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ABSTRACT 

One of the greatest values of Quantile Regression (QR) is that it provides a good procedure in the 
sense that QR could be much more efficient and sometimes arbitrarily more efficient in recovering the 
mean function than the Least Squares (LS) even when without moment conditions. However, 
heteroscedasticity definitely causes conditional variances of parametric or nonparametric estimates of 
mean functions to be large, sometimes this may lead to a great loss of efficiency of estimators and 
affect the goodness-of-fit test substantially and pratically conditional variance of data is of more 
concerned in statistical analysis these days, thus detecting heteroscedasticity before further analysis 
becomes essential. The virtue of QR as well as the limitation of LS motivates us to develop a new 
robust detecting tool for heteroscedasticity. Main contributions of this study include three aspects: 
First of all, a new Dynamic Quantile Regression (DQR) is introduced. Based on this method estimators 
for mean function, heteroscedastic function and the error distribution can be obtained simultaneously. 
Second, a novel diagnostic tool is developed for checking heteroscedasticity by employing the hybrid 
of QR and DQR. Theoretical properties of the procedure are investigated and we also demonstrate the 
performance of the new tool on small sample power properties. Third, further estimator of the 
conditional variance can be obtained based on improved DQR, when heteroscedasticity is detected. 
Finally these methods are illustrated with some simulated examples. Compared with the classical 
testing procedures, Monte Carlo simulations indicate that the new tool is more effective, powerful and 
easy to implement. Applications to a real data analysis is also discussed. 
 
Keywords: Heteroscedasticity, Dynamic Quantile Regression, Inference Quantile Process, Conditional 

Variance, Nonparametric Volatility 

1. INTRODUCTION 

Consider a general linear regression model with 
heteroscedasticity Equation 1.1: 
 

TY X (X)= β + σ ε   (1.1) 
 
where, Y is the response variable, X is a covariate. The 
coefficient β is unknown and the conditional variance 
function σ2(x) = Var(Y|X = x) is used to model the 
heteroscedasticity. The error term ε in (1.1) is assumed to 
be independent of X and have mean 0 and variance 1. 

Linear regression model is used extensively in 
statistical applications. A standard assumption for it is 
the homogeneity of error variances and some papers 
even assume that errors are normally distributed. 
Violation of these assumptions may invalid many of the 
traditional statistical analysis techniques and can lead to 
inefficiency of estimators. Thus to detect 
heteroscedasticity of a linear model is of crucial 
importance. No surprise to see that many diagnostic tools 
and statistical testing methods exist in literature for this, 
(Anscombe, 1961; Atkinson, 1985; Bickel, 1978; Cook 
and Weisberg, 1983), but note that most of them are 
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established in mean regression framework. While, 
Koenker and Bassett Jr (1982) considered an alternative 
approach based on regression quantiles, which is more 
robust to outliers. Later Wicox and Keselman (2004) 
made an improvement on Koenker’s method and made it 
perform well in small sample size. However, many of the 
techniques adopted in detecting heteroscedasticity can be 
difficult in implementation and time consuming. Thus 
one of the objectives of this study is to develop an 
efficient and powerful diagnostic tool which can have a 
wide application. In addition to make the new proposed 
test statistic more robust, quantile regression technique is 
also applied in our methods. 

Our new method is built on the quantile regression 
estimator and Dynamic Quantile Regression (DQR) 
estimator which is used for simultaneously estimating the 
mean regression function, conditional variance function 
and error distribution in nonparametric regression model. 
It has been shown that the DQR estimator was much 
more efficient than the least squares estimator and 
performed well even in the worst case scenario, for 
example when errors follow cauchy distribution. 

Furthermore, the DQR estimator is computationally 
faster and easier than the Composite Quantile Regression 
(CQR) estimator (Zou and Yuan, 2008). These nice 
theoretical properties of DQR estimators motivate us to 
construct a diagnostic tool based on it. In addition, to 
make it a safer and more effective testing tool, related 
inference process is developed. Asymptotic properties 
of test statistic and inference process are also 
investigated. To examine the feasibility and efficiency 
of the new diagnostic tool, power properties of 
different sample size are studied later. 

In real analysis, we would like to not only detect but 
model the conditional variance of data. Thus two 
heteroscedastic models are considered here, σ(x) is linear 
and σ(x) is nonparametric. DQR tecniques then can be 
applied to the estimation. For the nonparametric case, 
local linear technique is employed in the estimation 
procedure and some improvements are also made based 
on those previouds methods. Specifically, tuning 
parameters are not required to be selected beforehand in 
this study, which largely improves the efficiency of 
estimators and simplifies the calculation. Moreover, 
distribution of error ε can be determined simultaneously. 

The rest of paper is organized as follows. In section 
2, we give the basic idea of DQR method and study its 
asymptotic properties. Based on the DQR method, 
diagnostic tools including related inference process are 
developed in section 3. Section 4 presents the further 
estimation procedure of conditional variance function 

and distribution of error of a linear model. Two 
heteroscedastic cases are considered, σ(x) is linear and 
σ(x) is nonparametric. Asymptotic properties of 
estimators are also studied. In section 5, Monte Carlo 
simulations are conducted to examine the 
performances of the new diagnostic tool and 
efficiency of the estimators. Real data analysis is also 
presented in the end to give an illustration. 

2. MATERIALS AND METHODS 

In DQR procedure, the quantile τ is supposed to be a 
random variable, uniformly distributed in (0, 1) rather 
than a fixed constant in quantile regression, that is 
τ∼U(0, 1). Thus, the quantile τ is like a dynamic ball 
rolling back and forth in interval (0,1) and that is the 
origin of the name Dynamic Quantile Regression (DQR). 

Suppose that {(Xi, Yi), i = 1,...,n} is an 
independent and identically distributed random 
sample coming from model (1.1), that is: 
 

T
i i iY X (X ) i= β + σ ε  

 
The errors n

i 1{ i} =ε  are assumed to be independent and 

identically distributed with an unknown distribution F 
and E(εi) = 0, Var(εi) = 1. Then with the assumption τ 
∼U(0,1) it is obvious that 1c F ( )−

τ τ�  is also a random 

variable and 1c idF ( ) F−
τ τ η

�

�  thus Equation 2.1: 

 
E (c ) 0,Var (c ) 1τ τ τ τ= =   (2.1) 
 

Furthermore, the τ-th conditional quantile regression 
function of response Yi: 
 

T
i i iQ (Y X ) X (X)cτ τ= β + σ  

 
Is a random variable and we have: 

 
T

i i iE [Q (Y X )] Xτ τ = β  

 
Now we give the dynamic quantile regression 

estimation procedure. For randomly sampled quantiles 
{ τk, k = 1, 2,...,N} from uniform distribution, the τk-th 
conditional quantile regression function of the 
response Yi is: 
 

T
k i i i i kQ (Y X ) X (X )cτ τ= β + σ  

 
where, cτk = F−1(τk). Then employ linear quantile regression 
technique introduced by Koenker (2005), we have: 
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n
T

k k i i
i 1

ˆ Arg min (Y X b),k 1,2,...,Nτ τ
=

β = ρ − =∑  

 
where, ρτk (u) = τkuI(u ≥ 0) + (τk-1)uI(u < 0) is the check 
function at τk-th quantile. Then we can obtain the DQR 
estimate of β, denoted as DQRβ̂ Eqution 2.2: 
 

N

DQR k
k 1

1ˆ ˆ
N τ

=

β = β∑   (2.2) 

 
• A1. The error distribution F has continuous density 

f, with f(u) uniformly bounded away from 0 and ∞ 
• A2. Let X = (X1,...,Xn). There exist positive definite 

matrix D, such that: 
 

T

n

1
lim X X D

n→∞
=  

 
• A3. Denote  Γ = diag(σ(X i)) and elements σ(X i) are 

bounded away from 0 and ∞ and there exists a 
positive definite matrix G, such that: 

 
T 1

n

1
lim X X G

n
−

→∞
Γ =  

 
Assumption A1-A3 are basically the same for 

establishing the asymptotic normality of a single quantile 
regression (Koenker, 2005) and establishing the 
asymptotic property of composite quantile regression 
(Zou and Yuan, 2008). Then under these conditions, we 
have the following results for the DQR estimator. 

