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ABSTRACT

In this study, we present the application of Timea@Gged Levy method to model a jump-diffusion
process with stochastic volatility and stochastiteiest rate. We apply the Lewis Fourier transform
method as well as the risk neutral expectationipgianethod to derive a formula for a European
option pricing. These combining methods give quitehort route to derive the formula and make it
efficient to compute option prices. We also show dalibration of our model to the real market with
global and local optimization algorithms.

Keywords. Time Changed Levy Process, Calibration, Stochdstarest Rate, Stochastic Volatility, Jump-
Diffusion, Black and Scholes (BS)

1. INTRODUCTION however creates the stochastic volatility by chagghe
time of a pure Levy process to a random stochéstie.

The success of Black and Scholes (BS) model rests In the computation part, the Lewis’ Fourier
on the ease of computation and traceability: it has Transform method was used to calculate the option
closed form solution and allows for dynamic hedging Prices on the complex plane which works seamlessly
However, the BS model fails to explain many aspetts ~with the Time Changed Levy method where the measure
the real distribution of an asset return. Sincentiibere  changed is defined in the complex domain. The aptio
have been continued efforts to make a better mwdel formula by the Lewis (2001) method comes out in a
describe a model in the real world starting fronride’s single Fourier integral form which helps to redube
jump-diffusion, Heston'’s stochastic volatility aBates’ computation time compared with the other methods
stochastic volatility with a jump-diffusion. Whil¢he which normally generate two integrals.
search for better models for dynamics of assetepric We also calibrate the model to the real marketesric
continues, the practitioner's community usuallyudses  ysing both global and local search methods to firel
more on the utilizability of the models to be jus  minimum of the discrepancies between the market

important as how the models can describe the dynami ices and model prices to obtain the optimal patans
of an asset in the real world. The issues are en th of the model. The result is reported in the lastiea.

computation, calibration and traceability of thedab
In this study, we will apply the Time Changed Levy 1.1. The Modédl

method to model a jump-diffusion with stochastic .

volatility and stochastic interest rate which isitgu 1.1.1. Typical Mode

different from the typical method that describe® th The typical risk neutral model for jump-diffusion

dynamic of the model by separated components of thewith stochastic volatility and stochastic intereste can

stochastic factors. The Time Changed Levy method,be described by Equation 1:
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ds _ Our dynamic of stock price will be an exponential
— =(r, = Ak,)dt+/v,dW + (Y, -1)dN,, L . -
S (f = Ak,) VAW (Y~ DN Levy process which is driven as Equation 2:

with InY, distributed as Normal( v ). . .
E[Y, ~1] =exp(, +$v;)-1= k,, 1) S=8efsds L)y exp(x+| rds | (2)

and dy = k@- v )dt-o/ y dW ,

with dW,dW' = pdt, . Here Sis the st.ock price at tim_e to S exp(X) is the
price of stock at time t = O; Is a risk free rate process

dr, = 0= r,)dt+By/r dW and L is a Levy process with expjlbeing a martingale.
Let us assume the characteristic function of L

Here W,w'and W/ are the Brownian motions (th(z)=E°[exp(izL[ )] is well defined fora<im(z)<p

associated to the underlying asset process, tane@  \here o and p are real numbers and z is a complex
process and the interest rate process respectiVely.  nymper. The Fourier transform of the payoff for a
process Ss the underlying asset price process ansl I Eyropean call option strike at K with a payoff function at
the instantaneous risk free rate process. The psdges the maturity, max(&K) or (Sr-K)* can be computed as:

a Poisson process with jump frequendy and
independent from the other processes. The jumpYsize
1 is distributed as described above. The jumpdkided
in the model to make short term implied volatildyrve

I?I(z) = T exp(izx)(exp(x) KJ dx,

steep as indicated by the empirical studies. Tlegss = j exp(izx)(exp(x) K)dx,

v; is the variance process, k is the speed of mean InK (3)
reversion,B is the mean of long term variance amds _ exp(iz+ 1)x_K exp(izxi“

the volatility of the variance process. The var@anc iz+1 iz ok

process is the square root process known as Cléegso Kz

To explain the leverage effect, the negative cati@h is = Im(z)>1

usually introduced between the underlying assetthad
variance as shown above. The interest rate prisedso T
a CIR process but with different parameters and Here exp (%) = S or X;=X, +j—rp|t +L. In
independent from the other processes. . °

