect
heteroscedasticity of a linear model is of crucial
importance. No surprise to see that many diagntsbis

and statistical testing methods exist in literatimethis,
(Anscombe, 1961; Atkinson, 1985; Bickel, 1978; Cook
and Weisberg, 1983), but note that most of them are

Y =X"B+0a(X)e (1.1)
where, Y is the response variable, X is a covariate
coefficient p is unknown and the conditional variance
function o®(x) = Var(Y|X = x) is used to model the
heteroscedasticity. The error tesrm (1.1) is assumed to
be independent of X and have mean 0 and variance 1.
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established in mean regression framework. While,and distribution of error of a linear model. Two
Koenker and Bassett Jr (1982) considered an atteena heteroscedastic cases are consideséd), is linear and
approach based on regression quantiles, which i® mo o(x) is nonparametric. Asymptotic properties of
robust to outliers. Later Wicox and Keselman (2004) estimators are also studied. In section 5, MontdoCa
made an improvement on Koenker’'s method and made isimulations are conducted to examine the
perform well in small sample size. However, manyhef ~ performances of the new diagnostic tool and
techniques adopted in detecting heteroscedastiaitype ~ efficiency of the estimators. Real data analysialeo
difficult in implementation and time consuming. Bhu Presented in the end to give an illustration.

one of the objectives of this study is to develap a

efficient and powerful diagnostic tool which carvbaa 2.MATERIALSAND METHODS

wide application. In addition to make the new pregbd o

test statistic more robust, quantile regressiohrtiegie is In DQR procedure, the quantiteis supposed to be a
also applied in our methods. random variable, uniformly distributed in (0, 1)ther

Our new method is built on the quantile regressionthan a fixed constant in quantile regression, tisat
estimator and Dynamic Quantile Regression (DQR)T~U(0, 1). Thus, the quantile is like a dynamic ball
estimator which is used for simultaneously estingathe  rolling back and forth in interval (0,1) and that the
mean regression function, conditional variance fiemc  origin of the name Dynamic Quantile Regression (DQR
and error distribution in nonparametric regressiwuel. Suppose that {(X Y), i = 1,..,n} is an
It has been shown that the DQR estimator was muchindependent and identically distributed random
more efficient than the least squares estimator andample coming from model (1.1), that is:
performed well even in the worst case scenario, for

example when errors follow cauchy distribution. Y, =X[B+o(X,)d
Furthermore, the DQR estimator is computationally _
faster and easier than the Composite Quantile Rsigre The errorg{d} [, are assumed to be independent and

(CQR) estimator (Zou and Yuan, 2008). These niceidentically distributed with an unknown distributic
theoretical properties of DQR estimators motivaseta and E¢i) = 0, Vargi) = 1. Then with the assumption

construct a diagnostic tool based on it. In additito [U(0,1) it is obvious thatc [ F*(x) is also a random
make it a safer and more effective testing todhatesl variable ande, idF @)1 F thus Equation 2.1:

inference process is developed. Asymptotic propstti
of test statistic and inference process are also

investigated. To examine the feasibility and efray E.(c,)=0,Var (g )= 1 (2.1)
of the new diagnostic tool, power properties of
different sample size are studied later. Furthermore, tha-th conditional quantile regression

In real analysis, we would like to not only deteot function of response ;Y
model the conditional variance of data. Thus two

heteroscedastic models are considered lagxg,is linear Q. (Y, \Xi) =X"B+a(X)c,

and o(x) is nonparametric. DQR tecniques then can be

applied to the estimation. For the nonparametriseca Is a random variable and we have:

local linear technique is employed in the estimmatio

procedure and some improvements are also made based E.[Q (Y, \Xi)] =XB

on those previouds methods. Specifically, tuning

parameters are not required to be selected befuieina Now we give the dynamic quantile regression

this study, which largely improves the efficiency o estimation procedure. For randomly sampled quamtile

estimators and simplifies the calculation. Moreover {1, k = 1, 2,...,N} from uniform distribution, thg-th

distribution of error can be determined simultaneously.  conditional quantile regression function of the
The rest of paper is organized as follows. In secti response Yis:

2, we give the basic idea of DQR method and sttaly i

asymptotic properties. Based on the DQR method, Qu (Y [X)) =XB+0(X,)c

diagnostic tools including related inference pracase

developed in section 3. Section 4 presents théndurt where, g ="*(k). Then employ linear quantile regression

estimation procedure of conditional variance fumcti technique introduced by Koenker (2005), we have:
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By =Argmin p. (Y, -X[b),k=1,2,..,N
i=1

where,p (u) =tul(u> 0) + [-1)ul(u < 0) is the check
function att-th quantile. Then we can obtain the DQR
estimate of}, denoted a@DQR Eqution 2.2:

A 1N .
BDQR :NZBTK (2-2)
k=1
e Al. The error distribution F has continuous density
f, with f(u) uniformly bounded away from 0 and

o A2 Let X = (Xy,...,%). There exist positive definite
matrix D, such that:

lim 1XTX =D
n-en
e A3. Denotel = diage(X;)) and elements(X;) are

bounded away from 0 aneb and there exists a
positive definite matrix G, such that:

im XX =G
neen

Assumption Al1-A3 are basically the same for
establishing the asymptotic normality of a singleudtile
regression (Koenker, 2005) and establishing
asymptotic property of composite quantile regrassio
(Zou and Yuan, 2008). Then under these conditioes,
have the following results for the DQR estimator.

