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ABSTRACT

The axisymetric laminar boundary layer unsteadwfldong a continuously stretching cylinder immersed
in a viscous and incompressible fluid is studiedhe Tgoverning partial boundary layer equations in
cylindrical form are first transformed into ordigadifferential equations these equations are solved
analytically using the optimal modified Homotopy yigptotic method in order to get a closed form
solution for the dimensionless functions f andlhe main object of this study is to investighie effect of

an unsteadynotion of a stretching cylinder on the flow and teeansfer characteristics such as surface skin
friction and surface heat flux. These charactesstiave a direct effect on the quality of the fimadduct of

the fiber manufacturing and extrusion processesnsidierable effects were found for the dynamic

paramete(y), the curvature parametegs)(@nd the prandtl number (pr) on the velocity admellieat transfer.

Keywords: Optimal Homotopy Asymptotic Method, Stretching i@ger, Boundary Layer Flow,

Unsteady Flow

1. INTRODUCTION

The boundary layer flow and heat transfer of
stretching flat plates or cylinders are very impattin
fiber technology and extrusion processes. The potiaiu
of sheeting material arises in a number of indaktri

aspects of this problem and obtained similarityisohs.

A similarity solution is one in which the number of
independent variables is reduced by at least cally

by a coordinate transformation. The idea is analego
dimensional analysis, but instead of parameters the
coordinates themselves are collapsed into dimelesien

manufacturing processes and includes both metal angroups that scale the velocities (White, 2006). The

polymer sheets. We have many applications sucheas t
cooling of an infinite metallic plate in a coolitgth, the
boundary layer along material handling conveyehms, t
aerodynamic extrusion of plastic sheets, the boynda
layer along a liquid film in condensation processes
paper production, glass blowing, metal spinning,
drawing plastic films and polymer extrusion. Thealify

of the final product depends on the rate of heatsfer at
the stretching surface. Sakiadis (1961) was thst f
consider the boundary layer flow on a moving
continuous solid surface. Crane (1970) extended thi
concept to a stretching sheet with linearly varying
surface speed and presented an exact analytiagicsol
for the steady two-dimensional stretching of a atefin

a quiescent fluid. Then many authors consideretbusr
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boundary layer flow due to a stretching surfaceain
quiescent viscous and incompressible fluid when the
buoyancy forces are taken into consideration haenb
considered by Daskalakis (1993), Chen (1998; 2000),
Lin and Chen (1998), Ali (2004), Parthial. (2005) and
Ishak et al. (2007) (Grubka and Bobba, 1985;
Daskalakis, 1993). Lin and Shih (1980; 1981),
considered the boundary layer and heat transfargalo
horizontally and vertically moving cylinders with
constant velocity and found that the similaritywgans
could not be obtained due to the curvature efféthe
cylinder. The case of stretching sheet is studigd b
Grubka and Bobba (1985) and Ali (1994), this stigly
extended by Ishak and Nazar (2009), to the case of
stretching cylinder. In this study we consider a
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stretching cylinder in an unsteady flow and haverbe

solved analytically.

2. FORMULATION OF THE PROBLEM

Consider an unsteady, laminar, incompressible and

viscous flow on a continuous stretching cylinderims
figure (1).It is assumed that the stretching veioci
Uw(X,t)= (a x)/(1yt and the surface temperaturg (k,t)

= (b x)/(1yt),where a, b ang are constants. The x-axis

and r-axis are taken as showrfig. 1. The conservation
equations for this case are Equation (1 to 3):

0 0

- +— =0 1
ar (ru) P (rv) (1)
6u+u@+ @:Xi(rau] (2)
ot o0x or ror\ or

al+ual+val :ﬁi(rﬂ] (3)
ot 0X or ror\ or

Subjected to The boundary conditions Equation (4):

u=U,(x),v=0,T= T, (x),
uUu-0T-was r- R

atr= R

(4)

where, u andvare velocity components in theandr
directions, respectively, T is the fluid temperatanda
is the thermal diffusivity. The continuity equatioan be
satisfied by introducing a stream functiop such

10y By

thatu = 3 andv=— . The momentum and energy
ror X

transformations (Mahmood and Merkin (1988), Ishak
(2009)) Equation (5):

TR Y w YT (5)
RYTGOV (1,01 = 1=

The transformed ordinary differential equations are
Equation (6 and 7):

@+ Z]p)f’”+2pf"+ff"—f’2—y(f’+%f } =0 (6)
d

4 @
where, (pr) =¥/o) is the prandtl number
Subjected to the boundary conditions Equation (8):

(0) =0,f{0 = 16(0= .

f'(0) - 0,8(0) - 0

n

2

(1+ 2p) 6" + 200"+ Pr(B' - 18)-y P(e+

(8)

where, primes denotes differentiation with respect and
p denotes the curvature parameter defined as Equ&)io

_ [v@-yH
p= aR?

