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ABSTRACT

Boolean-equation solving permeates many diversasasé modern science. To solve a system of Boolean
equations, one usually combines them into an etgrivaingle Boolean equatioffi(X) =0} whose set of
solutions is exactly the same as that of the aaiggystem of equations. One of the general classes
solutions for Boolean equations is the subsumpmiemeral solution, in which each variable is exprdsss

an interval decided by a double inequality in teraisthe succeeding variables. The solution validity
depends on the satisfaction of a required congigteandition. In this study, we introduce a novedthod
(henceforth called the CS method) for producingssuafiptive Boolean-equation solutions based on dwyivi

the complete suifCS(f(X))of the pertinent Boolean functié(X) . The complete suncS(f(X)) is a

disjunction of all prime implicants of(X) and nothing else. It explicitly shows all inforriaat aboutf (X)
in the most compact form. We demonstrate the pmgh@S solutions in terms of four examples, covering
Boolean algebras of different sizes and using tveorinent methods for derivingS(f (X)) . Occasionally,

the consistency condition results in a collaps¢hefunderlying Boolean algebra into a smaller syddata.

We also illustrate how an expansion tree (typicadlgluced to an acyclic graph) can be used to deduce
complete list of all particular solutions from tlsebsumptive solution. The present CS method yields
correct solutions, since it fits into the frametbé most general subsumptive solution. Among coimget
subsumptive methods, the CS method strikes a rebotradeoff between the conflicting requiremenfts
less computational cost and more compact form Her golution obtained. In fact, it is the secondtbes
known method from both criteria of efficiency anmhapactness of solution.

Keywords. Boolean Equations, Subsumptive General Solutiomsnfilete Sum, Blake Canonical Form,
Consensus Generation, Absorption, Multiplication

1. INTRODUCTION (SAT) _proble_m solving, the synthesis, simulatiasting
and diagnosis of digital networks and VLSI systems,
Boolean-equation solving permeates many diverseCUtput encoding ar_1d state assignments .of finitée sta
areas of modern science such as biology, grammarg,ﬂachlnes, automatic test-pattern generation andyman
chemistry, law, medicine, spectrography and graphOther subareas of logical design. .
theory. It is also an indispensable tool in opersi To solve a system of Boolean equations, the
research, the cryptanalysis and breaking of ciphers®duations are usually combined into an equivalegies
Boolean function decomposition, Boolean Satisfigbil Boolean equation{f(X) =0} whose set of solutions is
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exactly the same as that of the original system ofhas two minor advantages over other known methéds o

equations. This is conceptually simpler and subsumptive solutions, namely, (a) it explicitlstathe

computationally more efficient than obtaining thet ef consistency condition in CS form and hence provides

solutions for each equation and then forming theimmediate complete information about it and (b) it

intersection of such sets to obtain the set oftmnia of allows nesting the subsumptions in (2) accordingrg

the overall system. Typically, either general sulbgtive desirable permutation of the set of integers {1,21}..

solutions or general parametric solutions are spdgim

which an exhaustive enumeration of all particut@utoons 2. MATERIALSAND METHODS

can be readily chieved (Rudeanu, 1974; 2001; 2203B0;

Brown, 1990; Levchenkov, 2000a; 2000b; Tucker and We briefly review essential concepts of the congplet

Tapia, 1992; Rushdi, 2001b; 2004; 2012; Rushdi andsum of a switching function, outline two prominent

Amashah, 2010: 2011; 2012: Rushdi and Albarakati, @/gorithms for its derivation, present the mathecsaof

2013a). In this study, we are interested in degivi Boolean-function solution via complete sum derw_rmm_'and

subsumptive general solution of the Boolean equiatio demonstrate the proposed method with four illuseat
examples. In these examples, we show how the aligin

equation (1) is converted into the equivalent égoat

f(X) =0 1)
wheref (X):B" - B,X X ,X,..,.X]T and B is a CS(f(X))—O (3)
general finite Boolean algebra of' Zlements (q =
1,2,3,...) In a subsumptive general solution, eacthef We also demonstrate how to convert (3) into a
variables Xis expressed as an interval determined by theSubsumptive solution (2) together with a consisyenc
double inequality: condition. Occasionally, the consistency condition
results in a collapse of the underlying BoolearebigB
into a smaller subalgebra. In each example, wstititie
Uy Kz Xjazooen X0 ) S XSV (X, X X0) ) how an expansion tree (typically reduced to an lacyc
(j=12,..,n) graph) can be used to deduce a complete list of all

particular solutions from the subsumptive solution.