Theorem 1
Under regular conditions A1-A3, if N> o, then:

VN Bogr ~®DN(0,G*DG*)

where,D denotes convergence in distribution

the

Remark 1

Several observations can be seen from Theorem 1.
First whether a linear model is homoscedastic or
heteroscedastic has little impact on estimaggs; |

because it is always an asymptotic unbiased e&imat
and note that this fact is important for the later
construction of the test statistic. Second, estbmégQR

is easier to derive and much more available than
estimators like BCQR. Only simple linear quantile
regression is needed in the calculation and the

randomness of quantite bring additional convenience
and interpretability. Third, compared with leasuare

method, estimato[%DQR also has more gains especially

under some heavy-tail distributions such as tithistion
and cauchy distribution. To illustrate this we cartg
the asymptotic relative efficiency between LSE and

MSE(B.s)
MSE(Bogr)

straightforward calculations, we see that as thapéa
size n approaches:

DQR. Define ARE([@DQR,BLS)= and after

ARE(Bogn Bis) 0, (N)“° (2.3)

—i N N ri/\rj—rirj .
where, o, (N) = NZZi:lZi:l—f(F‘l(ri WE) N is the

number of dynamic quantiles selected in the DQR
procedure and F(-) and f(-) is the density functiod
cumulative distribution function of the error
distribution respectively. From Equation (2.3) wenc
see that ARE depends only on the error distribution
and the choice of dynamic quantile number N. Thus
for some commonly seen error distributions, valogs

ARE can be directly derived, seelable 1.
Tablel. ARE (ﬁDQR,QLs) for some error distributions
ARE (Boge.Bis)
Error distribution N=5 N =10 N =50 N =100 N560
N(O, 1) 0.7971 0.9336 0.9272 0.9869 0.9981
Laplace 1.3243 1.2132 1.1236 1.0293 1.0082
t distribution with df = 5 1.1120 1.0406 1.0366 210 1.0237
t distribution with df = 3 1.4294 1.2563 1.2314 as2 1.0927
0.95 N (0, 1)+ 0.05N(0, B 3.0258 3.1282 1.8513 1.3367 1.0429
0.90 N (0, 1)+ 0.10N(0, B 4.3725 4.0577 1.2939 1.1352 1.1122
% Science Publications 171 IMSS
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Several things can be observed framble 1. First, Remark 2
for normal distribution LSE is expected to have st The above result is a special case of Theorenoi. F

performance, while ARB,q.,B,5)is very close to 1 as N the jid case (homoscedasticity), the diagonal mdtrin
becomes larger. Second for all the non-normalibigions ~ condition A3 turns into an identity matrix. Thus lay

listed in Table 1, DQR estimator can have higher simple substitution, the above asymptotic normatéy
efficiency especially when N is small. Finally, whii is  be established.

large such as N = 100, 500, all the ARE valuesvarg Now consider any fixed quantile, O<t<1, then
close to 1, that is to say generally DQR estimedmrhave  estimatorpy is unbiased provided that the errors have
more gains compared with LSE estimator. common variances, however this does not necessarily

hold when heteroscedasticity exists. But in eitbase,
3. DETECTING TOOL o e ! - .
estimator ., remains unbiased. Thus due to the nice

A standard assumption in regression analysis is theproperties of DQR estimators, tests of the hypashis
homogeneity of error variances. Whereas it is Ugual can be established based on the statistic:
proved to be incorrect when confronted with reallty
this section, we would like to effectively detect (1) = n
heteroscedasticity of a linear model, then a nelbusb " W’ (1) +2v(1)+1
diagnostic tool is developed for it based on DQRhoeé
proposed before. . o where,t 0 (0, 1) is any fixed quantile, D is a positive
For model (1.1), the simple hypothesis is the definite matrix defined in condition A2y%(t ) =t (1-

homogeneity, that is: DIF), v(x) = [[F*(0dt/f(F*(0)). Note that from

Hy:o(x)=C Equation (3.2). if no heteroscedasticity existsaimodel,

_ _ _ statistic T(r)'s value could be very small for any quantile
where, C is a constant. Without loss of generalitg, [ (0, 1), whereas this value could be considerabiyela
can let C = 1. Thus undgronodeI (1.1) reduces to  given that the model is of some heteroscedastidityvever,
the iid case Equation 3.1: it does not seem to be reasonable for just comsig¢ne

T C_ value of T(r) at a certain quantile, to measure the
Vi SXBre i =L20n (3.1) discrepancy of two models.Thus to assess the piocy

Now in quantile regression framework, given a of two mode_ls more credibly, it is natural to c@es_la_'l;_(r)
quantile 7, coefficientp in (3.1) can be estimated by Process, which is a global measure over entireitaison

(ﬁ?R - ﬁDQR)T D(B'[QR - BDQR) (3-2)

solving (Zou and Yuan, 2008): and we present Theorem 2 to further investigate the
performance of test statistig(¥) and T,(t) process,.
(6,8) = ArgminYp,, (¥, - c- X'B) Theorem 2

cp i=1

Under conditions A1-A3, for any fixed1 [O, 1-]:
And BS® is an unbiased estimator @ffor under mild

2
conditions (Koenker, 2005): T.()DX,
~OR T(1-1) 1 where, OO (0, 1/2) and p is the dimension ¢
\/H(B‘k B)?N(O’ f2(cy) D J Furthermore, for any index set £(0, 1), consider a test

process {F(t): T O I}, then under the null hypothesis:
where, D is the positive definite matrix defined in
condition A2. ) SILDJIPI (r)yvfulljp(@ 1 ),forO
In terms of the DQR estimate @in model (3.1)B,0r »

it is also unbiased and have a smaller variancepamed  where, W denotes weak convergence and

with the QR estimator, due to the mechanism of DQR _ ) i
estimation procedure and we can obtain unger H Qp(t)‘HBp(t)H/ Vta-t is generally referred to as a

Bessel process of order pyB ~ N(O, t(1-t)), ||
denotes the normalized Euclidean norm.

Vn@Boor ~B)DN(O,D™)
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Table 2. Critical Values for supQ?(t) estimates of the conditional variance function aslw
q =001 = 0.05 = 0.10 as error distribution.