Theorem 1 

 Under regular conditions A1-A3, if N → ∞, then: 
 

1 1
DQR

ˆn ( )D N(0,G DG )− −

→
β − φ  

 
where, D

→
 denotes convergence in distribution 

Remark 1 

Several observations can be seen from Theorem 1. 
First whether a linear model is homoscedastic or 
heteroscedastic has little impact on estimator DQRβ̂ , 

because it is always an asymptotic unbiased estimator 
and note that this fact is important for the later 
construction of the test statistic. Second, estimator DQRβ̂  

is easier to derive and much more available than 
estimators like CQR

ˆ .β Only simple linear quantile 

regression is needed in the calculation and the 
randomness of quantile τ bring additional convenience 
and interpretability. Third, compared with least square 
method, estimator DQRβ̂  also has more gains especially 

under some heavy-tail distributions such as t distribution 
and cauchy distribution. To illustrate this we compute 
the asymptotic relative efficiency between LSE and 

DQR. Define ( ) ( )
( )

LS

DQR LS

DQR

ˆMSE
ˆARE ,

ˆMSE

β
β β =

β
 and after 

straightforward calculations, we see that as the sample 
size n approaches ∞: 

 

( ) 4/5
DQR LS f

ˆARE , (N)−β β → σ  (2.3) 

 

where, ( ) N N i j i j
f 2 1 1i 1 i 1

i j

1
N

N f (F ( ))f (F ( ))− −= =

τ Λτ − τ τ
σ =

τ τ∑ ∑ N is the 

number of dynamic quantiles selected in the DQR 
procedure and F(·) and f(·) is the density function and 
cumulative distribution function of the error 
distribution respectively. From Equation (2.3) we can 
see that ARE depends only on the error distribution 
and the choice of dynamic quantile number N. Thus 
for some commonly seen error distributions, values of 
ARE can be directly derived, see Table 1.

 
Table 1. ARE DQR LS

ˆ ˆ( , )β β  for some error distributions 

 ARE DQR LS
ˆ ˆ( , )β β  

 ---------------------------------------------------------------------------------------------------- 
Error distribution N = 5 N = 10 N = 50 N = 100 N = 500 
N(0, 1) 0.7971 0.9336 0.9272 0.9869 0.9981 
Laplace 1.3243 1.2132 1.1236 1.0293 1.0082 
t distribution with df = 5 1.1120 1.0406 1.0366 1.0212 1.0237 
t distribution with df = 3 1.4294 1.2563 1.2314 1.2032 1.0927 
0.95 N (0, 1)+ 0.05N(0, 102) 3.0258 3.1282 1.8513 1.3367 1.0429 
0.90 N (0, 1)+ 0.10N(0, 102) 4.3725 4.0577 1.2939 1.1352 1.1122 
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Several things can be observed from Table 1. First, 
for normal distribution LSE is expected to have the best 
performance, while ARE DQR LS

ˆ ˆ( , )β β is very close to 1 as N 

becomes larger. Second for all the non-normal distributions 
listed in Table 1, DQR estimator can have higher 
efficiency especially when N is small. Finally, when N is 
large such as N = 100, 500, all the ARE values are very 
close to 1, that is to say generally DQR estimator can have 
more gains compared with LSE estimator. 

3. DETECTING TOOL 

A standard assumption in regression analysis is the 
homogeneity of error variances. Whereas it is usually 
proved to be incorrect when confronted with reality. In 
this section, we would like to effectively detect 
heteroscedasticity of a linear model, then a new robust 
diagnostic tool is developed for it based on DQR method 
proposed before. 

For model (1.1), the simple hypothesis is the 
homogeneity, that is: 
 

0H : (x) Cσ =  

 

where, C is a constant. Without loss of generality, we 
can let C = 1. Thus under H0, model (1.1) reduces to 
the iid case Equation 3.1: 
 

T
i i iY X ,i 1,2,...,n= β + ε =   (3.1) 

 
Now in quantile regression framework, given a 

quantile τk, coefficient β in (3.1) can be estimated by 
solving (Zou and Yuan, 2008): 
 

( )
n

QR T
k k k i i

c, i 1

ˆĉ , Arg min (Y c X )τ τ τ
β =

β = ρ − − β∑  

 

And QR
k

ˆ
τβ  is an unbiased estimator of β, for under mild 

conditions (Koenker, 2005): 
 

QR 1k k
k 2

k

(1 )ˆn ( )D N 0, D
f (c )

−
τ →

τ

 τ − τβ − β  
 

 

 
where, D is the positive definite matrix defined in 
condition A2. 

In terms of the DQR estimate of β in model (3.1), DQRβ̂ , 

it is also unbiased and have a smaller variance compared 
with the QR estimator, due to the mechanism of DQR 
estimation procedure and we can obtain under H0: 
 

1
DQR

ˆn ( )D N(0,D )−

→
β − β  

Remark 2 

 The above result is a special case of Theorem 1. For 
the iid case (homoscedasticity), the diagonal matrix Γ in 
condition A3 turns into an identity matrix. Thus by a 
simple substitution, the above asymptotic normality can 
be established. 

Now consider any fixed quantile τk, 0<τk<1, then 
estimator QR

k
ˆ

τβ is unbiased provided that the errors have 

common variances, however this does not necessarily 
hold when heteroscedasticity exists. But in either case, 
estimator DORβ̂ remains unbiased. Thus due to the nice 

properties of DQR estimators, tests of the hypothesis H0 
can be established based on the statistic: 
 

QR T QR
n DQR DQR2

n ˆ ˆ ˆ ˆT ( ) ( ) D( )
( ) 2v( ) 1 τ ττ = β − β β − β

ω τ + τ +
  (3.2) 

 
where, τ  ∈ (0, 1) is any fixed quantile, D is a positive 
definite matrix defined in condition A2, ω2(τ ) = τ (1-

τ)/f2(F−1(τ)), ν(τ) = 
1 1

0
F (t)dt / f (F ( ))

τ − − τ∫ . Note that from 

Equation (3.2). if no heteroscedasticity exists in a model, 
statistic Tn(τ)’s value could be very small for any quantile τ 
∈ (0, 1), whereas this value could be considerably large 
given that the model is of some heteroscedasticity. However, 
it does not seem to be reasonable for just considering the 
value of Tn(τ) at a certain quantile τk to measure the 
discrepancy of two models.Thus to assess the discrepancy 
of two models more credibly, it is natural to consider a Tn(τ) 
process, which is a global measure over entire distribution 
and we present Theorem 2 to further investigate the 
performance of test statistic Tn(τ) and Tn(τ) process,. 