) Equation 3, H(z) is defined in the region where the
1.2. The Time Changed L evy Approach imaginary part of Fourier transform variable z, is greater

We derive the Fourier option pricing using the Lewi than 1. The corresponding gene.raliz.ed ir]verse Fourier
method. There is a variety of Fourier TransfornciRg transform H(x) for the payoff function is defined below:
methods but we choose this method as its integratio

iz; +oo

domain is on the complex plane. This qomplex domaiin Hx) = & J e fi(2)dz (4)
correspond to the domain for the time changed Levy o/

process. Another nice feature of this method ig tha

produces a formula in a single integration form parad In Equation 3 and Equation 4, we extend the
with the typical approaches which produce two iraégns  transform variable z to take a value in the complex
such as the approach in Sattayatham and Intasitl . domain that is defined in the generalized Fourier

This single integral reduces computation time di@p  transform sense. Givemi(z)is well defined on the plane
prices in the calibration process. During our where the imaginary part of z is greater than & th
calculation, we also apply the Modular approach, integration in Equation 4 is just the line integmton a
pioneered by Zhu (2010), which employs the rule of complex plane paralleled to the real axis with hngz)>1.
independence of characteristic functions to write t From the Fundamental Theorem of Asset Pricing,nihe
characteristic function as product of each charéatie arbitrage condition is equivalent to the existeata risk
function of an independent stochastic factor. This neutral measure where a discounted asset price is a
approach will help us to handle each stochastitofac martingale. Based on this Fundamental Theorem, ame ¢
independently which results in the reduction in the write the value of European call option at t = Oriak
dimensions of the calculation. neutral expectation of the discounted payoff as:
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v0=EQ[exp(f—ndt>(s— KY 1. d§ = § (r d&+ dW 9)

T whose the log return can be described by:
= E°[exp( - {dt)(é - K ],

izj+oo T T (5) | / - _1 _ 10
:Z—J;TEQ[J. expg--{dt)expé iZ(2§+I [rdf L )jH(Z)dZ] I']St S) rt+ W 2t rt+ x[ ( )

e ot : < As mentioned previously, the time changed Levy

iZL B [expt (¢ l{ rdnlexpt izg &, € 2)H(zxd processX; can be generated by substitutingfdr t in
The expectation Eis the expectation under a risk Equation 10. SX; has the form Equation 11:

neutral measure. The third line is derived from treosd

line by replacing the payoff function with the 1

corresponding generalized Fourier transform in Equati Xy =W; —ZT, (11)

4. In Equatiorb, here we suppose the interest rate process 2

is independent from the other processes, thereforeame ¢ . . .
write the expectation out from the other terms. By assumption of the independence between the time

Here we will apply the Time Changed Levy method changed Levy process and the jump process, we may
to generate a model with stochastic volatility and Write the characteristic function of Levy process
stochastic interest rate as in Equation 1. That is our®,(-z)from Equation 5 asthe product of the

-1
2n

model is driven by: characteristic function of the time changed Levy
. N, process and the characteristic function of the
S=5 exp!. rds X +> Iny-A kt), compensated compound jump process Equation 12:
0 k=1
6
© a9, o0 2 (12)

t
T, = [vds with dy = k@~ v )dt+o,/ y dW
0

_ _ . We denote ¢,_(z)and @, (z)as the characteristic
where, {, y, A k, and v are defined as in Equation 1 and T '

X, is the time changed Levy process which will berdeii functions of the time changed Levy process and of the

) . o compensated Poison process respectively. So we now
later. Compared with Equation 2, the Levy partgsdiion 7:  need to calculate each component of Equation 5 that are

Lo=X, +3InY, ~M g E°fexp(-(iz+ 1) {dD), @, ()and @, (@).