1 13.01 9.84 8.19 4.1.1. FisKnown

2 16.44 12.93 11.20 . . .

4 21.54 17.56 15.62 If F is known, estimation procedure could be very

Parameter p is the degrees of freedom, these aritmiues ~ Simple  and we propose two methods to estimate
are used in Monte Carlo simulation of size and potests unknown coefficient$ andy. Fort ~ U(0, 1), thet-th

in section 4 conditional quantile of responsg i¥ Equation 4.2:
For any fixed tJ (0, 1), we haveQ?(t)[] X2. Q.(Y; X)) =X[(B+c,) [ Xb(1) (4.2)
Remark 3 where,c. 0 F'()

Critical values for supQ;(t) have been presented

by (De Long, 1981; Andrews, 1993) via simulations.
In this study, we just list part of this ihable 2 for
later use of section 4.

Practically, the proposed ,(t) tests require
estimation ofw?(t), which is related with unknown error
distribution. In this study, we suggest using agpiu

According to the mechanism of DQR estimation
procedure, randomly sampled N quantiles from U{Q, 1
denoted as+4, i = 1,2...,N}, then for the given = 1,
b(ty) can be obtained by employing linear quantile
regression (Koenker, 2005) Equation 4.3:

method, substituting the unknown distribution fuoiet B(Tk)=Arg minzn:ka (Y, =X/b),k=1,..N (4.3)
with standard normal. That i®*(t) can be estimated by b=
A28 — _ 2 ry-1 i H H
WO =td-ne(@ (t?z’ Likewise estimate of(t) can be where,p. (+) is the check function agth quantile. Thus
obtained viat(t) = @ (t/ Z)t, we can construct equations:

®APH(D)

b(t,)=B+ye,

4. FURTHER ESTIMATION B() =B+ yc, .
Once the heteroscedasticity of a model is detected,

we would like to know how the conditional varianack B(TN):BJ“VCTN

the response Y varies with covariate X. In thistisec

we obtain a new efficient estimator of(x) based on With Equations (4.4), two estimation procedure can

DQR method and we also assumed the two fornm>9f be established.

linear and nonparametric.

4.1.1.1. Direct Solution

We can see from Equation 44,can be solved by
subtracting two adjacent equations, that is:

4.1. Linear form of o(x)

Assume that the conditional variance Var(Y|X) has a
linear association with covariate X. Then model)tan
be rewritten as: ~ - N R
o _ Py ~b(T;) =1 N-1 o _b@)-b(y)
: ; | = J=1,..., andy, =
Y=X"B+(X'ye 4.1) Cly,y ~ CT, G- Gy

This model has been considered by many Then estimates df, y can be obtained by Equation
statisticians (Koenker and Zhao, 1994; He, 1997;4.5 and 4.6:
Koenker and Machado, 1999). In quantile regression
framework, it is generally assumed that the . 1%
distribution of errore is known or ther th quantile of V:NZVJ' (4.5)
¢ is 0. In this part two cases are considered. st
would like to investigate the case when distribntaf
error g is known, i.e., F is known; Then we relax the f;=fz(6(Tj)—ch ) (4.6)
restriction, F is supposed to be unknown and obtain Ni= :

% Science Publications 173 IMSS



Wei Xiong and Maozai Tian / Journal of Mathematos! Statistics 10 (2): 169-185, 2014

4.1.1.2. Regression Analysis

Equations (4.3) are actually regression equations,

thus to obtain the estimated resultspoindy, classical
linear regression methods can be employed. Taritltes
this, first we present some notations.

Denotey = (y1,-.-¥p)» ¥s = Y/(y'y), the standardized
version ofy, then @ can be represented as = b’

(T)YS'BT Vs

Thus a simple linear regression model can be

established Equation 4.7:

¢, = @, -BY. + & i= 12,0 (4.7)

Boor =%k2ﬂf>(n) (4.8)
5 on =%Z{(B(Tk) Bog )BT ~Boge)' (4.9)

And §can be obtained vid,. Furthermore, we can
get{€,:k=1..,N}:

& = (b)) (b)-)
Tk tr(ZB)

where, tr(-) denotes the trace of a matrix. Aarae are

where, e is the error, assumed to be normally samely distributed, thus by kernel density estimsataith

distributed with N(0o?%) andc is some constant, need
not to be known. Equivalently, let,G (C1,....Gn ),
BI =(b(,),...be N)) is a pxN matrix, B = (B'ys).
(1,1,...,1) is a Nx1 vector and e = (e...q)', then
(4.7) becomes:

C, =B,—-B,te

Then p andys can be estimated by classical least

square techniques:
Remark 4

It is regular to suppose that the error e is nagmal
distributed, due to the key information of modelihg
been extracted; angt }Y, in (4.4) is supposed to be

known owing to the assumption of F is known.
4.1.2. F isUnknown

Generally, the error distribution F is unknown this
situation,f, y and even error density, £an be estimated
based on DQR method. We would give in details &ed t
basic idea of this estimation procedure is Equatidn

For linear model (4.1), Equation 4.2 still holdsemh
distribution F is unknown, while this timeg is unknown.
Sincet ~ U(0, 1), then we have:

E.[b(1)] =B, Var, [b(1)]=w'

Randomly sampled N quantiles from uniform
distribution on (0, 1), denoted as{ k = 1,2,...,N},
{ b (w): k =1,2,...,N} can be estimated via Equation. 4.3
Let 25 = Var, (b(1)). Thus we can obtain estimatesfof
and g through Equation 4.8 and 4.9:

% Science Publications
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the sampl€c., 1k =1,...,N}, density f, can be estimated:

- 18 (u-¢

fou)y=—Y K| —x

=3 [ . ]
where, K(-) is a kernel function and h is the srhaag
bandwidth.