Theorem 2 

Under conditions A1-A3, for any fixed t ∈ [∈, 1-∈]: 
 

2
n pT (t)DX

→
 

 
where, ∈∈ (0, 1/2) and p is the dimension of β. 
Furthermore, for any index set I, I⊂(0, 1), consider a test 
process {Tn(τ): τ ∈ I}, then under the null hypothesis: 
 

2
n p

I I
supT ( )WsupQ ( ), for I

→τ∈ τ∈
τ τ τ∈  

 
where, W

→
denotes weak convergence and 

p pQ (t) B (t) / t(1 t)= − is generally referred to as a 

Bessel process of order p, Bp(t) ∼ N(0, t(1-t)Ip), .  

denotes the normalized Euclidean norm.  
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Table 2. Critical Values for sup 2
qQ (t)  

q α = 0.01 α = 0.05 α = 0.10 
1 13.01 9.84 8.19 
2 16.44 12.93 11.20 
4 21.54 17.56 15.62 
Parameter p is the degrees of freedom, these critical values 
are used in Monte Carlo simulation of size and power tests 
in section 4 
 
For any fixed t ∈ (0, 1), we have 2 2

p pQ (t) X� . 

Remark 3 

 Critical values for sup 2
pQ (t) have been presented 

by (De Long, 1981; Andrews, 1993) via simulations. 
In this study, we just list part of this in Table 2 for 
later use of section 4. 

Practically, the proposed Tn(τ) tests require 
estimation of ω2(τ), which is related with unknown error 
distribution. In this study, we suggest using a plug-in 
method, substituting the unknown distribution function 
with standard normal. That is, ω2(t) can be estimated by 

2 2 1ˆ (t) t(1 t) ( (t))−ω = − φ Φ ; Likewise estimate of ν(t) can be 

obtained via 
1

1

(t / 2)
v̂(t) t

( (t))

−

−

Φ=
φ Φ

. 

4. FURTHER ESTIMATION 

Once the heteroscedasticity of a model is detected, 
we would like to know how the conditional variance of 
the response Y varies with covariate X. In this section, 
we obtain a new efficient estimator of σ2(x) based on 
DQR method and we also assumed the two forms of σ(x), 
linear and nonparametric. 

4.1. Linear form of σσσσ(x) 

Assume that the conditional variance Var(Y|X) has a 
linear association with covariate X. Then model (1.1) can 
be rewritten as: 
 

T TY X (X )= β + γ ε   (4.1) 
 

This model has been considered by many 
statisticians (Koenker and Zhao, 1994; He, 1997; 
Koenker and Machado, 1999). In quantile regression 
framework, it is generally assumed that the 
distribution of error ε is known or the τ th quantile of 
ε is 0. In this part two cases are considered. First we 
would like to investigate the case when distribution of 
error ε is known, i.e., F is known; Then we relax the 
restriction, F is supposed to be unknown and obtain 

estimates of the conditional variance function as well 
as error distribution. 

4.1.1. F is Known 

If F is known, estimation procedure could be very 
simple and we propose two methods to estimate 
unknown coefficients β and γ. For τ ∼ U(0, 1), the τ-th 
conditional quantile of response Yi is Equation 4.2: 
 

T T
i i i iQ (Y X ) X ( c ) X b( )τ τ= β + γ τ�   (4.2) 

 
where, 1c F ( )−

τ τ�  

 
According to the mechanism of DQR estimation 

procedure, randomly sampled N quantiles from U(0, 1), 
denoted as {τi, i = 1,2...,N}, then for the given τ = τk, 
b(τk) can be obtained by employing linear quantile 
regression (Koenker, 2005) Equation 4.3: 
 

n
T

k k i i
b i 1

b̂( ) Arg min (Y X b),k 1,...Nτ
=

τ = ρ − =∑   (4.3) 

 
where, ρτk (·) is the check function at τkth quantile. Thus 
we can construct equations: 
 

1 1

2 2

N N

b̂( ) c

b̂( ) c

....

b̂( ) c

τ

τ

τ

τ = β + γ

τ = β + γ

τ = β + γ

  (4.4) 

 
With Equations (4.4), two estimation procedure can 

be established. 

4.1.1.1. Direct Solution 

We can see from Equation 4.4, γ can be solved by 
subtracting two adjacent equations, that is: 
 

( j 1) j 1 N
j N

j 1 j 1 N

ˆ ˆ ˆ ˆb b( ) b( ) b( )
ˆ ˆ, j 1,...,N 1 and

c c C C
τ +

+ τ τ

− τ τ − τγ = = − γ =
τ − τ −

 

 
Then estimates of β, γ can be obtained by Equation 

4.5 and 4.6: 
 

N

j
j 1

1
ˆ ˆ

N =

γ = γ∑   (4.5) 

 

( )
j

N

j
j 1

1 ˆˆ ˆb( ) c
N τ

=

β = τ − γ∑   (4.6) 
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4.1.1.2. Regression Analysis 

Equations (4.3) are actually regression equations, 
thus to obtain the estimated results of β and γ, classical 
linear regression methods can be employed. To illustrate 
this, first we present some notations. 

Denote γ = (γ1,...,γp)
T, γs = γ/(γTγ), the standardized 

version of γ, then cτ can be represented as cτ = bT 
(τ)γs-β

T γs. 
Thus a simple linear regression model can be 

established Equation 4.7: 
 

T T
i i s s i

ˆc b ( ) e ,i 1,2,....Nτ = τ γ − β γ + =   (4.7) 

 
where, ei is the error, assumed to be normally 
distributed with N(0, σ2) and σ is some constant, need 
not to be known. Equivalently, let Cτ = (cτ1,...,cτN )T, 

T
1B (b( ),...,b( N))τ = τ τ is a p×N matrix, B0 = (βTγs). 

(1,1,...,1)T is a N×1 vector and e = (e1,...,eN)T, then 
(4.7) becomes: 
 

s 0
ˆC B B eτ τγ= − +  

 
Then β and γs can be estimated by classical least 

square techniques: 

Remark 4 

It is regular to suppose that the error e is normally 
distributed, due to the key information of model having 
been extracted; and N

i i 1{c }τ = in (4.4) is supposed to be 

known owing to the assumption of F is known. 

4.1.2. F is Unknown 

Generally, the error distribution F is unknown. In this 
situation, β, γ and even error density f∈ can be estimated 
based on DQR method. We would give in details and the 
basic idea of this estimation procedure is Equation 2.1.  

