
Journal of Mathematics and Statistics 9 (1): 43-50, 2013 
ISSN 1549-3644 
© 2013 Science Publications 
doi:10.3844/jmssp.2013.43.50 Published Online 9 (1) 2013 (http://www.thescipub.com/jmss.toc) 

Corresponding Author: Paiboon Peeraparp, Institute of Science, School of Mathematics, Suranaree University of Technology, 
Narkorn Ratchasima, Thailand 

 
43 Science Publications

 

JMSS 

A JUMP-DIFFUSION WITH 
STOCHASTIC VOLATILITY AND INTEREST RATE 

Paiboon Peeraparp and Pairote Sattayatham 
 

Institute of Science, School of Mathematics,  
Suranaree University of Technology, Narkorn Ratchasima, Thailand 

 
Received 2013-01-16, Revised 2013-02-17; Accepted 2013-03-27 

ABSTRACT 

In this study, we present the application of Time Changed Levy method to model a jump-diffusion 
process with stochastic volatility and stochastic interest rate. We apply the Lewis Fourier transform 
method as well as the risk neutral expectation pricing method to derive a formula for a European 
option pricing. These combining methods give quite a short route to derive the formula and make it 
efficient to compute option prices. We also show the calibration of our model to the real market with 
global and local optimization algorithms. 
 
Keywords: Time Changed Levy Process, Calibration, Stochastic Interest Rate, Stochastic Volatility, Jump-

Diffusion, Black and Scholes (BS) 

1. INTRODUCTION 

The success of Black and Scholes (BS) model rests 
on the ease of computation and traceability: it has a 
closed form solution and allows for dynamic hedging. 
However, the BS model fails to explain many aspects of 
the real distribution of an asset return. Since then, there 
have been continued efforts to make a better model to 
describe a model in the real world starting from Merton’s 
jump-diffusion, Heston’s stochastic volatility and Bates’ 
stochastic volatility with a jump-diffusion. While the 
search for better models for dynamics of asset prices 
continues, the practitioner’s community usually focuses 
more on the utilizability of the models to be just as 
important as how the models can describe the dynamic 
of an asset in the real world. The issues are on the 
computation, calibration and traceability of the model. 

In this study, we will apply the Time Changed Levy 
method to model a jump-diffusion with stochastic 
volatility and stochastic interest rate which is quite 
different from the typical method that describes the 
dynamic of the model by separated components of the 
stochastic factors. The Time Changed Levy method, 

however creates the stochastic volatility by changing the 
time of a pure Levy process to a random stochastic time. 

In the computation part, the Lewis’ Fourier 
Transform method was used to calculate the option 
prices on the complex plane which works seamlessly 
with the Time Changed Levy method where the measure 
changed is defined in the complex domain. The option 
formula by the Lewis (2001) method comes out in a 
single Fourier integral form which helps to reduce the 
computation time compared with the other methods 
which normally generate two integrals. 

We also calibrate the model to the real market prices 
using both global and local search methods to find the 
minimum of the discrepancies between the market 
prices and model prices to obtain the optimal parameters 
of the model. The result is reported in the last section. 

1.1. The Model  

1.1.1. Typical Model 

The typical risk neutral model for jump-diffusion 
with stochastic volatility and stochastic interest rate can 
be described by Equation 1: 
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with  ln Y  distributed as Normal( , v ),

E[Y 1] exp( v ) 1 k ,

and dv k( v )dt v dW ,

with dW dW dt,

dr ( r )dt r dW

= − λ + + −

µ
− = µ + − ≡

= θ − + σ

= ρ

= α ω − + β

 (1) 

 
Here Wt, v

tW and r
tW are the Brownian motions 

associated to the underlying asset process, the variance 
process and the interest rate process respectively. The 
process St is the underlying asset price process and rt is 
the instantaneous risk free rate process. The process Ni is 
a Poisson process with jump frequency λ and 
independent from the other processes. The jump size Yt-
1 is distributed as described above. The jump is included 
in the model to make short term implied volatility curve 
steep as indicated by the empirical studies. The process 
vt is the variance process, k is the speed of mean 
reversion, θ is the mean of long term variance and σ is 
the volatility of the variance process. The variance 
process is the square root process known as CIR process. 
To explain the leverage effect, the negative correlation is 
usually introduced between the underlying asset and the 
variance as shown above. The interest rate process is also 
a CIR process but with different parameters and 
independent from the other processes. 

1.2. The Time Changed Levy Approach  

We derive the Fourier option pricing using the Lewis 
method. There is a variety of Fourier Transform Pricing 
methods but we choose this method as its integration 
domain is on the complex plane. This complex domain will 
correspond to the domain for the time changed Levy 
process. Another nice feature of this method is that it 
produces a formula in a single integration form compared 
with the typical approaches which produce two integrations 
such as the approach in Sattayatham and Intarasit (2011). 
This single integral reduces computation time of option 
prices in the calibration process. During our 
calculation, we also apply the Modular approach, 
pioneered by Zhu (2010), which employs the rule of 
independence of characteristic functions to write the 
characteristic function as product of each characteristic 
function of an independent stochastic factor. This 
approach will help us to handle each stochastic factor 
independently which results in the reduction in the 
dimensions of the calculation. 