4.2. Nonparametric

For model (1.1), the conditional variance function
o%(x) is usually unknown, thus in this section we
would like to develop a nonparametric DQR method
to obtain the estimate @f(x). Throughout this study,
local linear regression techniques (Fan, 1993; dah
Gijbels, 1996; Yu and Jones, 1998) are employed for
nonparametric function.

Note thatt ~ U(0O, 1), then thet th conditional
quantile of model (1.1) is:

Q. (Y, [X)) =XB+a(X,)c,

And it is also a random variable. Moreover,
letr =Y, -XB, thus theth conditional quantile of? is:

Q. (°°|X,) = 0%(X, )c?

Consider expectations of both the two random
variables Q(Y;|X;) andQ, (* | X, ), then we have:

E[Q. (Y, [X))] =XBE[Q.(*[X)] =0iX))
In local linear regression, consider estimating the
value ofs?(X) at %, o%(x) can be approximated locally by
a linear functiono?(x) = o%(xo) + 0%(x0)(X-Xo) in the

JMSS



Wei Xiong and Maozai Tian / Journal of Mathemastes! Statistics 10 (2): 169-185, 2014

neighborhood of & where s () is the derivative of

can be proceeded directly via (4.12) without barmtdkvi

o%(x). Thus estimation procedure can be conducted byselection and local approximation, which make it

the following three steps.
Step |: Estimate 8

Based on the idea of DQR, can be estimated by
Equation 4.10:

Bon =y 2B (4.10)

where, 3, Argming ¥ puc (Y, -XB),k =1,2...,N,fr )\, are
N dynamic quantiles randomly sampled from U(0, 1).
Step |1: Obtain a?(x) vialocal linear DQR

The residuals are =Y, -X/Byge,1,2...,n. By local
linear quantile regressiof(,o(x o), 6%(x ) :k =1,...,N}can
be obtained by solving the following equation:

(82(%,), 5% (X,))

=Argminyp (i -a, -0, (X, —xo))K(Xih_Xoj,k =1,...N

Q.0 i=1 1

where, K(-) is the kernel function angik a smoothing
bandwidth. Then we have equation 4.11:

. 13 s 1y,

GDQR(XO):Nzok(xo)'dDOR(xo):Nzo.k(x() (4-11)
k=1 k=1

Step I11: Estimateerror distribution f,

{€.:k=1,..,N}can be obtained by employing quantile
regression Equation 4.12:

N
&, :ArgmianTk @ -8(X)c)k=1,...,N (4.12)
c i=1

Then use kernel density estimators, we can obtain

f_ as follows Equation 4.13:

)

where, his a bandwidth.

f ()= Nlh Sk (4.13)

k=1

Remark 5

Compared with the DQR method, we have a little

improvement on the estimation &f }},. Estimation

% Science Publications
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greatly simplified and in our estimation procedure
only two bandwidths hand b need to be selected.
There are many effective methods existing to sedect
kernel density estimator bandwidth, Isuch as plug-in
method (Silverman), cross-validation (Hardle).
Throughout this study, we apply the rule of thumb
bandwidth, that is h= 1.06 min{6,R /1.34}n"**where

o is standard deviation and R is the interquandlege.
To select bandwidth;hwe use the automatic bandwidth
selection considered in Xiorg al. (2012), for different
quantiles {1}, the optimal bandwidth

h* =l )hs where I(p) = {2p(L-p) (*7(p))

* )3 @-)® () denotes the density and
cumulative distribution function respectively angsh
can be selected by some sophisticated methodghEor
choice of dynamic quantile number N in each
estimation procedure, we choose N = 100 or N =&£0
suggested in Xiongt al. (2012).

4.3. Asymptotic Distribution

Denote p(-) as the marginal density of X. Let &hyl
F(-) be the density and cumulative distributionction
of errore. The kernel function K(-) is symmetric with a
bounded support and denote:

1,(K) =ju2K(u)du, R(K)=j K (u)du

Then we have the following theorems.
Theorem 3

Suppose that(x) has a linear formg(x) = x v, the
error distribution F is unknown and suppose tha th
regular conditions are satisfied, then as-No:

VnBogr ~B)DN(0,Q),

VN{ o0 ~Xe=H(O-HADN(, £33

Where:

F((- F(1)dtA* = E€* - 1f ¢

Q=G"'DG'9 :j
0 Fank = (Y- XB)/ XA

Theorem 4

Suppose thas(x) is unknown, ¥ is an interior point
of support of p(:). Error distribution F is unknavthen

JMSS
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under the regular conditions given in appendixyif—>
0,N — oo, nhy — oo, then:

Y Bogr ~B)DN(0,G*DG),
Jnh, {820u(x 9 ~0%(x 9

_% 1, (K)&%(x)hFDN (0, R(K)"WV]

p(%,)

where, 6%(x,) denotes the second derivative of
o*(X), A2 =EE’-1°e= (Y- XB)/a(X).

5. ILLUSTRATIVE EXAMPLES

In this section we continue to explore the behawior
the DQR estimator introduced in the previous sectio
We first use Monte Carlo simulations to study the
performance of test statistic,(f) and T,(t) process
under hypothesis #and H and evaluate size and power

as N = 10, the tests are oversized; For large N,300,

the tests are almost undersized; and for moderaté N
100. These tests seem to perform better and itséean

to perform a satisfied test which can control yeetone
error rate, we can establish certain relationshigtsveen
sample size n and dynamic quantile number N. We
would investigate it further in the following. Irddition,

in terms of the power of the tests, something @gtng
would be found. Fort = 0.5, the power is almost O in
different situations. Thus the alternative hypoibas
more difficult to discern. For ali # 0.5, the power is
almost 1 under each cases especially when N ig,larg
thus we can say the test tool is effective and of a
success at # 0.5. In fact it is accessible that the
behavior of F(t) att = 0.5 is poor, because undef H
the linear conditional quantile function is;gY|X) =

X" B due to Qp(e) = O, thus the heteroscedastic
function has no impact onQY|X) and test statistic
Tn(tr) would behave similar under both hypotheses.
Consequently, for some practical analysis if the

of T,(x) at some certain quantiles for several dynamic Prescribed quantiler, is not appropriate, then tests

guantile numbers. Then to assess the finite sampl
performance of the estimation procedures propased,

different heteroscedastic models are
respectively in example 2 and example 3. Throughou
this section, Gaussian kernel is applied, i.e.,

1 1 .
——exp —= U d doptthe bandwidth
\/EtEXp[ 5 J and we adoptthe bandwi

selection scheme specified in Remark 5.