(7)
=X, +J,. The characteristic of the time changed Levy process
‘ is derived as:
N
The term InY, -Ak t=J, is a compensated iz(w, %
é Kk y t p (B(T‘ (Z) - EQ[GIZ(WT‘ 2T1) ],

compound Poisson process. This time changed Levy

: 1
. . iz(Wr, =5 T+ (2) T -Wx (2)T
processX, is constructed by two stochastic processes, a =B e 2! ]

13
subordinator and an underlying process. The sufuaifi =E"[expcw, )T . 13)
as an increasing process, is a function of caletimiart to t
stochastic time T The underlying process is normally a =B [eXpﬁ—lIJx (2)y ds]
0

pure Levy process. For our case, the subordinatsribw

defined to be a process Equation 8: From the second line to the third line above, welyap

¢ the measure change defined as the complex valuerRad
T = j v ds (8) Nikodym derivative (the detail of this measure dam
0 found in chapter 8 of Zhu (2010) where Equation 14:

where, vis defined as in Equation 1. The underlying Levy M

process is the risk neutral Brownian motion witlft date —(t) =exp(izX; + W, (2)) (14)
. d t

Equation 9: Q
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and Y, (z)denotes the characteristic exponent of the By the assumption, the underlying process is
correlated with the variance process @w,dwW' =pdt.

underlying process; . This measure allows us to write
Then we have the following results:

the characteristic function of the correlated psscén
our case, the underlying process is designed telate ] ) o _
with the variance) as the Laplace transform untier t * Midefines the Radon Nikodym derivative. That is:
new measure. That is Equation 15:

EQ iZX71 1 _ M5 Ux (2T Mtzdﬂ(t)
[ ]=E"[e™™] (15) dQ

Here the characteristic exponent of the Levy preces « The new Brownian motionV*" under the measure
Py(2) of the processW, —%t) is%(iz +7%). To calculate M is defined by:

T, in Equation 16, we need to find the dynamic of v L _ )
under this new measure M by the Girsanov theorem AW = dW - ydW dW = dW - iz/ yp d
(Theorem 1.2.4 in Zhu (2010)). The dynamic pikv

Substitutingdw;’ in the third equation of Equation 6,
dv, = (KO- K'v)dt+ oy dw" (16)  We have:
with k™ =k - izpo
dv, = k(®- v,)dt+ izpov,dt+ o,/ dW™
The variableW,™ is the Brownian motion associated (kB - K"v,)dt + o,V dW™ , with

to the variance process under this new measigee is KM = K
the derivation of the above equation. Based ona@os

Theorem, given a measurable spa¢eF(Q), an Ito o )
process for the dynamic of v Then we can solve for the characteristic of theetim

changed Levy process as:

—-izpo

dv, = k(8- v, )dt+ o/ v, AW/ %, = expt C(1- D()y)

Denote M as a exponential martingale under measure with C(t) = k6 {(km +d)t- 2In[} ]}

Q defined by:
k™ +d| 1-¢"
t D(t , 17
M, :%(t) =exp(izX;, + [ vy (2)ds) 0= L— ge“‘} 4
’ d</ (R 3+ B0,
with E9m] = 1. (k" +d)
(k™ -d)

T T
With X, =W, —ET‘:f\/v_det—flfvsds and
T T 2 ° 20
Here is the derivation ofp, . From Equation 13,
wx(z):}(iz+ 7). Then M can be expressed as: tprl d
2 according to the Feynman-Kac theorem, the
characteristic ofX .

M 7y = exp(uz(jf dw, - j vds)+j é(lzki)ds

= exp(j iz\/VSdV\é—Ej v,Z ds),

dQ .
@, (2) = E"[exp(-w (2)y ds

T T
=exp( ydw +%jyzds) withy =iz[ y will satisfy the following Partial Differential Eqion
J J (PDE):
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oQv,,T) _ KM (0 -v )6<p(vl,T) A
oT Yoav, 2
~ Wy (29 (X, T),
with @(v,, T=0)=1

given that dy= K @- vy )dto v dW

2
ko—ta Qv T)

2
ov,

The equation for D(t) is called Riccati equationiath
is a nonlinear ordinary differential equation. Taka it
simple we will write the equation for D(t) as:

aD(t)

5 =P- QD(t)+ RIF (t)

where, P =iy, Q = K" and R :—%02.

The solution for D(t) will be D(t)=—%5u'where u

will satisfy the following auxiliary differentialeuation:
w 1P \
u +[F+Q]u+ PR= 0

The general solution for the above equation is:

u(t)= Ae™ + Bé"
where A and B are constant,

17 +QI+ [ +QI -4PR

with o = ,

2
5 +Q1+ [ 2 +QI* -4PR
andp = P P
2
Therefore:

Ace™ + B 1
D(t)y=——————

® Ae™ + B " R(t)
Replace P,Q,R and we have:

—KM —KM —
_ k2+d and@ = k" -d

where d5/ (K j+ 2,07

a

With D(0) = 0, we can solve for:

k" +d,

—g2

(K" + d)

b(® = (K" d)

-
L—gé"}'wnh g=
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Then C(t) can be solved from D(t) and equation.