i.e., each variable s a partially- defined function of 3. COMPLETE SUM OF A BOOLEAN
the succeeding (n-j) variables. In particular, thst ) FUNCTION

variable X, is determined as an interval §X.<v.}
where y and vy, are elements of B. The subsumptive
solutions (2) are usually obtained subject to aager
consistency condition.

Typically, the lower bound;and the upper bound v
for X; in (2) are determined in terms of successive
conjunctive or disjunctive eliminants of the origin
function f (Rudeanu, 1974; Brown, 1990; Tucker and
Tapia, 1992; Rushdi, 2001b; 2004). In this studg w
introduce a novel class of subsumptive Boolean-&mua

solutions based on deriving the Complete Sum (G5(f) stands for a canonical representation of the Boolea
Blake Canonical Form (BCF(f)) (Blake, 1937; Tison, g nction, The complete sum?or an Incompletely- $fjrst
1967; Rudeanu, 1974; 2001; Reusch, 1975; Murogag,giean Function (ISBF) f = g v d(h) is that of the
1979; Cutler et al., 1979; Brown and Rudeanu, 1988;,5q5ciated  Completely-Specified Boolean  Function
Brown,_ 1990; Kean an_d Tsiknis, 1990; Gregg, 1998; (CSBF) F = gv h. This means that a study of the
Rushdi, 2001a; Rushdi and Al-Yahya, 2000; 2001&;:omplete sum always involves a CSBF and does atiyre
2002) of the pertinent Boolean functid(X) .This class involve an ISBF. Henceforth, when we refer to a IBan

of solutions fits into the frame of the most gehdéoam function f, we understand it is a CSBF.

of the subsumptive general solution since it satisthe The concept of the complete sum of a Boolean
necessary and sufficient conditions set in (Rudeanufunction f is closely related to that of a sylldgis
2010) for such a form. The CS solution obtaineceimer formula for f (Brown, 1990; Rushdi and Al-Yahya,

The complete sum of a Boolean function f, to be
denoted byCS(f) is the all-prime-implicant disjunction
that expresses f, i.e., it is a sum-of product®-fg-
formula whose products are all the prime implicafté
The complete sum is called the “Blake CanonicahiFor
by Brown (1990) in honor of A. Blake who was thesfi
author to initiate and develop this concept in RisD.
dissertation (Blake, 1937). Since all the prime liognts
of f are present in CS(f) it is obviously uniqueddrence
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2001a). However, while CS(f) is unique and candpica all irredundant disjunctive forms (Muroga, 1979heT
there are infinitely many syllogistic formulas férA essence of the present Tison method is summarized i
syllogistic formula of f can be defined as an s-0-p Theorem 1. This theorem is adapted from (Cuteal.,
formula whose terms include, but are not necegsaril 1979) to use the complete sum in the sense used by
excluded to, all the prime implicants of f, i.e.,is the (Brown and Rudeanu, 1988), which is applicableitp b
complete sum of f disjuncted (possibly) with tere@h  Boolean algebras. In this theorem, the biform \seis

of which subsumes some prime implicant of f. Othery. v v _ include the biform variables among the

definitions and properties of a syllogistic formuis input variablesX and any biform generator among the
given by Brown (1990). Each of the following forrasl algebra generators a,b,c

are syllogistic formulas (Brown, 1990):