5.1. Example 1-Performance of Test Statistic T,(T)

In the first example, we would like to investigate
the performance of ,[t) defined in section 3. We
generate two data each come from modglaHd H
Equation 5.1:

K(u) =

Hy:Y =3X +¢g o H, 1Y =3X +(X +X )¢ (5.1)

With X ~ U(0, 1),e ~ N(0, 1) and the sample size n
= 200. In order to examine and compare the behadior

considered©©! rocess, Wi
over the entire distribution af

dased on Tnk) may be difficult to distinguish. Then

we suggest a more effective, safe and robust d&gno
T,(t) process, which measures the discrepancy

In order to explore the effects sample size n had
made on the tests, we consider sample size n a 50,
500 for model (5.1) respectively. Specially, we Wbu
like to give a rule to choose appropriate N in real
analysis based on this.

Several features ofable 4 and 5 merit attention.
First, for small sample size n = 50, the sizesheftests
are smaller, while the power is very poor, thathe
alternative is obviously more difficult to discemith
small sample size; Second, the tests are a cleaess
at n = 500, where they have power near 1 in vilyual
all cases; Third, with larger N, the tests perfaqually
good under different sample sizes. Especially,
compared withTable 4 and 5 something interesting
could be found. If we want to perform a good test
which can control the type | error rate and alstaioba
relatively large power, then N should be chosemramfal

Tn(t) process, choose the dynamic quantile number N =gjze with sample size n. For this, we consider datee

10, 100, 500 respectively. First we would like to
investigate the performance of the test statistig) Tat
certain quantiles for different dynamic quantilembers
N, we calculate the type one error rate and powaset
on the hypothesis Hand H att = 0.1, 0.25, 0.5, 0.75,
0.9. To obtain more accurate results, 500 simulatare
conducted. Results are reported eble 3.

From Table 3, it is clear that the sizes of the tests
vary with dynamic quantile number N. For small N¢is
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,i=1,2,..., where i

T =T
number of dynamic quantile employed
Ta(t)process. If Dis sufficiently small, such as;Xx
0, for 0 O (0, 1). Then we choose N =i for the test
Ta(t). This criterion also supports our inference, that
is, in real analysis N and n could be of equal size

To investigate the behavior of(f) process under
model (5.1) with n = 200, plots are depictedrig. 1.

represents the

in
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The T(t) processes depicted iRig. 1 indicate a
highly significant departure from the null hypottses
over the entire range af whatever dynamic quantile

model H when ¢ follows Laplace and stdistribution
respectively and results are plottedrig. 2.
The T,(z) processes iRrig. 2 indicate a highly departure

number N is. When N is large, the results are morefrom null hypothesis over the entire range @r both non-

stable. For model § we would expect that the,(t)
process to be nearly 0 over the entire range[dffC], 1-
0] and behave like the square of a normalized Brawni
bridge process, this expectation is borne out &ogd
dynamic quantile number N. Likewise we would lile t
find the Ty(t) process under Hmodel is significantly
different from O and it is also consistent with figure
plotted. Then we can say that the(:J process test
statistic is a more diagnostic tool.

Moreover behaviors of test statistig(d) under other
non-normal distributions may be of more concerfdulis
we would like to present the performance )l under

Table 3. Sizes and power oft) tests, n = 200

normal distributions. Besides, with the increaseNpfthe
T,(t) processes are more stable under both hypotheses.

5.2. Example 2-Linear Model, Under Different
Errors

It is of interest to examine the property of our
proposed DQR methods under different errors. Is thi
example, we consider a totally linear case, that(i9
has a linear form. For this we generated 400 dets, s
each consisting of n = 200 observations, cominmfro

Y =2X +(0.3X)e

Type | error rate Power size
0.1 0.05 0.01 0.1 0.05 0.01
t=0.1 N =10 0.294 0.266 0.248 0.950 0.940 0.902
N =100 0.106 0.068 0.025 1.000 0.998 1.000
N =500 0.058 0.044 0.008 1.000 1.000 1.000
t1=0.25 N =10 0.336 0.202 0.031 0.740 0.690 0.646
N =100 0.102 0.062 0.024 0.956 0.900 0.812
N =500 0.044 0.026 0.004 0.994 0.958 0.850
t=05 N =10 0.292 0.234 0.033 0.200 0.156 0.086
N =100 0.096 0.048 0.014 0.002 0.000 0.000
N =500 0.050 0.024 0.006 0.000 0.000 0.000
t=0.75 N =10 0.318 0.224 0.033 0.738 0.712 0.640
N =100 0.098 0.062 0.022 0.952 0.930 0.800
N =500 0.054 0.026 0.006 0.996 0.978 0.838
t=0.9 N =10 0.330 0.316 0.198 0.952 0.930 0.914
N =100 0.104 0.066 0.016 1.000 1.000 0.998
N =500 0.046 0.024 0.015 1.000 1.000 1.000