The physical quantities of interest are the skictifrn
coefficient G and the local Nusselt number Nuvhich
are defined as Equation (10):

©)

equations can be transformed into the correspondingC, =TfW,Nux = X (10)
ordinary differential equations by the following puT 2 k(T, = T..)
%
Tz
L.u_r,_____—— N
=
/ Tw(x)
=, N —
IL' )
X 2R n
I 0 v
R
R
Fig. 1. Physical problem
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where, the surface shear stregsand the surface heat
flux qw are given by Equation (11):

ou oT
=@ .9, = k& 11
Tw “(ar)r—R qw (al’ ( )

)r=R
With p and k being the dynamic viscosity and the

thermal conductivity, respectively. Using the samity
variables (5) we get Equation (12):

1

ch Re?= (0 ,Nu \ Rg'*=-6'(0) (12)

where, Rg=Uw/v is the local Reynolds number.

3. OPTIMAL HOMOTOPY ASYMPTOTIC
METHOD (OHAM)

Consider a differential Equation (13) in the form:

L(u®)+N(u(®))+g(t)=0,B(u)= 0 (13)

where, L is a linear operator, t denotes an indépen
variable, u(t) is an unknown function, g(t) is aokm
function, N(u(t)) is a nonlinear operator and B ds
boundary operator. By means of OHAM a family of
equations is constructed Equation (14):

@-p) L(F(t,p) + g(t)]- H A

14
[L(F(t.,p)) + g(t)+ N(F(t,p)]= 0, § F(t,p)= ( a4

where, pl[0,1] is an embedding parameter, H(p) is a
nonzero auxiliary function for $ 0 and H(0)=0, F(t,p) is
an unknown function. Obviously, when p = 0 and b, =
we have Equation (15):

(15)

F(t.0)=w(9./ t3= )

Then, as p increases from 0 to 1, the solutiorp}-(t,
varies from g(t) to the solution u(t) , whereq(t) is
obtained from (14) for p = 0 Equation (16):

L(u(t))+9(t)=0, B{w)=0 (16)
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The auxiliary function is chosen in the form
Equation (17):

H(p)=p Cl+ p2 C2* a7

where, C1,C2 are constants which can be
determined later.
Expanding F(t,p) in a series with respect to p,get

Equation (18):

F(tp.G)=u( 9+ X u (LC)hi=12 (18)

k=1

Substituting (18) in (14), collecting the same poawve
of p and equating each coefficient of p to zero ov&in
a set of differential equations with boundary coiods.
Solving differential equations with boundary coruatit:

U ()4 (1G) W (1G)

Is obtained. Generally the solution of (13) can be
determined in the form Equation (19):

o™ :uo(t)+2?=1uk(tvcr) (19)

Substituting (19) in (13) we get the following resal
Equation (20):

R(t.c)=L(t"(t.G))+ o §+ NW( t.¢)) (20)

If R(t,C) = 0 then I™ (t, G) is much closer to the
exact solution to minimizing the occurred error for
nonlinear problem, let Equation (21):

(21)

where, a and b are values depending on the given
problem. The unknown constants €= 1,2 ,m)
can be determined from the conditions Equation:(22)

03 _ 03 _

—= ..=0
oc, dc,

(22)

With these known constants, the approximate
solution (of order m) (19) is well determined.
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4. SOLUTION USING OHAM

Applying (14) into (8),(9) and (10) we get

Equation (23):

(1- p)[f" +f']—H1(p)[f"'(1+ 2pn)
#2pf 1 -y -y A 0
(1-p)[6+8]-H, (P)B (1+ 2n)+

200 + pr(fe' —f'9)—ypr[9+%9)—9' -8]=0

(23)

where, primes denote differentiation with respeact.t
Since the first two equations in (23) are identical
then we take f), H; and H as following Equation (24):

f =f, +pf, +p%,

8=0,+pd, + p’e,
H,(p)=pC + PG
H,(p)=pC + PG,

(24)