For linear model (4.1), Equation 4.2 still holds when 
distribution F is unknown, while this time cτ is unknown. 
Since τ ∼ U(0, 1), then we have: 
 

TE [b( )] ,Var [b( )]τ ττ = β τ = γγ  

 
Randomly sampled N quantiles from uniform 

distribution on (0, 1), denoted as {τk: k = 1,2,...,N}, 
{ b̂ (τk): k = 1,2,...,N} can be estimated via Equation 4.3. 
Let ∑B = Varτ (b(τ)). Thus we can obtain estimates of β 
and ∑B through Equation 4.8 and 4.9: 

N

DQR k
k 1

1 ˆˆ b( )
N =

β = τ∑   (4.8) 

 
N

T
DQR k DQR k DQR

k 1

1 ˆ ˆˆ ˆˆ (b( ) )(b( ) )
N =

Σ = τ − β τ − β∑  (4.9) 

 
And γ̂ can be obtained via BΣ̂ . Furthermore, we can 

get kˆ{c : k 1,...,N}τ = : 

 
T

2 k k
k

B

ˆ ˆˆ ˆ(b( ) ) (b( ) )
ĉ

ˆtr( )
τ

τ − β τ − β=
∑

 

 

where, tr(·) denotes the trace of a matrix. As cτ and ε are 
samely distributed, thus by kernel density estimators, with 
the sample kˆ{c : k 1,...,N}τ = , density f∈ can be estimated: 
 

N
k

k 1

ˆ1 u c
f̂ (u) K

Nh h
τ

∈
=

 −=  
 

∑  

 
where, K(·) is a kernel function and h is the smoothing 
bandwidth. 

4.2. Nonparametric 

For model (1.1), the conditional variance function 
σ2(x) is usually unknown, thus in this section we 
would like to develop a nonparametric DQR method 
to obtain the estimate of σ2(x). Throughout this study, 
local linear regression techniques (Fan, 1993; Fan and 
Gijbels, 1996; Yu and Jones, 1998) are employed for 
nonparametric function.  

Note that τ ∼ U(0, 1), then the τ th conditional 
quantile of model (1.1) is: 
 

T
i i i iQ (Y X ) X (X )cτ τ= β + σ  

 
And it is also a random variable. Moreover, 

let T
i i ir Y X= − β , thus the τth conditional quantile of 2ir  is: 

 
2 2 2
i i iQ (r X ) (X )cτ τ= σ  

 
Consider expectations of both the two random 

variables Qτ (Yi|Xi) and 2
i iQ (r | X )τ , then we have: 

 
T 2 2

i i i i i iE [Q (Y X )] X ,E [Q (r X )] (X )τ τ τ τ= β = σ  

 
In local linear regression, consider estimating the 

value of σ2(x) at x0, σ
2(x) can be approximated locally by 

a linear function σ2(x) ≈ σ2(x0) + σ2(x0)(x-x0) in the 
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neighborhood of x0, where σ˙2(x) is the derivative of 
σ2(x). Thus estimation procedure can be conducted by 
the following three steps. 

Step I: Estimate β 

Based on the idea of DQR, β can be estimated by 
Equation 4.10: 
 

N

DQR k
k 1

1ˆ ˆ
N =

β = β∑   (4.10) 

 
where, kβ̂ Argminβ ∑i ρτk T N

i i k k 1(Y X ),k 1,2...,N,{ } =− β = τ are 

N dynamic quantiles randomly sampled from U(0, 1). 

Step II: Obtain 2ˆ (x)σ via local linear DQR 

The residuals are T
i i i DQR

ˆr̂ Y X ,1,2...,n= − β . By local 

linear quantile regression, 2 2
k 0 k 0{( (x ), (x )) : k 1,...,N}σ σ =& can 

be obtained by solving the following equation:  
 

k
1 2

2 2
k 0 k 0

n
2 i 0
i 1 2 i 0

, i 1 1

ˆˆ( (x ), (x ))

X x
ˆArg min (r (X x ))K ,k 1,...N

hτ
α α =

σ σ

 −= ρ − α − α − = 
 

∑

&

 

 
where, K(·) is the kernel function and h1 is a smoothing 
bandwidth. Then we have equation 4.11: 
 

N N
2 2 2 .2ˆ
DQR 0 k 0 DOR 0 k 0

k 1 k 1

1 1ˆˆ ˆ(x ) (x ), (x ) (x )
N N= =

σ = σ σ = σ∑ ∑&   (4.11) 

 
Step III: Estimate error distribution fεεεε 

kˆ{c : k 1,...,N}τ = can be obtained by employing quantile 

regression Equation 4.12: 
 

k

N

k i i
c i 1

ˆ ˆ ˆc Arg min (r (X )c)k 1,...,Nτ τ
=

= ρ − σ =∑   (4.12) 

 
Then use kernel density estimators, we can obtain 

f̂ ε as follows Equation 4.13: 
 

N
k

k 12 2

ˆ1 u c
f̂ (u) K

Nh h
τ

ε
=

 −=  
 

∑   (4.13) 

 
where, h2 is a bandwidth. 

Remark 5 

Compared with the DQR method, we have a little 
improvement on the estimation of N

k k 1ˆ{c }τ = . Estimation 

can be proceeded directly via (4.12) without bandwidth 
selection and local approximation, which make it 
greatly simplified and in our estimation procedure 
only two bandwidths h1 and h2 need to be selected. 
There are many effective methods existing to select a 
kernel density estimator bandwidth h2, such as plug-in 
method (Silverman), cross-validation (Hardle). 
Throughout this study, we apply the rule of thumb 
bandwidth, that is h2 = 1.06 min 1/5ˆ{ ,R /1.34}n−σ where 
σ is standard deviation and R is the interquantile range. 
To select bandwidth h1, we use the automatic bandwidth 
selection considered in Xiong et al. (2012), for different 
quantiles N

k k 1{ } ,=τ the optimal bandwidth 

k

opt
k LSh l( )h

τ
= τ where l(p) = {2p(1-p)/(φ( (Φ−1(p)) 

Φ−1(p))2} 1/5, φ(·),Φ (·) denotes the density and 
cumulative distribution function respectively and hLS 
can be selected by some sophisticated methods. For the 
choice of dynamic quantile number N in each 
estimation procedure, we choose N = 100 or N = 500 as 
suggested in Xiong et al. (2012). 

4.3. Asymptotic Distribution 

Denote p(·) as the marginal density of X. Let f(·) and 
F(·) be the density and cumulative distribution function 
of error ε. The kernel function K(·) is symmetric with a 
bounded support and denote: 
 

2 2
2(K) u K(u)du,R(K) K (u)duµ = =∫ ∫  

 

Then we have the following theorems. 

Theorem 3 

Suppose that σ(x) has a linear form, σ(x) = xT γ, the 
error distribution F is unknown and suppose that the 
regular conditions are satisfied, then as N → ∞: 
 

DQR

2 2
DQR B B

ˆn ( )D N(0, ),

1ˆN{ ( 1) }D N(0, )
n

→

→

β − β Ω

∑ −∑ − θ − Ω ∑ λ
 

 
Where:  
 

2 2 2
1 1

T T

F(t)(1 F(t))dt, E( 1) ,
G DG ,

Fand (Y X ) / X
− − − λ = ε − ε

Ω = θ =
ε = − β λ∫

�

 

Theorem 4 

Suppose that σ(x) is unknown, x0 is an interior point 
of support of p(·). Error distribution F is unknown, then 
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under the regular conditions given in appendix, if h1 → 
0,N → ∞, nh1 → ∞, then: 
 

1 1
DQR

2 2
1 DQR 0 0

4
2 2 20

2 0 1
0

ˆn ( )D N(0,G DG ),

ˆnh { (x ) (x )

1 R(K) (x )
(K) (x )h }D N 0,

2 p(x )

− −

→

→

β − β

σ − σ

 σ− µ σ λ 
 

&&

 

 
where, 2

0(x )σ&&  denotes the second derivative of 

 2 2 2 2 T(x), E( 1) , (Y X ) / (X)σ λ = ε − ε = − β σ . 