The computation of stochastic interest rate part is
similar to the calculation of characteristic of &m
changed Levy part. We can write Equation 18:

E°[exp(- (iz+ 1)JT‘ fdt)]= exp(G(ty+ H(t))
a+d ( 1- &
B> '1-ge"

H(t)=a(2'0{ a+ - 2mt=9€ )} ,
B 1-g9

o2+ 2(iz B2 andga=+—g
G_

with G(t) = ),

(18)

The last part is the characteristic of the compitsa
compound Poison process which is computed below
Equation 19:

@, (2)=E° [exp(iZ&) InY, -Ak, t)],

=exp(E? [(izNT InY, )]-izAk, 1),
2 (19)

= expE i ey +Z ¥ ) I

(At(exp(izy, —% Zv) 1)

1.3. Calibration

Calibration is the process to obtain a model’s
parameters that match to the market prices of phierms.
This model’'s parameters generally will be differéoim
parameters estimated by the statistical method® Th
statistical parameters reflect the past dynamicthef
underlying asset and not guarantee that the mdulgis
out of this parameters are arbitrage free. Contrarthe
statistical method, the parameters from the caiitma
are arrived with the principles of no arbitragdeast for
the traded options that included in the calibration
process. The differences of these two methodscteithe
the investors risk preferences, hedging costs aenisv
of the participants in the market which is not leao
be captured by a statistical method.

Given we can observe the prices of the option from
the market, the equation for the value of the apliased
on the risk-neutral valuation Bquation 20:

Vo(8,, T.K) = EQ[EXP(}- rdt)(S - K) ] (20)

JMSS
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Here6, is the set of the model parameters, T and K
are the time to maturity and strike of the obseroption
respectively. The dynamic of{Sis described as a
parametric model under the risk neutral measuravelf
can obtain the prices of options at any time TaloK, we
could determine the parameters of the dynamicdfyS
the above equation. But this is impossible in thal r
market where we have limited prices of option iry an
maturity, one possible way is to minimize the dipemncies
between the available market prices and model price
generated from a parametric model. Therefore tbblgm
of calibration has transformed to an optimizatisalem
for the least square of the discrepancies.

The scenario is that the market prices consisthef
price of European call options spanning a set of
expiration dates {...,Ty and for each [T the market
quotes for strike K...,Kiy. The least square method to
find the minimum of different of prices and the qaeters
of the model can be described by Equation 21:

Min F(8,)
N M

=argmin 3w [C' 6, .T.K )- C(T . K )i

i=1 j=1

(21)

The function H§) is the objective function with
parametef,. The function C‘(ep,Ti,Kij) and C(T.K;) are
the value of the call option generated by pararseigr
and the observed price at maturity dnd strike K
respectively. The variable;j\is the weight associated to
the confidence of the observed price which varigs w
the vega of option. The detail of weighing can bend
in chapter 4.2 of Poklewski-Koziell (2012). Thisas
square problem will have at least a solution gitlea
domains of parameters are compact.

To find the above minimum problem, we employ the

simulated annealing method which is one of the most

efficient method to find a global optimum. In tipsurt,
we will calibrate the models to the DAX index optio
prices on July 5, 2002 as shownTable 1. Based on
Equation 17-19, our model will have 12 paramettrat
are\y,k,0,0,p,A, W,V h,o,®andp.

We run the calibration algorithm in MATLAB
optimization toolbox which provides both a simuthte
annealing algorithm and gradient based optimization
algorithms. We compare our model with The Jump-
Diffusion with Stochastic Volatility model (JDSV).

1.4. Calibrating of The Model

The simulated annealing method is the global
optimization method that replicates the way theatist
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heated to a suitable temperature and cooled dawwriysl
to get the optimum structure. The suitable tempeeaits

called the initial temperature ;Tand the way the
temperature is reduced is called the annealingdsdée
The algorithm is summarized below.