Collecting same powers of p and solving the redulte
set of differential equations we obtain:

f=1-em —%cle‘"(—2y+ Xy - a/r|+yn2+4n2p)

+9i6 e (24cty + 48Xy

—-240cte'y + 48c X"y — 48ck™y + 216cte”y — 48c 26y
—24cte'y® + 24cPe™y” + 48cE"m —192cte"ym + 48c 2"
—24cte'y’n - 24cle'ym’® + 48cfe'ym? - 24c '’
-12cfe'y’n? + 20cte'y’n®

-3cte'y™* + 96¢cLp — 384ctep + 288cte®p —192¢En p
—96CE™?p — 24cx™yn? —12cfe™y™? + 20cPe®y™®
-3cte®y™* +192cfe™n’p - 96c2™? — 96cFe"mp
+144cte'm’p — 24cfe'm’p —192cte™n’p?

+256cfe™®? - 48cfe'*p?)

g=¢" +%03e'“n(4 —4pr = 4pry + prym—8p + 4np)

+9—16e‘2“(96c§ pr — 96¢3prn —-96¢3 pP

9=e‘”+711€ e€'n( 4 4pr- 4pr+ pn- @+ dp)

+9—16e'2” (96 c3 pr 96¢3 py— 9663 pr
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+96c3e" pf — 48c8 pt+ 48C3 e+ 96€3
-288c3 e +96¢c4™ — 96¢3" pm + 384c3e’ pm
-96¢c4" pm - 96c3 e" pfr — 48¢l1c3pym — 96¢E" pyn
+48¢1c@" pyn +336¢3e" ppn — 96c4e” pyn

+48¢c3 pfyn—96cFe" pfyn + 48cFe'’ - 96c3 € pn?
+48cFe" pfn® + 24c3" pim?® —192c3e" py?® + 24c 4" pym?
+144c3e" pAym? + 72¢3€" pfyn’ + 24c3e" pim?®
—24c3e" pfyn® —32c¢Fe" pfy*n® + 3cF énp —192c1c3pp
+192c1c3& gr-192c3énp +960c3 énp-192c4cd énp
-192c1c3enp +192¢3 prp-384c3 & pip -192€ pimp
+96¢3dn%p - 672¢3 &n’p + 96c4énp +480c3 & pi’p
+528¢3 & pym’p +96¢3 én’p-96¢3 € pn’p

-240c3 & pyn’p + 24c3 & pm’p-384c3 énp?

+960c3 én’p? + 448c3 én’p” + 48¢c3 én'p’

5.RESULTS

Computations have been carried out for various
values of the dynamic parametey),(the curvature
parameter @) and the Prandtl number (pr). The Results
for the skin friction f “(0) are computed for vau®
values of the dynamic parametg) @nd the curvature
parameter @) in Table 1 and the results for the
temperature surface gradiefit (0) are computed for
various values of the dynamic parametgy, Prandtl
number (Pr) and the curvature paramepgrif Table 2
and 3. Moreover, the variation of velocity f ‘(0) witlé
dimensionless variablen) for different values of the
dynamic parameter) and the curvature parametej (s
shown inFig. 2-4. The variation of temperatur@ ()
with the dimensionless variablg)(for different values
of the dynamic parametey)(the prandtl number (Pr) and
the curvature parameter)(is shown irFig. 5-8.

6. DISCUSSION

This study presents the effect of unsteady motica o
stretching cylinder on the flow and heat transfer
characteristics such as surface skin friction aeat flux.
These characteristics have a direct effect on tiadity
of the final product of the fiber manufacturing and
extrusion processes.

Figure 2-4 show the velocity of the boundary layer
over the cylinder with the variation of dynamic
parametery and curvature parametgr One can observe
that the increasing of the dynamic parameter irserdéhe
velocity of the boundary layer and the increasifg o
curvature parameter increase the velocity to aairert
value then have a reverse effect before decayirzgto.
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Fig. 4. Variation of the velocity f i) with the dimensionless variablg)(for a various values @f = 0,0.5,1 whery=1
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Fig. 7. Variation of temperaturé (n) with the dimensionless variablg)(aty= 0.2, pr =0.7p=0,0.5,1
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Fig. 8. Variation of temperature (n) with the dimensionless variablg)(aty=0,p=1, pr=0.7,1,3