5. ILLUSTRATIVE EXAMPLES 

In this section we continue to explore the behavior of 
the DQR estimator introduced in the previous section. 
We first use Monte Carlo simulations to study the 
performance of test statistic Tn(τ) and Tn(τ) process 
under hypothesis H0 and H1 and evaluate size and power 
of Tn(τ) at some certain quantiles for several dynamic 
quantile numbers. Then to assess the finite sample 
performance of the estimation procedures proposed, two 
different heteroscedastic models are considered 
respectively in example 2 and example 3. Throughout 
this section, Gaussian kernel is applied, i.e., 

21 1
K(u) exp u

22

 = − π  
 and we adopt the bandwidth 

selection scheme specified in Remark 5. 

5.1. Example 1-Performance of Test Statistic Tn(ττττ) 

In the first example, we would like to investigate 
the performance of Tn(τ) defined in section 3. We 
generate two data each come from model H0 and H1 
Equation 5.1: 
 

2
0 1H : Y 3X , H : Y 3X (X X )= + ε ↔ = + + ε   (5.1) 

 
With X ∼ U(0, 1), ε ∼ N(0, 1) and the sample size n 

= 200. In order to examine and compare the behavior of 
Tn(τ) process, choose the dynamic quantile number N = 
10, 100, 500 respectively. First we would like to 
investigate the performance of the test statistic Tn(τ) at 
certain quantiles for different dynamic quantile numbers 
N, we calculate the type one error rate and power based 
on the hypothesis H0 and H1 at τ = 0.1, 0.25, 0.5, 0.75, 
0.9. To obtain more accurate results, 500 simulations are 
conducted. Results are reported in Table 3. 

From Table 3, it is clear that the sizes of the tests 
vary with dynamic quantile number N. For small N, such 

as N = 10, the tests are oversized; For large N, N = 500, 
the tests are almost undersized; and for moderate N, N = 
100. These tests seem to perform better and it seems that 
to perform a satisfied test which can control the type one 
error rate, we can establish certain relationships between 
sample size n and dynamic quantile number N. We 
would investigate it further in the following. In addition, 
in terms of the power of the tests, something interesting 
would be found. For τ = 0.5, the power is almost 0 in 
different situations. Thus the alternative hypothesis is 
more difficult to discern. For all τ  ≠ 0.5, the power is 
almost 1 under each cases especially when N is large, 
thus we can say the test tool is effective and of a 
success at τ ≠ 0.5. In fact it is accessible that the 
behavior of Tn(τ) at τ = 0.5 is poor, because under H1 
the linear conditional quantile function is Q1/2(Y|X) = 
XT β due to Q1/2(ε) = 0, thus the heteroscedastic 
function has no impact on Q1/2(Y|X) and test statistic 
Tn(τ) would behave similar under both hypotheses. 
Consequently, for some practical analysis if the 
prescribed quantile τk is not appropriate, then tests 
based on Tn(τk) may be difficult to distinguish. Then 
we suggest a more effective, safe and robust diagnostic 
tool Tn(τ) process, which measures the discrepancy 
over the entire distribution of τ. 

In order to explore the effects sample size n had 
made on the tests, we consider sample size n = 50, n = 
500 for model (5.1) respectively. Specially, we would 
like to give a rule to choose appropriate N in real 
analysis based on this. 

Several features of Table 4 and 5 merit attention. 
First, for small sample size n = 50, the sizes of the tests 
are smaller, while the power is very poor, that is the 
alternative is obviously more difficult to discern with 
small sample size; Second, the tests are a clear success 
at n = 500, where they have power near 1 in virtually 
all cases; Third, with larger N, the tests perform equally 
good under different sample sizes. Especially, 
compared with Table 4 and 5 something interesting 
could be found. If we want to perform a good test 
which can control the type I error rate and also obtain a 
relatively large power, then N should be chosen of equal 
size with sample size n. For this, we consider a deviance 

i 1 i
i n nD T ( ) T ( ) ,i 1,2,...,+= τ − τ = where i represents the 

number of dynamic quantile employed in 
Tn(τ)process. If Di is sufficiently small, such as Di < 
∈, for ∈ ∈ (0, 1). Then we choose N = i for the test 
Tn(τ). This criterion also supports our inference, that 
is, in real analysis N and n could be of equal size. 

To investigate the behavior of Tn(τ) process under 
model (5.1) with n = 200, plots are depicted in Fig. 1. 
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The Tn(τ) processes depicted in Fig. 1 indicate a 
highly significant departure from the null hypothesis 
over the entire range of τ, whatever dynamic quantile 
number N is. When N is large, the results are more 
stable. For model H0, we would expect that the Tn(τ) 
process to be nearly 0 over the entire range of τ ∈[∈, 1-
∈] and behave like the square of a normalized Brownian 
bridge process, this expectation is borne out for large 
dynamic quantile number N. Likewise we would like to 
find the Tn(τ) process under H1 model is significantly 
different from 0 and it is also consistent with the figure 
plotted. Then we can say that the Tn(τ) process test 
statistic is a more diagnostic tool. 

Moreover behaviors of test statistic Tn(τ) under other 
non-normal distributions may be of more concerned. Thus 
we would like to present the performance of Tn(τ) under 

model H0 when ε follows Laplace and t3 distribution 
respectively and results are plotted in Fig. 2. 

The Tn(τ) processes in Fig. 2 indicate a highly departure 
from null hypothesis over the entire range of τ for both non-
normal distributions. Besides, with the increase of N, the 
Tn(τ) processes are more stable under both hypotheses. 

5.2. Example 2-Linear Model, Under Different 
Errors 

It is of interest to examine the property of our 
proposed DQR methods under different errors. In this 
example, we consider a totally linear case, that is σ(x) 
has a linear form. For this we generated 400 data sets, 
each consisting of n = 200 observations, coming from: 
 

Y 2X (0.3X)= + ε  

 
Table 3. Sizes and power of Tn(τ) tests, n = 200 
  Type I error rate   Power size 
  --------------------------------------------------- ------------------------------------------------ 
  0.1 0.05 0.01 0.1 0.05 0.01 
τ = 0.1 N = 10 0.294 0.266 0.248 0.950 0.940 0.902
 N = 100 0.106 0.068 0.025 1.000 0.998 1.000 
 N = 500 0.058 0.044 0.008 1.000 1.000 1.000 
τ = 0.25 N = 10 0.336 0.202 0.031 0.740 0.690 0.646 
 N = 100 0.102 0.062 0.024 0.956 0.900 0.812 
 N = 500 0.044 0.026 0.004 0.994 0.958 0.850 
τ = 0.5 N = 10 0.292 0.234 0.033 0.200 0.156 0.086 
 N = 100 0.096 0.048 0.014 0.002 0.000 0.000 
 N = 500 0.050 0.024 0.006 0.000 0.000 0.000 
τ = 0.75 N = 10 0.318 0.224 0.033 0.738 0.712 0.640 
 N = 100 0.098 0.062 0.022 0.952 0.930 0.800 
 N = 500 0.054 0.026 0.006 0.996 0.978 0.838 
τ = 0.9 N = 10 0.330 0.316 0.198 0.952 0.930 0.914 
 N = 100 0.104 0.066 0.016 1.000 1.000 0.998 
 N = 500 0.046 0.024 0.015 1.000 1.000 1.000 
The table is based on 500 replications per cell. For the size and power, each cell reports the proportion of rejections of the designated 
test at the designated level of significance 
 