The table is based on 500 replications per celitii® size and power, each cell reports the prapodf rejections of the designated

test at the designated level of significance

Table4. Sizes and power offt) tests, n = 50

Type | error rate Power size
0.1 0.05 0.01 0.1 0.05 0.01
t=0.1 N =10 0.144 0.138 0.094 0.548 0.478 0.336
N =100 0.070 0.038 0.012 0.630 0.492 0.274
N = 500 0.052 0.040 0.006 0.660 0.470 0.252
t1=0.25 N =10 0.156 0.122 0.076 0.258 0.192 0.136
N =100 0.052 0.034 0.008 0.344 0.078 0.044
N = 500 0.052 0.032 0.008 0.333 0.088 0.026
t=05 N =10 0.128 0.108 0.080 0.010 0.010 0.010
N =100 0.062 0.024 0.006 0.000 0.000 0.000
N = 500 0.032 0.020 0.006 0.000 0.000 0.000
t=0.75 N =10 0.128 0.118 0.066 0.258 0.212 0.126
N =100 0.054 0.040 0.010 0.315 0.096 0.036
N = 500 0.032 0.016 0.010 0.342 0.088 0.018
t=0.9 N =10 0.136 0.038 0.080 0.562 0.494 0.334
N =100 0.054 0.040 0.014 0.638 0.468 0.030
N = 500 0.054 0.022 0.012 0.616 0.508 0.268
///// Science Publications 177 IMSS
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Tableb. Sizes and power offt) tests, n = 500

Type | error rate Power size
0.1 0.05 0.01 0.1 0.05 0.01
t=0.1 N =10 0.482 0.434 0.378 0.986 0.988 0.970
N =100 0.180 0.126 0.090 1.000 1.000 1.000
N =500 0.096 0.040 0.008 1.000 1.000 1.000
t1=0.25 N =10 0.524 0.428 0.392 0.872 0.870 0.814
N =100 0.172 0.118 0.080 1.000 1.000 0.998
N =500 0.101 0.042 0.011 1.000 1.000 1.000
t=05 N =10 0.500 0.452 0.410 0.432 0.314 0.268
N =100 0.190 0.108 0.074 0.008 0.006 0.000
N =500 0.074 0.048 0.086 0.000 0.000 0.000
t=0.75 N =10 0.464 0.452 0.382 0.878 0.890 0.864
N =100 0.168 0.126 0.082 0.998 0.998 1.000
N =500 0.066 0.051 0.096 1.000 1.000 1.000
t=0.9 N =10 0.466 0.402 0.332 0.992 0.986 0.970
N =100 0.182 0.114 0.068 1.000 1.000 1.000
N =500 0.074 0.050 0.011 1.000 1.000 1.000

The table is based on 500 replications per celitii®size and power, each cell reports the prapodf rejections of the designated
test at the designated level of significance

Homoscedasticity N=10 N =200 i N = 500
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Fig. 1. Behavior of test statistic,ft) under hypothesis $and H by choosing different dynamic quantile number 805 100, 500

where, X~ U(0, 1) and we considered five different number N = 100, 500 respectively, as suggested in
error distributions fore: N(O, 1), Laplace, 3t ts5- Xiong et al. (2012).

distribution, Cauchy distribution. In the simulatice The mean and standard deviation of béE;BR and

are scaled to have mean 0 and variance 1. For DQR,

estimator off andy, we consider dynamic quantile Yoo over 400 simulations are summarizedriable 6.
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Fig. 2.Behavior of test statistict) under hypothesis Hand H whene Olaplace and t3 respectively. The first two rowpidesd
the performances of,[ft) when error follows laplace distribution; the lasb rows expressed the results unglért3 and the
first column presents the scatter plots for eadle ctne last three columns each represents N £000 500 respectively
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Table 6. DQR estimates of coefficieftandy

B(=2) y(=0.3)
Error distribution Mean Sd Mean Sd
N(O, 1) N =100 2.0004 0.0327 0.2992 0.0229
N =500 2.0015 0.0312 0.2988 0.0223
Laplace N =100 1.9979 0.0313 0.2968 0.0332
N =500 2.0000 0.0178 0.3000 0.0212
ts N =100 2.0001 0.0311 0.2924 0.0360
N =500 2.0000 0.0180 0.2982 0.0209
ts N =100 1.9999 0.0308 0.2910 0.0593
N =500 2.0006 0.0177 0.2985 0.0316
Cauchy N =100 2.0041 0.0334 0.2589 0.1693
N =500 2.0002 0.0176 0.2793 0.0917

Table 6 indicates that DQR estimator can well

Fig. 3, in which we also present the estimated error

explore the heteroscedasticity of a model. Whateverdensity by choosing N = 500.

the error distribution is, normal or non-normalgeth
estimated results is very close to the real valod a
with the quantile number N increases, this infepeisc
obvious. Thus DQR estimator is robust. In additidn,
is remarkably mentioning that even if the error
follows a Cauchy distribution, DQR estimator caifi st

Table 7 gives a good illustration of the capacity of
DQR method to recover both coefficightand variance
function o%(x), due to the small biases and standard
deviations under different error distributions.

5.4. Real Data Analysis

capture the heteroscedasticity and obtain a good For the real data, first we would like to detect

estimate, while it totally breaks down under thette
square regression framework.

5.3. Example 3-Nonparametric M odel

Generally, the conditional variance functief(x)
is unknown. In this situation, local linear DQR

whether there is certain variability of the datarF
this, T,(t) process which proposed in the previous
section is applied. If heteroscedasticity indeestsx
a heteroscedastic model could be built to model. thi

In this section, we consider the Engel dataset
employed by Koenker and Bassett Jr (1982) to teest t

method can be employed to obtain estimates ofheteroscedasticity. This dataset consists of 235

heteroscedastic  function. To investigate the
performance of local linear DQR estimator under

observations on household income and food
expenditure for Belgian working class householde. W

nonparametric form, 400 simulation data sets areyse T,(r) process to detect whether there is variation

generated in this example and each consisting ®f n
200 observations, coming from model:

Y =3X +%(2 +sin(2TX)0

where, X follows U(0, 1)g(x) = (x + sin(24ix))/4 and

we choosel follow four different distribution: N(O,
1), Cauchy, 4, ts distribution. In this example, we
estimate coefficienp ands?(x) over [0, 1]. The mean

and standard deviation off?DQR over 400 simulations

are listed inTable 7, in which we also present the
biases and standard deviation @ff,;(x) at x = 0.4.