Step 1: Initialization

Set the initial solution xand the initial temperature
Towhich is high enough for the acceptance probakility
0.80 to 0.95.

Step 2: Perturbation

Generate the new solution; »according to the
designed probability distribution and determine the
difference of objective functionf = f(x;)-f(X;.1).

Step 3: Acceptance Determination

The new point is tested to accept if it falls oe th
following criterior:

If Af<0
or r < exp(-KAf/T)

where, r is a uniformly distributed random number
between [0,1]. The term exp(M/T) is referred to as the
acceptance probability where K is normally equals 1

Repeat step 2 and 3 until the equilibrium is redche
(not much improvement for the objective functiorthis
temperature).

Step 4: Annealing

The temperature is slowly reduced with a specific
schedule to zero.

Repeat step 2 to step 4 until the objective fumctio
reach a specified goal.

The simulated annealing method differs from the
gradient based methods in that it can avoid trapjrn
the local minimum by allowing the candidate poimte
accepted even the objective function is worse tten
existing objective function as shown in step 2. The
accepting probability depends on the temperaturietwh
is high when the temperature is high and low in nvtie
temperature is at low level.

1.5. Results

The simulated annealing tool, in the MATLAB’s
optimization toolbox 2012, provides a lot of optotnat
cater to natures of the problem including the terajpee
setting, annealing schedule and stopping criteN@e

JMSS
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have run the optimization the numbers of times seid
the initial temperature at 400. For the randomdeahe
Boltzmann generating function seems to be thedbesdte
to obtain the minimum point to our problem. We cang
our model (JDSVSI) with the Jump Diffusion with
Stochastic Volatility (JDSV) with has 8 parametdismt
are \, k, 0, o, p, A, yyand y. The data points that are the
in-sample on this calibration are all the datalable 1
except for the columns of 1 month and 18 monthswiea
use as the out-of-sample points. Due to the nafire
simulated annealing method, the search for theidated
points being random can locate only the neighbathaio

the minimum. We need the gradient based methoelbr c
here “local search” to fine tune the minimum point.

The minimum of objective functions of JDSV and
JDSVSI are just approximately 1.20 and 1.10 times
higher compared to the BS’s one percent error lied
volatility as shown inTable 2. These errors are
consistent with the bid/offer spread in the realrkaet
which is just about a little higher than 1 percehihe
errors are due to the factors that we do not reizegand
do not include in the models, the data error arel th
landscape of the domain of the problem.

The parameters of the calibration of both modeds ar
shown inTable 3 and 4.

Table 1. Implied Volatility Surface of DAX Index Options ahul. 5,2002 at Spot of 4468.17

Expiry Jul. 02 Aug. 02 Sep. 02 Dec. 02 Mar. 03 . Dec. 03 Jun. 04
Time 2 weeks 1 month 3 months 6 months 9 months  mdmhs 18 months 24 months
Date 19 Jul. 02 16 Aug. 02 20 Sep. 02 20 Dec.02 Ma103 20 Jun. 03 19 Dec. 03 18 Jun. 04
Tenor (T) 0.0389 0.1139 0.2083 0.4583 0.7111 0.9583 1.4556 1.9528
Interest rate (r) 0.0357 0.0349 0.0341 0.0355 ®035 0.0368 0.0386 0.0401
Strike
3600 0.6007 0.4543 0.3967 0.3511 0.3279 0.3154 8a.29 0.2921
4000 0.4541 0.3869 0.3492 0.3149 0.2963 0.2926 10.28 0.2800
4400 0.3726 0.3396 0.3108 0.2871 0.2788 0.2722 60.26 0.2686
4800 0.3302 0.3062 0.2799 0.2631 0.2573 0.2533 0a.25 0.2544
5200 0.3460 0.2845 0.2624 0.2463 0.2425 0.2385 78.23 0.2422
5600 0.3976 0.286 0.2607 0.2356 0.2297 0.2268 0.224 0.2320
Table 2. Minimum Objective Function Comparison

Obj. function Percent over BS
BS with 1% implied error 419.3167 100.00
Jump with SV 503.6367 120.11
Jump with SV and Sl 460.3675 109.79
Table 3. IDSV Parameters