Table 4. Sizes and power of Tn(τ) tests, n = 50 
  Type I error rate   Power size 
  ------------------------------------------------ --------------------------------------------------- 
  0.1 0.05 0.01 0.1 0.05 0.01 
τ = 0.1 N = 10 0.144 0.138 0.094 0.548 0.478 0.336 
 N = 100 0.070 0.038 0.012 0.630 0.492 0.274 
 N = 500 0.052 0.040 0.006 0.660 0.470 0.252 
τ = 0.25 N = 10 0.156 0.122 0.076 0.258 0.192 0.136 
 N = 100 0.052 0.034 0.008 0.344 0.078 0.044 
 N = 500 0.052 0.032 0.008 0.333 0.088 0.026 
τ = 0.5 N = 10 0.128 0.108 0.080 0.010 0.010 0.010 
 N = 100 0.062 0.024 0.006 0.000 0.000 0.000 
 N = 500 0.032 0.020 0.006 0.000 0.000 0.000 
τ = 0.75 N = 10 0.128 0.118 0.066 0.258 0.212 0.126 
 N = 100 0.054 0.040 0.010 0.315 0.096 0.036 
 N = 500 0.032 0.016 0.010 0.342 0.088 0.018 
τ = 0.9 N = 10 0.136 0.038 0.080 0.562 0.494 0.334 
 N = 100 0.054 0.040 0.014 0.638 0.468 0.030 
 N = 500 0.054 0.022 0.012 0.616 0.508 0.268 
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Table 5. Sizes and power of Tn(τ) tests, n = 500 
  Type I error rate   Power size 
  ------------------------------------------------ --------------------------------------------------- 
  0.1 0.05 0.01 0.1 0.05 0.01 
τ = 0.1 N = 10 0.482 0.434 0.378 0.986 0.988 0.970 
 N = 100 0.180 0.126 0.090 1.000 1.000 1.000 
 N = 500 0.096 0.040 0.008 1.000 1.000 1.000 
τ = 0.25 N = 10 0.524 0.428 0.392 0.872 0.870 0.814 
 N = 100 0.172 0.118 0.080 1.000 1.000 0.998 
 N = 500 0.101 0.042 0.011 1.000 1.000 1.000 
τ = 0.5 N = 10 0.500 0.452 0.410 0.432 0.314 0.268 
 N = 100 0.190 0.108 0.074 0.008 0.006 0.000 
 N = 500 0.074 0.048 0.086 0.000 0.000 0.000 
τ = 0.75 N = 10 0.464 0.452 0.382 0.878 0.890 0.864 
 N = 100 0.168 0.126 0.082 0.998 0.998 1.000 
 N = 500 0.066 0.051 0.096 1.000 1.000 1.000 
τ = 0.9 N = 10 0.466 0.402 0.332 0.992 0.986 0.970 
 N = 100 0.182 0.114 0.068 1.000 1.000 1.000 
 N = 500 0.074 0.050 0.011 1.000 1.000 1.000 
The table is based on 500 replications per cell. For the size and power, each cell reports the proportion of rejections of the designated 
test at the designated level of significance 
 

 
 
Fig. 1. Behavior of test statistic Tn(τ) under hypothesis H0 and H1 by choosing different dynamic quantile number N = 10, 100, 500 

 
where, X ∼ U(0, 1) and we considered five different 
error distributions for ε: N(0, 1), Laplace, t3, t5-
distribution, Cauchy distribution. In the simulation, ε 
are scaled to have mean 0 and variance 1. For DQR 
estimator of β and γ, we consider dynamic quantile 

number N = 100, 500 respectively, as suggested in 
Xiong et al. (2012). 

The mean and standard deviation of both DQRβ̂  and 

DQRγ̂ over 400 simulations are summarized in Table 6. 
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Fig. 2. Behavior of test statistic Tn(τ) under hypothesis H0 and H1 when ε ∼ laplace and t3 respectively. The first two rows depicted 

the performances of Tn(τ) when error follows laplace distribution; the last two rows expressed the results under ε ∼ t3 and the 
first column presents the scatter plots for each case, the last three columns each represents N = 10, 100, 500 respectively 
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Table 6. DQR estimates of coefficient β and γ 
  β (= 2)  γ (= 0.3) 
  ------------------------------------- ---------------------------------------- 
Error distribution  Mean Sd Mean Sd 
N(0, 1) N = 100 2.0004 0.0327 0.2992 0.0229 
 N = 500 2.0015 0.0312 0.2988 0.0223 
Laplace N = 100 1.9979 0.0313 0.2968 0.0332 
 N = 500 2.0000 0.0178 0.3000 0.0212 
t5 N = 100 2.0001 0.0311 0.2924 0.0360 
 N = 500 2.0000 0.0180 0.2982 0.0209 
t3 N = 100 1.9999 0.0308 0.2910 0.0593 
 N = 500 2.0006 0.0177 0.2985 0.0316 
Cauchy N = 100 2.0041 0.0334 0.2589 0.1693 
 N = 500 2.0002 0.0176 0.2793 0.0917 

 
Table 6 indicates that DQR estimator can well 

explore the heteroscedasticity of a model. Whatever 
the error distribution is, normal or non-normal, the 
estimated results is very close to the real value and 
with the quantile number N increases, this inference is 
obvious. Thus DQR estimator is robust. In addition, it 
is remarkably mentioning that even if the error 
follows a Cauchy distribution, DQR estimator can still 
capture the heteroscedasticity and obtain a good 
estimate, while it totally breaks down under the Least-
square regression framework. 

5.3. Example 3-Nonparametric Model 

Generally, the conditional variance function σ2(x) 
is unknown. In this situation, local linear DQR 
method can be employed to obtain estimates of 
heteroscedastic function. To investigate the 
performance of local linear DQR estimator under 
nonparametric form, 400 simulation data sets are 
generated in this example and each consisting of n = 
200 observations, coming from model: 
 

1
Y 3X (2 sin(2 X))

4
= + + π ∈  

 

where, X follows U(0, 1), σ(x) = (x + sin(2πx))/4 and 
we choose ∈ follow four different distribution: N(0, 
1), Cauchy, t3, t5 distribution. In this example, we 
estimate coefficient β and σ2(x) over [0, 1]. The mean 
and standard deviation of ˆ DQRβ̂ over 400 simulations 

are listed in Table 7, in which we also present the 
biases and standard deviation of 2

DQRˆ (x)σ  at x = 0.4. 

Likewise we choose dynamic quantile number N = 
100 and 500 for comparisons. The estimated variance 
function for N = 100, 500 under three different error 
distributions: N(0, 1), Laplace and t3 are depicted in 

Fig. 3, in which we also present the estimated error 
density by choosing N = 500. 

Table 7 gives a good illustration of the capacity of 
DQR method to recover both coefficient β and variance 
function σ2(x), due to the small biases and standard 
deviations under different error distributions. 

5.4. Real Data Analysis 

For the real data, first we would like to detect 
whether there is certain variability of the data. For 
this, Tn(τ) process which proposed in the previous 
section is applied. If heteroscedasticity indeed exists, 
a heteroscedastic model could be built to model this.  