Theorem 1:
e A complete-sum formula
«  An alterm (a disjunction of single literals) Start with a set of giproductss, = {T,”, T;,... T}
*  Ans-o-p formula of monoform literals only with m biform variables Y, Y5, ..., Y, and a Boolean
* Ans-o0-p formula such that no two terms in it have functionf that is expressed by disjunction of the products
consensus that does not appear in the formula. in . For Ki<m repeat the following 2-part step that

replaces a set of products by an updated ong s

First, for 1<j<k< ng.q) if Y; appears complemented in
one of the two productst'™, T¢™ and appears un-
i.e., the set of terms in any syliogistic formuta fis a ~ complemented in the other such that the two praduct
superset of the set of terms in CS(f) (Brown, 1990) hgve no other opposition, then they have a consensu
Hence CS(f) can be denoted by ABS(F), wHeiis any vv_|th respect_to\l( Form that consensus and add ititp s
syllogistic formula for f and ABSF) denotes an Finally, s, is replaced by a supersef of puy
equivalent absorptive formula of, ie., a formula €lements, wheregp, is greater than or equal tg.f
obtained from F by successive deletion of terms Next, consider every pa{r(Tj“‘l),Tk“‘l)),....,j¢ k} of (so
absorbed in other terms Bf(Brown, 1990).

In view of our definition ofCY(f) as ABSF), it is
obvious that CS(f) may be generated by the follgwin then delete T'™ . Otherwise, if T'™is subsumed by

two-step procedure: (a) Find a syllogistic formkléor TP then deletd(™®. Whenever all subsumptions (and
and (b) Delet_e a_bsorbe_d terms to Ome.S(F)' Many subsequent deletions) are exhausted, let the remmaiet be
techniques exist in the literature for carrying stgp (a). O 7O 101 The disiuncii f brod . f
These are categorized (Brown, 1990) into the threeS =T n }. The disjunction of products in any o
basic approaches of exhaustion of implicants, iteea  the sets;sO< i< mis an expression dfand the final set,s
cconsensus and multiplication. In the exampleseblv  cgonsists of all prime implicants bf

herein we employed two prominent algorithms for .

complete-sum derivation, namely, Tison algorithm 3-2- VEKM Folding

If we compare the definition of a syllogistic forfau
for f to that of its complete sum CS(f) we note that CS(f
is minimal within the class of syllogistic formuléar f,

far remaining) products ing. If T¢™ subsumesT{™,

and an algorithm utilizing the Variable-Entered The variable-entered Karnaugh map (VEKM) is a
Karnaugh Map (VEKM), which is succinctly labeled ygsefyl tool that has a variable-handling capabliegter

as VEKM folding. than that of the conventional Karnaugh map and that
3.1. Tison Algorithm naturally handles general or big Boolean algebras

(Rushdi, 1987; 1996; 2001a; 2001b; 2004; 2012h&us

Tison method for obtaining all the prime implicants and Amashah, 2011; Rushdi and Albarakati, 2013a;
of a switching function F (i.e., obtainigbS(f) is a  2013b; Rushdi and Al-Yahya, 2000; 2001a; 2001b;
systematic streamlined version of the iterativesemsus  2002). In VEKM folding, a VEKM is used to represent
technique. The original study of Tison appeared inthe Boolean function and entries of the VEKM are
(Tison, 1967), but a more readable exposition can b converted into complete-sum entries via algebraic
found in (Cutleret al., 1979) or in (Muroga, 1979). The methods employing consensus generation and absorpti
method is sometimes called “Tison method” for short (e.g., Tison method). Iffig. 1a, the functionf(X) is
though its lengthier name serves to differentiatiEam therefore assumed to have subfunctions or restnisti
another Tison method, namely, that for the derdratf with respect toK; which are already in CS form.
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X 1
].:lj 1:1
(a)
ABS ((F,vX;) /(B vX,)
(b)
X
[ |
GvH; GvH;

()

ABS(GV(H,vX;)1) (H v, )

(d)

Fig. 1. The typical step of VEKM folding used in the derieat of CS(f) (a)f()—() with CS subfuncitons fFand F (b) f()—() in CS
form (c) f(X) with CS subfuncitons (@&,) and (&H,) (d) f(X) in CS formf (X)