Vo k 6 (o} 7\, UJ VJ
Annealing 0.1205 7.0371 0.0197 0.3937 -0.5852 %368 -0.2675 0.0793
Local search 0.1294 8.4472 0.0242 0.4717 -0.6318 3380. -0.2832 0.0744
Table4. JDSVSI parameters
Vo k 9 (¢ p A UJ VJ ro o 0] B
Annealing 0.1538 11.3981 0.0188 0.4810 -0.6681 7¥36-0.5257 0.1793 0.0330 2.9368 -0.0003 0.7644
Local search 0.1369 9.1408 0.0228 0.4788 -0.5882968. -0.5388 0.1640 0.0100 2.9800 -0.0088 0.8600
Table5. Errors of option implied volatility for JDSV
Strike 2weeks 1month 3 months 6 months 9 month® mdnths 18 months 24 month®(errorf %3 (error}
3600 1.16E-05 9.61E-06 9.60E-05 2.50E-07 4.00E-0609B-05 1.02E-05 2.92E-05 1.72E-04 0.1109
4000 4.75E-04 1.16E-05 2.30E-05 2.50E-07 7.29E-0696H-06 7.84E-06 4.00E-08 5.27E-04 0.3405
4400 1.06E-04 2.25E-06 2.03E-05 2.25E-06 1.37E-0510BB07 2.89E-06 1.76E-05 1.66E-04 0.1071
4800 2.30E-05 1.22E-05 5.93E-05 1.69E-06 5.29E-0600B308 8.41E-06 5.29E-06 1.15E-04 0.0745
5200 1.12E-04 6.72E-05 4.10E-05 6.25E-06 1.37E-0560B-07 1.94E-05 2.50E-07 2.60E-04 0.1682
5600 1.23E-04 6.89E-05 O0.00E+00 1.37E-05 9.00E-0621B-06 7.74E-05 1.44E-05 3.08E-04 0.1988
Y(errorf 0.00085 0.00017 0.00024 0.00002 0.00005 0.00001®00026 0.000067 1.55E-03
%3 (errorf 0.5499  0.1109 0.1547 0.0157 0.0342 0.0099 0.0815 043Q.
49 JMSS
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Table 6. Errors of option implied volatility for IDSVSI

Strike 2weeks 1 month 3 months 6 months 9 monti®mdnths 18 months 24 month&(errorf %3(erroryf
3600 2.53E-04 8.41E-06 5.48E-05 6.40E-07 4.90E-0A0ER207 2.89E-06 1.00E-08 3.20E-04 0.1331
4000 6.45E-04 3.84E-05 6.25E-06 1.60E-07 2.60E-O%11E06 3.03E-05 4.90E-07 7.51E-04 0.3121
4400 4.10E-05 2.89E-06 7.29E-06 1.16E-05 8.41E-0@5ER06 2.21E-05 1.52E-05 1.11E-04 0.0460
4800 1.32E-04 3.02E-05 5.18E-05 1.16E-05 7.29E-069H-06 2.30E-05 4.41E-06 2.62E-04 0.1090
5200 1.94E-05 1.51E-04 5.78E-05 1.44E-05 1.94E-0®O0E07 2.92E-05 3.60E-07 2.92E-04 0.1214
5600 3.31E-04 1.99E-04 1.02E-05 1.44E-05 1.22E-031086:07 8.65E-05 1.60E-05 6.70E-04 0.2784
T(errory 0.00142 0.00043 0.00019 0.00005 0.00007 0.00001 00@® 0.00004 2.41E-03
%z(errorf 0.5907 0.1787 0.0782 0.0219  0.0307 0.0040 0.0806 015Q.

The Table 5 and 6 show the square discrepancies of

both models’ implied volatility with the correspdnd
BS implied volatility. The second last line presetie

sum of the square error and the last line is therer

adjusted by the total of square error for all cahgmAs
expected, the JDSV is better for the short tendrthe
JDSVSI is better in the longer tenor in accordawdé
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the finding from Abudy and Izhakian (2011). Theatot
errors of the out-of -sample data points that showghe
last line of the column of 1 month and 18 month$oth
tables are within the average 0.125 except foretiner
for 1 month of JDSVSI model.

2. CONCLUSION

The combining methods that we implement give a
short route and straightforward option pricing foiten
compared with the existing ones which normally are
derived by riskless portfolio partial differentieduations
or high dimensional risk neutral expectation method
From the calibration results, our model is betteant
JDSV for the longer tenors but not for the shok.on
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