In this section, we consider the Engel dataset 
employed by Koenker and Bassett Jr (1982) to test the 
heteroscedasticity. This dataset consists of 235 
observations on household income and food 
expenditure for Belgian working class households. We 
use Tn(τ) process to detect whether there is variation 
in the data. Results are showed in Fig. 4. 

Fig. 4 indicates a significant heteroscedasticity of the 
data. Then a linear model could be built to model the 
variation of data.  
 

TY X (X)= β + σ ∈  

 
For the estimate of unknown coefficient β, we 

adopt two methods to make a comparison, classical 
least square method and newly dynamic quantile 
regression method. We choose N = 500 in DQR. Then 
we could obtain DQRβ̂ = 0.630, LSβ̂ = 0.485. The fitted 

linear regression model are plotted in Fig. 5. 
From Fig. 5, it is evident that there exists an outlier in 

the data and the fitted linear model obtained by LS is 
highly depend on the outlier; whereas the result of DQR 
is more robust, it is of little impact on it. 
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Table 7. DQR estimates of coefficient β and σ2(x) at x = 0.4 
  β(= 3)  σ2(x), x = 0.4  σ2(x) 
  ------------------------------- --------------------------------- -------- 
Error distribution  Mean Sd Bias Sd ASE 
N(0, 1) N = 100 3.0131 0.1964 0.0008 0.1232 0.0098 
 N = 500 3.0048 0.0938 -0.0127 0.0900 0.0072 
Laplace N = 100 3.0014 0.1893 -0.0257 01440 0.0334 
 N = 500 2.9986 0.0866 -0.0245 0.1526 0.0132 
t5 N = 100 3.0206 0.2272 -0.0090 0.1787 0.0258 
 N = 500 2.9967 0.1066 -0.0194 0.1312 0.0176 
t3 N = 100 3.0076 0.1766 -0.0243 0.2043 0.0495 
 N = 500 3.0023 0.0917 -0.0148 0.3200 0.0447 

 

 
 
Fig. 3. Estimated results via local linear DQR method of Example 3. Three cases of error distribution are displayed in the figure. 

Each row represents the normal distribution, laplace and t3 separately and dynamic quantile number N = 100, 500 for 
estimating the variance function σ2(x) are applied; For kernel error density estimators N is chosen to be N = 500; dash line --- 
denotes the estimated value and solid line -represents the real 
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Fig. 4. Results of Tn(τ ) for Engel Data. The dynamic quantile 

number N = 100 and 500 are chosen to make a comparison 

 

 
 

Fig. 5. Fitting a linear model via DQR and LS 

6. CONCLUSION 

In this study, we mainly consider the 
heteroscedastic model. To make a better data analysis, 
we first propose a robust method-Dynamic Quantile 
Regression (DQR) to give an efficient esimation. Then 
we develop a diagnostic tool which can effectively detect 
the heteroscedasticity of the datasets based on the hybrid 
of QR and DQR. To model the heteroscedastic function, 
two cases are considered, linear form and nonparametric 
form and for each we present the detailed estimation 
procedures and establish the asymptotic properties. 
Extensive Monte Carlo simulations are conducted to 
examine the finite performance of the proposed 
procedures. The results show that under various error 
distributions, DQR estimators outperform LS estimators 
and the Tn(τ) process could be a good alternative when 
detecting the heteroscedasticity. In addition, plots of 
Tn(τ) process give us a clear and direct awareness of the 
behavior of this statistic at different quantile points. The 
size and power of the test statisitc under different sample 
sizes also demonstrate the efficiency of the proposed 
methods. In empirical analysis, we apply the proposed 
DQR method as well as the Tn(τ) process to analyze the 
Engel dataset and we find that our methods could both 
effectively examine the heteroscedasticity and efficiently 
estimate the model compared with LS method. 

Actually, the research can be extended to more 
general models with high dimensional covarites—the 
current hot issues. Furthermore, to avoid the so-called 
“curse of dimensionality”, we can apply the proposed 
method to semiparametric models which have more 
flexibility and interpretation. Further to explore the 
hidden structure and involve the dynamic feature, 
varying coefficient model can also be considered. 
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8. APPENDIX 

Proof of Theorem 1 is included in proof of Theorem 
3. See proof of Theorem 1, please refer to proof of 
Theorem 3 given in below. 

Lemma 1.  

For any fixed quantile τk ∈ (0, 1), let ωij = (τi∧τj-
τiτj)/(f(F

1(τi))f(F
−1(τj))), τ∼ U(0, 1), then as N → ∞: 

 
N

k j
j 1

1
a.s v(k)

N →=

ω∑  

 
where, a.s

→
Denotes convergence almost surely, 

k 1 1
k k0

v F (t)dt / f (F ( ))
τ − −= − τ∫  and F is a distribution 

function such that, for any random variable X ∼ F, E(X) 
= 0 and Var(X) = 1. 

Proof 

As τ ∼ U(0, 1) and N → ∞, then 
N

kj kj 1

1
a.sE ( )

N τ τ= →
ω ω∑ according to law of large numbers. 

Then we have: 
 

k

k

F 1
( k )

( )k

k u k
k u 1 1

k

1
k k k

1 1 1 10
k k

k k F 1

u
E ( ) E ,

f (F ( ))f (F (u))

u u u
du

f (F ( ))f (F (u)) f (F ( ))f (F (u))

(1 ) F(u)du F(u)du 1 II
−
τ

τ

τ τ − −

τ

− − − −τ

∞

−∞ −

 τ Λ − τω =  τ 

− τ τ − τ= +
τ τ

= − τ + τ = +

∫ ∫

∫ ∫

 

 

By change of variables. Define 
s

G(s) F(t)dt
−∞

= ∫  and 

with G(∞) = 0, then we have: 
 

s

1G(s) (s x)f (x)dx sF(s) k (s)
−∞

= − = −∫  

 

where, 
s 1

1 kk (s) xf (x)dx.Lets F ( )−

−∞
= = τ∫ , then: 

 
1

k F (t )dts

k 1 0
k1

k

sf (x)dxG(s) S k (s)
I II v

f (s) f (s) f (s) f (F ( ))

−τ

−∞
−

− τ+ = = − = − = − =
τ

∫∫
 

 
Especially, it is worth mentioning here that the term 

k 1

0
F (t)dt

τ −
∫ can be approximated by F−1(τk/2)τk. 

This completes the proof. 

Proof of Theorem 2 

Under H0, we have 
QR 2 1
k DQR k k

ˆ ˆn ( )D N(0,( ( ) 2v( ) 1)D )−
τ →

β − β ω τ + τ + . 

Consequently, for any fixed 
constant 2

nt (0,1)T (t)DX
→

∈  with degrees of freedom is p, 

the dimension of coefficient β. 
In addition, for the proof of test process {Tn(τ), τ ∈ 

I}, we let QR
DQR( )= τβ τ β − β , η2(τ) = ω2(τ ) + 2ν(τ) + 1, then 

Tn(τ) can be represented as Tn(τ) = nβ(τ)Dβ(τ )/η2(τ) and 
interpret δ as n(b ) / ( )δ = − φ η τ for some choice of b, 
then according to Lemma 3.1 of GJKP and under 
conditions A1-A3, we have for any fixed C > 0: 
 

nsup{ T ( , : C log logn, I} 0δ τ δ ≤ τ∈ →  

 
And with a variant of Theorem 1 of GJ, we can 

obtain the following equation: 
 

1
n n gn

ˆ ˆ( ) n ( ( ) ( )) / ( ) D op(1)−δ τ = β τ − β τ η τ = +   (7.1) 
 
where,

1/2 1
n i i i ig n x (u ( )),u ( ) F ( ), (u) I(u 0)− −

τ τ= ψ τ τ = ε − τ ψ = τ − <∑
. Where this representation of equation (7.1) holds 
uniformly on interval I. Thus 1/2

n p
ˆ W D B−

→
δ . So we 

have 2
n pT ( )WQ ( )

→
τ τ  for τ ∈ I uniformly holds. That 

completes the proof of Theorem 2. 