Figures 1a and 1b demonstrate the basic step in VEKM 4. COMPLETE-SUM SOLUTIONS
folding which converts a map variable iXto an entered

variable, while retaining CS entries in the new \WEK We now introduce a novel class of subsumptive
representation of the pertinent function. Rig. 1b, we general solutions based on the derivation of the
use ABS(F) to denote an equivalent absorptive ftamu complete sum F = CS(f) of the underlying function f
of F, i.e., a formula obtained from F by successivein (1). This class produces a sequence of equafipns
deletion of terms absorbed in other terms of F. The= 0, (j = 1,2,...,n+1) where ;As the complete sum of
formula inFig. 1b uses ANDing (multiplication) of CS  the original function f in (1) and;E F(X;, Xj.1,...,Xn)

formulas as an alternative for consensus genetrafiois is expanded as:

multiplication is implemented via a multiplicationatrix B

which allows an easy tracking of absorptions begafs F =FX vQXVvR =0 4)
the fact that if a term is to be ever absorbed; thee of

its absorbing terms will belong to either its rowto its Again with each of the coefficients, B andR; being

column (Rushdi and Al-Yahya, 2001a). If the a function of (%1,Xj2...,X,) and the final coefficients
subfunctions Fand R have some terms in common, i.e., Pns1, Qi1 and R4y being elements of the underlying
if they can be written asyE Gv Hy and k= Gv H; as Boolean algebraB. The subsumptive solution for the
shown inFig. 1c where G is a disjunction of common Vvariable X(j = 1,2, ...,n) is expressed by:

terms, then “intelligent multiplication” ((Brown,990; B

Rushdi and Al-Yahya, 200la) replaces ABS Q;<X;<P %)

(Rox)o(ROX))in  Fig. 1o by ABS

O Provided the following consistency condition is
(GO(H, OX,)(H, OX,) inFig. 1d.

satisfied:
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(6)

The subsumptive solution is obtained by imposing

the final consistency condition:
)

and working in reverse order (j = n, (n-1),...,1) to
solve (4) via (5) subject to (6). Note that in (@) do
not write F,; as (P Q v R) in analogy with the Rudeanu
algorithm in (Rudeanu, 2003), sincg (B<R;) as will be
explained shortly. In fact, with F = being in complete-
sum form, each ;& = 1,2,...,n+1) will be also in
complete-sum form, i.e., each Will be a disjunction of
all of its prime implicants (and nothing else). TReme
Implicants Pls) of the complete sum formulg; are of
three types (Reusch, 1975; Thayse, 1978; Rushdli,)0

The first type are Pls that have the un-complentente
literal X;. The disjunction of these Pls is<Pwhere:

P =cqF(4)

where F (1) is the subfunction or restriction of(K;,
Xj+1,- -, Xn) with X; set tol, i.e., (L) = (1, Xja,...,.Xn).

The second type are Pisat have the complemented
literal X, . Their disjunction isQ, X; where:

Q =cF(9))

where F (0) is the subfunction or restriction of(K,
Xir1,--,Xn) With Xj set to 0, i.e., HG) = (0, X1, ..., Xp).

The third type are Pl¢hat are independent of the
variable X (and hence have neither the literglnér the

literal X; ). Their disjunction is Rwhere:

R, =c{%(9) F(1)

where the product;®,)F(1;) is called the conjunctive
eliminant of F with respect to {3 (Brown, 1990), or
the meet derivative of;F with respect to X(Thayse,
1978). Equations 8-10 clearly relate the Pls;abRhose
of its subfunctions or restrictions @) and F (1) and

(8)

(9)

(10)

Cs(f)=KE =R XOQXOFR
R X, 0QX,0R,X, 0Q,X,0F,

VL =1R X, 0QX)OF,,

(42)

and hence write the subsumptive solution (5) aed th
final consistency condition (7) simply by inspectidhe
order followed in the summation (ORing) inajdis not
necessarily the natural order {1,2,..,n}, but cohtany
permutation of it.

5. RESULTS

The present method of CGSib sumptive solution of
Boolean equations utilizes a canonical represemtdtiat
explicitly shows complete information about thetjpent

Boolean functionf (X) in the most compact form. It is

typically more efficient than the don't-care teajues in
(Rushdi, 2001b; 2004), but while the CS solutiotaots a
rather compact solution that is not necessarilyimmah

the don't-care techniques seek the most compadicsol
by using Boolean minimization methods.