Tablel. Variation of f “(0) for a various values o) at

Table 3.Variation of 9’ (0) for a various values of, Pr at

various values ofy (y=0.1)

P y=0 y=05 y=1 y Pr p -0 (0)

0.0 -1.00000 -1.17232 -1.32093 0.1 0.7 0.0 0.846139
0.5 -1.24337 -1.38098 -1.49819 0.1 0.7 0.5 1.164680
1.0 -1.37109 -1.47010 -1.55552 0.1 0.7 1.0 1.317460
15 -1.40151 -1.47251 -1.73128 0.1 0.7 15 1.365960
2.0 -1.57544 -1.66321 -1.74647 0.1 0.7 2.0 1.537970
2.5 -1.59145 -1.66296 -1.73169 0.1 1.0 0.0 1.045480
3.0 -1.58635 -1.64545 -1.70288 0.1 1.0 0.5 1.281580
3.5 -1.57082 -1.62046 -1.66911 0.1 1.0 1.0 1.400240
4.0 -1.55085 -1.59316 -1.63494 0.1 1.0 1.5 1.419240
4.5 -1.52957 -1.56596 -1.60247 0.1 1.0 2.0 1.592250
5.0 -1.50860 -1.54062 -1.57254

Table 2. Variation of ©’ (0) for a various values @, Pr at ¢y = 0)

y Pr p -0 (0)

0 0.7 0.0 0.821030
0 0.7 0.5 1.144430
0 0.7 1.0 1.302190
0 0.7 15 1.355360
0 1.0 2.0 1.551810
0 1.0 0.0 1.000000
0 1.0 0.5 1.251980
0 1.0 1.0 1.379360
0 1.0 15 1.404660
0 1.0 2.0 1.613150

On the other hand, the effect of these parameteth®
boundary layer temperature is shown HRig. 5-7. By
observing in these figures, on can observe that
increasing of both parameters increase the temperat

the boundary layer=igure 8 shows the heat profile for

various values of the prandtl number (pr), it isaclthat
the heat increase as the prandtl decreases. Firigll@-
8 show the satisfaction of initial boundary condiso
which support the validity of the solution.
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Moreover, Table 1 shows that the skin friction
coefficient f “(0) for all values ofp andy is negative
which means the surface exerts a drag force ofiuite
Since Equation (6) and (7) are un coupled, thePthadtl
number does not affect on f “(0). The absolute eslaf f
“(0) for all non zero values gf andp are greater than the
values of f “(0) wherp = 0, which means the skin friction
coefficient for the cylinder is greater than thatpl Also it
is noticed that the skin friction f “(0) increasas the
curvature parameterp) increases for all values of the
dynamic parameteg) and then the skin friction decreases
as the curvature paramet@) (ncreases for all values of
the dynamic parameten)( Table 2 and 3 show the
surface heat transfer rai#0) increases as the curvature
parameter () increases which means also that the heat

thdransfer rate at the surface for cylinder is gretitan the
heat transfer rate at the surface for the plate.

7. CONCLUSION

Optimal Homotopy Analysis Method has been applied
to study the effects of the dynamic paramdigr the
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curvature parametep) and the prandtl number (pr) on the Ishak, A. and Nazar, R. 2009. Laminar boundary rlaye
velocity and the heat transfer for a moving cylinitieough flow along a stretching cylinder. Eur. J. ScientsR
the boundary layer in case of an unsteady flow. 36: 22-29.

It is found: Ishak, A., 2009. Mixed convection boundary layemwfl

Closed form solutions for (f) an@)(are obtained

It is found that there are considerable effects for
these parameters on the velocity and temperature
The heat increases as the curvature parameter
increases for various values of the dynamic
parameteryf

over a vertical cylinder with prescribed surfacathe
flux. J. Phys. A, 42: 195501-195501. DOI:
10.1088/1751-8113/42/19/195501

Ishak, A., R. Nazar and I. Pop, 2007. Mixed conieect

on the stagnation point flow toward a vertical,
continuously stretching sheet. J. Heat Transfe®; 12
1087-1090. DOI: 10.1115/1.2737482

4. The effect of the preceded parameters of anLin, C.R. and C.K. Chen, 1998. Exact solution ofithe

unsteady flow on a moving cylinder is studied for
the first time. It is found that the unsteady motio
has a negative effect on the surface skin frictind

a positive effect on surface heat flux
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