Proof of Theorem 3 

For model: 
 

T TY X (X )= β + γ ε  

 
The τkth conditional quantile function 

T T
k k kQ (Y X) X ( c ) X b( )τ τ= β + γ τ� . Then: 

 
n

T
k k i i

i 1

b̂( ) Arg min (Y X )τ
β =

τ = ρ − β∑  

 
According to GJ representation, for τ∈I⊂(0, 1), the 

following expression: 
 

( ) 1
n

1ˆn b( ) b( ) G g ( ) op(1)
f (c )

−

τ

τ − τ = τ +  

 
Uniformly holds, where ( )n i ig ( ) n x cτ ττ = ψ ε −∑ ,ψτ(u) = 

τ-I(u<0), T1
G X X

n
= Γ  and Γ = diag(σi). Thus by simple 
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calculation, ( )( ) ( )k k
ˆE b bτ = τ  since E(gn(τ)) = 0 and 

( )( ) ( ) ( )2 1 1 2
k k k

1 1ˆVar b G DG
n n

− −τ = ω τ = ω τ Ω  Then we have: 

 
2

k k k
ˆn{{b( ) b( )} N(0, ( ) )τ − τ → ω τ Ω  

 
Thus: 

 
N N N

DQR k k k
k 1

1 1 1ˆˆE( )E k 1 b( ) b( ) c
N N N τ

=

 β = = τ = τ = β + 
 

∑ ∑ ∑  

as N → ∞, we have 
N N 2

k kk 1 k 1

1 1
c P0, c P1

N Nτ τ= =→ →∑ ∑ . Then 

DQR p
ˆE( ) o (1/ N)β = β + . 

 
N N N

DQR k i j2
k 1 i 1 i 1

N N N N
1 1

ij ij2
i 1 i 1 i 1 j 1

1 1ˆ ˆ ˆˆVar( ) Var b( ) Cov(b( ),b( ))
N N

1 1 1 1
G DG

N n n N

= = =

− −

= = = =

 β = τ = τ τ 
 

   = ω = ω Ω   
    

∑ ∑∑

∑∑ ∑∑
 

 

As with N → ∞, the term 
N N

ij2 i 1 j 1

1
1

N = =
ω →∑ ∑ . Thus, 

Var 2
DQR p

1ˆ( ) o (1 / N )
n

β = Ω + .  

Then the first equation in Theorem 3: 
 

DQR
ˆn ( )D N(0, )

→
β − β Ω  

 
Holds now we proceed to prove the second expression: 

 
N

T
DQR k DQR k DQR

k 1

1 ˆ ˆˆ ˆˆ (b( ) )(b( ) )
N =

Σ = τ − β τ − β∑  

 
Then:  
 

( )( )

N
T

DQR k DQR k DQR
k 1

N T

k DQR k DQR DQR
k 1

T
k DQR DQR

N

k DQR k
k 1

1 ˆ ˆˆ ˆˆE( )E b( ) (b( ) )
N

1 ˆ ˆˆ ˆ ˆE b( ) E( ) b( ) E( ) Var ( )
N

ˆ ˆ ˆ ˆ2E[(b( ) E( )) (E( ) )]

1 ˆ{I Var( ) II }
N

=

=

=

 Σ = τ − β τ − β 
 

= τ − β τ − β + β

+ τ − β β − β

= + β +

∑

∑

∑

 

T
k k DQR k DQR k

T T 2 1 1 2 2
k k B k k

ˆ ˆ ˆˆ ˆI E(b( ) E( ))(b( ) E( )) E [(b( )

1ˆ)(b( ) ) ] c G DG c
n

− −
τ τ

= τ − β τ − β = τ

−β τ − β = γγ = Σ + ω Ω
 

T T
k k DQR DQR k

T T T
k DQR B k k DQR

ˆ ˆ ˆ ˆII 2E[(b( ) E(b)) (E( ) ( )] 2{b( )

ˆ ˆˆ ˆE[(b( ) ]} 2 2 c 2E[(b( ) ]

= τ − β − β = τ β

− τ β = Σ + γβ τ − τ β
 

 
Where: 
 

N
T T

k DQR k k
j 1

N N
1 1 T

j k j
j 1 j 1

N
T

j B k p
j 1

1ˆ ˆ ˆˆE[b( ) ]=E b( ). b( )
N

1 1 1
k . G DG b( )b ( )

N n N

1 1
k c o (1 / N)

N N

=

− −

= =

=

 
τ β τ τ 

 

 
= ω + τ τ 
 

 
= ω Ω + Σ + βγ τ + 

 

∑

∑ ∑

∑

 

 

Thus k j pj

2 1
II ( k ) o (1 / N)

n N
= ω Ω +∑ substitute these 

expressions into the above equation, we can obtain: 
 

2
DQR B k

k

2
k j

k k, j

2
B p

2
B p

1ˆE( ) c
N

1 1 1 2 1
k

n N n n N

1 2
( 1) o (1 / N )

n
1

( 1) o (1 / N )
n

 Σ = Σ τ 
 

  + ω Ω + Ω − ω Ω  
   

= Σ = θ + Ω − Ω +
Ω

= Σ = θ − Ω +

∑

∑ ∑
 

 

where, 
1 a2

k 1k a

1 u(1 u)
du F(t)(1 F)(t))dt

N f (F (u))

−∈

−∈ −

−ω → θ = = −∑ ∫ ∫  

and a is a certain constant. 
To see the variance of DQRΣ̂  note that τ ∼ U(0, 1), thus 

21ˆn (b( ) b( )) N(0, ( ) )
n

τ − τ ω τ Ω� . For randomly sampled 

{ τk, k = 1,...,N} from uniform distribution, N
k 1

ˆ{b( )}τ  are 

realizations of random variable b(τ ). Then we denote: 
 

T T
2 B

T 2 2 4
4 B

m E [b( ) E (b( ))][b( ) E (b( ))]

m E {[b( ) E (b( ))][b( ) E (b( ))] } E( )

τ τ τ

τ τ τ

= τ − τ τ − τ = γγ = Σ

= τ − τ τ − τ = Σ ε
 

 
Then 2 2 2

4 2 Bm m− = λ Σ  where 2 2 2E( 1)λ = ε −  and 

according to the variance of sample variance, we have: 
 

N
T

ar DQR k DQR k DQR
k 1

2 2 2 2 2
4 2 B

1 ˆ ˆˆ ˆˆV ( ) Var (b( ) )(b( ) )
N

1 1
(m m ) O(N ) O(N )

N N

=

− −

 Σ = τ − β τ − β 
 

= − + = λ Σ +

∑
 

 
Thus we completes the proof. 
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