Likewise we choose dynamic quantile number N =

in the data. Results are showedig. 4.

Fig. 4 indicates a significant heteroscedasticity of the
data. Then a linear model could be built to modhel t
variation of data.

Y =X"B+0(X) O

For the estimate of unknown coefficiefit we
adopt two methods to make a comparison, classical
least square method and newly dynamic quantile
regression method. We choose N = 500 in DQR. Then

we could obtain,,,= 0.630,f= 0.485. The fitted

linear regression model are plottedriy. 5.
FromFig. 5, it is evident that there exists an outlier in

100 and 500 for comparisons. The estimated variancehe data and the fitted linear model obtained byisS

function for N = 100, 500 under three differentogrr
distributions: N(0, 1), Laplace and &re depicted in
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highly depend on the outlier; whereas the resuDQR
is more robust, it is of little impact on it.
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Table 7. DQR estimates of coefficiefitands?(x) at x = 0.4

B(=3) 6%(x), x= 0.4 6%(X)
Error distribution Mean Sd Bias Sd ASE
N(O, 1) N =100 3.0131 0.1964 0.0008 0.1232 0.0098
N =500 3.0048 0.0938 -0.0127 0.0900 0.0072
Laplace N =100 3.0014 0.1893 -0.0257 01440 0.0334
N =500 2.9986 0.0866 -0.0245 0.1526 0.0132
ts N =100 3.0206 0.2272 -0.0090 0.1787 0.0258
N =500 2.9967 0.1066 -0.0194 0.1312 0.0176
t3 N =100 3.0076 0.1766 -0.0243 0.2043 0.0495
N =500 3.0023 0.0917 -0.0148 0.3200 0.0447
N=100 Error density

N(O.1)

0.0

02 0406 0

3 1.0

0,24
0.1

0.0 0.2 04 06 08 1.0

Fig. 3.Estimated results via local linear DQR method offple 3. Three cases of error distribution arelaysul in the figure.
Each row represents the normal distribution, laplaad § separately and dynamic quantile number N = 10@, &0
estimating the variance functiari(x) are applied; For kernel error density estimsdris chosen to be N = 500; dash line ---
denotes the estimated value and solid line -reptsdbe real
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N =100
4e+06
2e+06
0e+00
1 I 1 1 I I
00 02 04 06 08 1.0
N =500
4e+06
2e+06
0e+00
I I I I 1 I
00 02 04 06 08 10

Fig. 4. Results of J{r ) for Engel Data. The dynamic quantile
number N = 100 and 500 are chosen to make a cauopari
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Fig. 5. Fitting a linear model via DQR and LS
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6. CONCLUSION

In this study, we mainly consider the
heteroscedastic model. To make a better data asalys
we first propose a robust method-Dynamic Quantile
Regression (DQR) to give an efficient esimationeffh
we develop a diagnostic tool which can effectivedyect
the heteroscedasticity of the datasets based dmythrid
of QR and DQR. To model the heteroscedastic functio
two cases are considered, linear form and nonparieme
form and for each we present the detailed estimatio
procedures and establish the asymptotic properties.
Extensive Monte Carlo simulations are conducted to
examine the finite performance of the proposed
procedures. The results show that under variousr err
distributions, DQR estimators outperform LS estiongt
and the Tn{) process could be a good alternative when
detecting the heteroscedasticity. In addition, lof
Tn(r) process give us a clear and direct awarenegseof t
behavior of this statistic at different quantileings. The
size and power of the test statisitc under diffesample
sizes also demonstrate the efficiency of the pregos
methods. In empirical analysis, we apply the prepos
DQR method as well as the Thprocess to analyze the
Engel dataset and we find that our methods coutt bo
effectively examine the heteroscedasticity ancciffitly
estimate the model compared with LS method.

Actually, the research can be extended to more
general models with high dimensional covarites—the
current hot issues. Furthermore, to avoid the $leda
“curse of dimensionality”, we can apply the propbse
method to semiparametric models which have more
flexibility and interpretation. Further to explorthe
hidden structure and involve the dynamic feature,
varying coefficient model can also be considered.

7. ACKNOWLEDGEMENT

The work was partially supported by National
Natural Science Foundation of China (N0.11271368),
Beijing Philosophy and Social Science Foundatioan®r
(N0.12JGBO051), Project of Ministry of Education
supported by the Specialized Research Fund for the
Doctoral Program of Higher Education of China (Gran
No. 20130004110007), The Key Program of National
Philosophy and Social Science Foundation Grant (No.
13A7ZD064), Fundamental Research Funds for the
Central Universities and the Research Funds of Renm
University of China (No0.10XNK025) and China
Statistical Research Project (No. 2011L.7031).

JMSS



Wei Xiong and Maozai Tian / Journal of Mathemastos! Statistics 10 (2): 169-185, 2014

8. APPENDI X

Proof of Theorem 1 is included in proof of Theorem
3. See proof of Theorem 1, please refer to proof of

Theorem 3 given in below.
Lemmal.

For_any fixed quantiler, O (0, 1), letw; = (mAT-
r)/(F(F () f(F (1)), T~ U(0, 1), then as N co:

N

52 a,asv(k)

=

where, a.s Denotes convergence almost surely,

Vk:_E“F'l(t)dt/f(l—'l(Tk)) and F is a distribution

function such that, for any random variable~X=, E(X)
=0 and Var(X) = 1.

Pr oof

As

%Z-N:l‘% asE (y, )according to law of large numbers.