The CS method is comparable in efficiency and
compactness of solution to the Rudeanu method in
(Rudeanu, 2003). Finally, th€S method might need
slightly more effort than the conventional methaaséd
on constructing eliminants, but this extra effaalyp off,
since it results in a more compact solution andchén
easier generation of the tree (or acyclic graph) of
particular  solutions. The following examples
demonstrate particular implementation details ef @$
method and typical results obtained with it.

5.1. Example 1:

Let the function f(X) in (1) be f(X%, X Xa):
B? - B,whereB, =FB(a)={0,a;a,Land:

f(Xl,Xz,X3):£DZX3\)a37(lV)z1X,‘X 3 (11)
This function is already in CS form. It is an
absorptive syllogistic formula in which the variabX;
and the generator a are monoform, while the tworhif
variables % and X generate no consensi since the only
two terms involving them (aX,X,and X X,X,) have

were first noted in (Reusch, 1975). These equationsdouble opposition. We arrange the CS formula (31) a

confirm our earlier assertions thgt@<R; and that each
Fi+1 = R is in a complete-sum form.

In actual implementation of (4), we directly arrang
CS (f) in the form:
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And hence obtain the subsumptive solution: switching function of two variables, or the atoms o
the atomic algebraB;s, or the dimensions of its
hypercube representation.

<1 Figure 4-7 demonstrate the derivation of CS(f) for
: (13) the functionf in (16) via VEKM folding. Initially, we
representf in Fig. 4 by its natural map, which is a

X x3)SX151 VEKM of map variablesX;, X, andX; and entries that

are functions of the generators a and b. Thesésrare

The availability of CS formula (11) allows us to Written in CS forms. The VEKM ifrig. 4 is now folded

choose any appropriate nesting of variables. For(according to the rules dfig. 1), first with respect to<;

example, instead of (12) we may write: (Fig. 5), then with respect to XFig. 6) and finally with
respect to X (Fig. 7), while retaining CS entries during
cs(f) = (XX, )X, v(aX,) X ,0(0)X ,v(0) X each folding.Figure 7 is simply an ANDing table
(1) = (X)X v(ax:)X.0(0)X v (0)x v (14) (multiplication table) for the two entries Fig. 6. Every
(a)X.v(0) absorbed term is encircled with an arrow pointinghe

_ _ ~absorbing term (which happens to be on the sameorow
And hence obtain the alternative subsumptive the same column). The remaining terms, which Rige

solution: of f, are not circled and are stressed in bold. Their

0=0 disjunction is CHj given by:

as< X <1 ~ : o

0<X1 L (15) CSEf)- bXv ai(2 X3v7a)7(1X2va7aX2X3v bX X . (17)
—re2T B v abX X,vbX X,vaxX Xy aXXyab

aX, <X,<(X, 0X,)

insightful as a general solution. Such a list isdpiced via

Now, we rearrange the CS formula (17) so as to

A list of all particular solutions is neither conapanor express X in terms of % and % and to express<, in

X i terms of X:
expansion trees from the general solutidiigure 2 shows %
the expansion tree used in producing all 21 pdaticu cs(f X,v abX,y b 5%
solutions for f = Offom the general subsumptive solution §(f) =(ax,Xv abXy bX,) Xv(@Xwax) X, (18)

(13). To save space, we combined common nodesein th v(aX,vbX,) X, v (aX;)X,v(b) X,v(0)X v ab
tree, thereby reducing it to an acyclic graph.

Now, some complementation is needed as follows:

5.2. Example 2:

The function (%, X,, X3): B, - B,, which satisfies P, = aX,X,v abX,v bX,
{f =0} is given by: R =(av X,v X, )(av b %) (v X,
£ (XX 5 X 5) =bX ubX X bX X yaX X y (16) =(av X, v bX, )(bvX,)
ax,X;vax,X,v abX,X, =abv ax, v bX,v bX, X,

P, =(av b >

Here the underlying Boolean algebrgB FB (a, b) N (av ) %
is the free Boolean algebra generated by the two P, =abv X
generators a and b. This algebra has 16 elemeaitarth
exactly the binary switching functions of a andTbese Hence, the subsumptive solution is:

ele

ments constitute a complemented distributiveckat

in the form of a four dimensional hyperculfégure 3 ab=0
shows the hypercube lattice of¢Band indicates partial  0<X, <b

ordering among its 16 elements. Notable among thes&

16
ele

(19)
elements are the 0 and 1 elements and alsatine f
mentsab, ab, ab and awhich are the minterms of a (5X3V X)

X, <X, s{abv X,
s(abv ax,v bxv bX2X)
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il
— Xl | xea
Xz=a Wi
il
i S
L7
==
w1 — _
(=] X:= b __|X"—_1.
Moo= O ]
E=
W Xi= b
-_ —
— -
i Xaz= 1 M= 1
o
— X:= b w
i !
< Ma=a | ox=b
L' =
< X:= 0
-
Wl Xy= 1
MNa= 1 _ "
Vi
L]
] Xyi= 1
I S
Xz= b b
-
il x=b
-D—.
Xa= 1 Xy= 1
— -
Wi
-
E
Xa= b i Xo= b
= -

Fig. 2. Expansion tree (reduced to an acyclic graph) féaioing all particular solutions of Example 1 frahe general subsumptive
solution (13). For claritya is written as b

The consistency condition@b= 0) will force the f(xlyxzxs) =abv abX,v aX,X,

lattice inFig. 3 to lose one atom or one dimension and _+ - T =< -3 (20)
hence to collapse to the three dimensional culfeégns. VDX,X, v abX,v aX,X,v bXX,
The subsumptive solution (19) can be used, if resngs The complete sum of this function is:
to develop all particular solutions éf= 0. Figure 9 '
shows part of the expan_sion tree that can be uB_ehhﬁiB CS(f)= abv aX vbX vab
purpose. A complete listing of all 45 particulaiumns __ _ (21)
(albeit with X; interchanged withXs) is available in ~ VPX.X;vaXX,vX,
(Rushdi, 2004; Rushdi and Amashah, 2011). ) ] ]
This CS formula is now arranged to give:

5.3. Example 3 B

The function f = (% X, XJ: BB, which 1) (2 ) X (bvax) 22)
satisfies (f = 0) is given by: XV (ab) X,V (0) X,V (1) Xz (0) X, v ab
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0 b

Fig. 3. A hypercube lattice indicating the partial ordermgong the 16 elements of the atomic algebra Botable among these
elements are the four atoriab, ab, ab and &

flX)
Fig. 4. A VEKM representa8on for & )with CS entries
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— % —

aX,vbX vab avh

X avh bvaX|

L

Fig. 5. The VEKM inFig. 4 folded w.r.t. X and still having CS entries

£(X)

axsvbXxsvbxiX>vaX;vab

=

Xs by aXsvaxixs

L

fX)
Fig. 6. The VEKM inFig. 5 folded w.r.t. > and still having CS entries

X b aXs aXiXs
P.¢] e bX:  aX:Xs aXiXaXy
(abx>

ay: | axaX: \'“ﬂ — —
bx: | bX2Xs —— | —  abXiX:
oy (B, oYk o) —
af | anx, @bk ang, —

ab G‘lb@—“ an c‘z—f;);_’;D —

Fig. 7. ANDing table for the two entries iRig. 6, producing a VEKM of 0 map variable or an algeb®ipression of f in CS form
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a=avb
avb =1
ab=">
asb
=avb
b = av
0=ab aly=a

Fig. 8. The lattice inFig. 3 when collapsed under the conditiab= 0

’ 0<Xs<h l
xsh | | osks

X2=0

X1=d Xy=b Xi=dVvb X1=1

Fig. 9. Expansion tree for obtaining all the particulaugons of Example 2 from the general subsumptdlatgon (19)
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O=ab

Fig. 10. The lattice inFig. 3 when collapsed under the condition ab=0

0<X3<0
X3 = 0
" 0<Xy<(avb)
;= _ .
" \ T~ X, = (avb)
___,f'"f‘ X:=a \\ X2=b \"\__\_
— .. ‘-\‘\,
b<X;<abva b<X;<abva bvab<X; <abvib bv &b <X; < b vib
e et X:=b %=5 X.=b Xe=4 X:=b N

L] > L] L] L L]

Fig. 11. Expansion tree for obtaining all the particuldusions of Example 2 from the general subsumptolatson (23)
The final subsumptive solution is:

ab=10 5.4. Example4

0<X,<0

0<X,<(avh)