Then we have:

T ~ UO, 1) and N — then

wl

TN, ~TU

Er((*)kr):Eu(ll]v
FF(TF(F ()

u-T,u T, ~ T, U

=rkﬁduﬂ.lﬁ
o F(F (T NF(F(u)) wf(F (T )f(F(u))
= -1V FWdur, [T FUdE ® 1

By change of variables. Define(s):j_: F(t)dt and
with G(0) = 0, then we have:

G(s)=]" (s= 0f(x)dx= sF(sy k (s
where, k,(s)= [~ xf(x)dx.Lets= F* ¢, ), then:

G-, _ k(). |k _ [T

f(s) f(s) f(s)

I+1l =

:\/k
fF @)

Especially, it is worth mentioning here that thente
J'OTK F*(t)dtcan be approximated by '#r,/2)x.
This completes the proof.
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Proof of Theorem 2

Under H, we have
I B ~Boge) DN(O, @2 1, )+ 2vr, )+ DD).
Consequently, for any fixed

constant0(0,1)T, (t)DX* with degrees of freedom is p,

the dimension of coefficierft

In addition, for the proof of test process, (@), t O
1}, we let BT)=B= -Boor , N°(1) = 0%(1) + (1) + 1, then
T.(t) can be represented ag(} = nB(t)DP(x )m?(x) and
interpretd as 3=+/n(b-¢)/n () for some choice of b,

then according to Lemma 3.1 of GJKP and under
conditions A1-A3, we have for any fixed C > 0:

sup{T, @.1] 3= CJ/loglognz O 1} 0

And with a variant of Theorem 1 of GJ, we can
obtain the following equation:

8,(1) =Vn B, (1)~B() /(1) = Dy + 0p(L) (7.1)

where,

9, =Y XU (U @)y €)=¢g - F €)W, (UFT- (i< O

. Where this representation of equation (7.1) holds
uniformly on interval I. ThusSnWD‘l’zBp. So we

have T (yWQ3(t) for = O | uniformly holds. That
completes the proof of Theorem 2.

Proof of Theorem 3
For model:
Y =X"B+(XTy¢

The tth conditional quantile function

Qu (Y[X) =XT(B+ye,) U Xb(1,) . Then:
b(r,) = Arg minzn: P (Y, = X'B)
B i=1

According to GJ representation, ferllc(0, 1), the
following expression:

1
f(c.)

\/E(B(T)— b(T))= G'g, ¢ )+ op(d

Uniformly holds, whereg, (1) =vnY" x, (g - ) W(u) =

T-I(u<0), G:%XTFX and " = diage;). Thus by simple
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calculation, E(B(rk)):b(rk) since E(gr) = 0 and

Var(B(Tk)) =%m2(rk) G'pGt=1w

!(r,)@ Then we have:
Jn{fo( 1) ~b(t)} ~N(O, (1) 9

Thus:

E(@DQR)E:[;\L‘ k=1)" b, )J :iz b, )=B+&z G

as N— oo, we haveﬁz .Cu PO Zk 1ék P:. Then

E(BDQR):Bwp(l/N).

" Cov(bt, ).bt, ).

N
i=1

A~ 1 N . N
Var(Bogs) = Var(Nz bt )j 2
1 N

(725 jo0e)- rll(Nz >a ]

i=li=1 i=1

N N

As with N — oo, the terméziqzquj - 1. Thus,

var (Boge) =%Q +0,(L/ N?).

Then the first equation in Theorem 3:

VN Boee ~B)DN(OQ)

Holds now we proceed to prove the second expression

Zogr = Z(b(rk) Boor) (D)~ Boos)’
Then:
E(iDQR)E = [i‘lz B([k )= GDQR (b(t k )_QDQR)TJ
=%;E(B(Tk)_ E@’DQR ))(b([k )= EéDQR y + Var@DQR )
+2E[(b@, )~ E@)Y (EBoos )~ Booe )]
=30, #Var(foge) +11 ]

I, =E(b(t,)- E@DQR))(B(rk)— E(f’,DQR )Y E= [(b€,)
-B)(b(r,)-B)1=W'c,G DG =5, +%‘*¥Q
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I, =2E[(b(1,) ~ E(B))" (EBoor )~ Boor )= 2(b(T )B"
—E[(b(t, Bl ]} =224 +2yB'ct, — 2E[(b(t, Bhox]

Where:
E[b(, )R} bor )= E(b(T Zb(f )T]
=[ 15wk, | teipet+ LS be, ) €, )
N ) n NG T

=115 ok la+s, +Byicr, + o, (L/N)
N N j B y k p

=1

Thus 11, =

expressions into the above equation, we can obtain:
A 1 2
E(ZDQR)zzs(Nzakj
( ZWJQ*' Q—[ Zwk J

2
=E(e+1)9—59+op(1/ N?)

2(%21(3(])9 +0,(1/N) substitute these

n

=3, =%(e—1)9+op(1/ N)

1 0 u(l- u)
*2 - du= Ft 1- F)(t))dt

and a is a certain constant.
To see the variance &‘DQR note that ~ U(0, 1), thus

where,

Jn(b()- b@))o N(O%coz(rp). For randomly sampled

{tw, k = 1,...,N} from uniform distribution{B(Tk)}{‘ are
realizations of random variablettj( Then we denote:

m, = E[b(1)- E (b )Ib@)- E (b )] =w' =
m, = EA{[b(1) —E (b())][b(r) - E, (b(O))'}* = Z3E(e")

Then m,-mi=A?3% where A*=EE*-1° and

according to the variance of sample variance, weha

Var(i DQR) =Var |:li-l Z_ (B(T k) - E’ DQR)(B(T k) - ﬁ DQR)Ti|

= (M, = i)+ O(N*)=— A2 + O(N?)

Thus we completes the proof.
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