(bvax,) < X, < (avax)

23) Consider the Boolean equation:

f(X)=bX vaXvacv be= 0 (24)

Figure 10 illustrates the acyclic-graph production of Wwhere, f(X) = B>B and B = FB (a, b, c) is a Boolean
all 8 particular solutions from the general solnti23).  algebra of 2**(2**3) = 256 elements constitutinty the
Here, the consistency condition (ab = 0) made theswitching (bivalent Boolean) functions of three
underlying Boolean algebra collapse from the hygleec ~ argumentsa, b andc. In the following, we update f(X)
lattice of Bjg in Fig. 3 to the cubic lattice of 8in Fig. 11. gradually intoCS form using Tison algorithm, by adding
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consensi with respect to the biform variable X dnel B={0,a,a,1 (28)
three biform generators a, b, c respectively. Qfrse,
there will be some need herein for absorbing subsgim

terms whenever such terms emerge: where, a =abc andd ="ab. The two bounds in (27a) are
both equal toa and hence X has a single particular

f(X) :(BX vax vacv bT:)v ab solution X =

:(BX vaxv acv bcv *El)v W be 6. DISCUSS| ON

=(bXvaXxXvacv bev abv ¢ biv cX ac 25 . :
(7 B o )N (25) The present method @S subsumptive solution of
=(beéXv acv bev abv X bw TcX ’é)m Boolean equations utilizes a canonical represeniati

that explicitly shows complete information aboue th
pertinent Boolean functiofi(X) in the most compact

form. It is typically more efficient than the doware

The last line of equation (25) has three termsoopninyes in (Rushdi, 2001b: 2004), but while @
enclosed in parentheses which are absorbed in othe

‘ Thi i s CS hen th " dolution obtains a rather compact solution thahas
erms. 1his equation represents () when thaseste necessarily minimal, the don't-care techniques seek
are omitted and can be rearranged as:

the most compact solution by using Boolean
minimization methods.

abv bXv aXv(*afx\) “bXv il)

cs(f)=(PXv QXv R) (26a) The CS method is comparable in efficiency and
compactness of solution to the Rudeanu method in
Where: (Rudeanu, 2003). The CS method might need slightly
more effort than the conventional method based on
R=av bv ¢ (26b) constructing eliminants, but this extra effort pagf$,
since it results in a more compact solution andcaen
Q=av bvc (26¢) easier generation of the tree (or acyclic graph) of

particular solutions. The CS solution obtained imehas
two minor advantages over other known methods of

Q=acv bev aby by "aw 2 (260) subsumptive solutions, namely, (a) it explicitlystsathe
consistency condition in CS form and hence provides
from which one obtains: immediate complete information about it and (b) it
allows nesting the subsumptions in (2) accordingrg
(av bv g < X<abc (27a) desirable permutation of the set of integers {1,2}..
The CS method easily detects if a Boolean equation
Subject to the consistency condition: f(X)=0 is inconsistent, for then it produces
o CS(f(X))=1, which leads to the inconsistency {1 = 0},
(acv bev @y by "ae ab (27b)  or in other words, leads to a consistency condifin

0} which is not satisfiable. In this case, all amofB are
The terms in parentheses in (@are the only terms  nullified, B collapses to a single element and the
that would appear in consistency conditions by thesolution set is empty.
eliminants method (Rudeanu, 1974; Brown, 1990), the
don't-care method (Rushdi, 2001b; 2004) or the Rude 7. CONCLUSION
method (Rudeanu, 2003). Other terms in bj2%are
generalized consensi of the earlier terms. The itiond

(27) |n_d|cates that six out of the _el_ght atoms of the introduced. The method is based on the derivatiche
underlying Boolean algebra are nullified. These e 1 hjete sum CS(f) of the pertinent Boolean fumctio
atomsabe, ‘abc,"abc, abc, abc and’e Hence B retains  prominent methods for such a derivation are briefly
the two (now complementary) atomabc and’abr and  outlined and utilized in four demonstrative exarsple
hence it reduces into a 4-element Boolean algebra: covering Boolean algebras of various sizes.

A novel method for obtaining the general
subsumptive solution of a general Boolean equaison
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