Our dynamic of stock price will be an exponential 
Levy process which is driven as Equation 2: 
 

t t

t 0 s t 0 s t

0 0

S S exp( r ds L ), exp(X r ds L )= + = + +∫ ∫  (2) 

 
Here St is the stock price at time t, S0 = exp(X0) is the 

price of stock at time t = 0, rt is a risk free rate process 
and Lt is a Levy process with exp(Lt) being a martingale. 
Let us assume the characteristic function of Lt, 

t

Q
L t(z) E [exp(izL )]φ =  is well defined for α<Im(z)<β 

where α and β are real numbers and z is a complex 
number. The Fourier transform of the payoff for a 
European call option strike at K with a payoff function at 
the maturity, max(ST-K) or (ST-K)+ can be computed as: 
 

ln K

ln K

iz 1

2

H(z) exp(izx)(exp(x) K) dx,

exp(izx)(exp(x) K)dx,

exp(iz 1)x exp(izx)
( K ) ,
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          ,    Im(z)>1   

z iz

∞∧
+

−∞

∞

∞

+

= −

= −

+= −
+

= −
−

∫

∫
 (3) 

 

Here exp (XT) = ST or 
T

T 0 t T

0

X X r dt L .= + − +∫  In 

Equation 3, Ĥ(z)  is defined in the region where the 
imaginary part of Fourier transform variable z, is greater 
than 1. The corresponding generalized inverse Fourier 
transform H(x) for the payoff function is defined below: 
 

i

i

iz
izx1

2
iz

ˆH(x) e H(z)dz
+∞

−
π

−∞

= ∫  (4) 

 
In Equation 3 and Equation 4, we extend the 

transform variable z to take a value in the complex 
domain that is defined in the generalized Fourier 
transform sense. Given, Ĥ(z) is well defined on the plane 
where the imaginary part of z is greater than 1, the 
integration in Equation 4 is just the line integration on a 
complex plane paralleled to the real axis with any Im(z)>1. 
From the Fundamental Theorem of Asset Pricing, the no 
arbitrage condition is equivalent to the existence of a risk 
neutral measure where a discounted asset price is a 
martingale. Based on this Fundamental Theorem, we can 
write the value of European call option at t = 0 as risk 
neutral expectation of the discounted payoff as: 
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 (5) 

 
The expectation EQ is the expectation under a risk 

neutral measure. The third line is derived from the second 
line by replacing the payoff function with the 
corresponding generalized Fourier transform in Equation 
4. In Equation 5, here we suppose the interest rate process 
is independent from the other processes, therefore we can 
write the expectation out from the other terms. 

Here we will apply the Time Changed Levy method 
to generate a model with stochastic volatility and 
stochastic interest rate as in Equation 1. That is our 
model is driven by: 
 

t

t

t N

t 0 s T k y
k 10

t
v

t s t t t t

0

S S exp( r ds X ln y k t),

T v ds with dv k( v )dt v dW

=

= + + − λ

= = θ − + σ

∑∫

∫

 (6) 

 
where, rt, yt, λ ky and vt are defined as in Equation 1 and 

tTX is the time changed Levy process which will be defined 

later. Compared with Equation 2, the Levy part is Equation 7: 
 

t

t

t

N

t T k y
k 1

T t

L X ln Y k t

X J .
=

= + − λ

= +

∑  (7) 

 

The term 
tN

k y t
k 1

ln Y k t J
=

− λ =∑  is a compensated 

compound Poisson process. This time changed Levy 
process 

tTX  is constructed by two stochastic processes, a 

subordinator and an underlying process. The subordinator, 
as an increasing process, is a function of calendar time t to 
stochastic time Tt. The underlying process is normally a 
pure Levy process. For our case, the subordinator Tt is now 
defined to be a process Equation 8: 
 

t

t s

0

T v ds= ∫  (8) 

 
where, vs is defined as in Equation 1. The underlying Levy 
process is the risk neutral Brownian motion with drift rate rt 
Equation 9: 

t t t tdS S (r dt dW )= +  (9) 
 
whose the log return can be described by: 
 

t 0 t t

1
lnS / S rt W t rt X

2
= + − = +  (10) 

 
As mentioned previously, the time changed Levy 

process 
tTX can be generated by substituting Tt for t in 

Equation 10. So 
tTX has the form Equation 11: 

 

t tT T t

1
X W T

2
= −  (11) 

 
By assumption of the independence between the time 

changed Levy process and the jump process, we may 
write the characteristic function of Levy process 

TL ( z)φ − from Equation 5 as the product of the 

characteristic function of the time changed Levy 
process and the characteristic function of the 
compensated compound jump process Equation 12: 
 

T T Tt
L X J( z) ( z) ( z)φ − = φ − φ −  (12) 

 
We denote 

Tt
X (z)φ and 

tJ (z)φ as the characteristic 

functions of the time changed Levy process and of the 
compensated Poison process respectively. So we now 
need to calculate each component of Equation 5 that are 

T
Q

t

0

E [exp( (iz 1) r dt)]− + ∫ , 
Tt

X (z)φ and 
TJ (z)φ . 

The characteristic of the time changed Levy process 
is derived as: 
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2
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2
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          = E [exp( (z)v ds]
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         = E [e ],

        

−

−
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∫

 (13) 

 
From the second line to the third line above, we apply 

the measure change defined as the complex value Radon-
Nikodym derivative (the detail of this measure can be 
found in chapter 8 of Zhu (2010) where Equation 14: 
 

tT t X

dM
(t) exp(izX T (z))

dQ
= + ψ  (14) 
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and X (z)ψ denotes the characteristic exponent of the 

underlying process 
tTX . This measure allows us to write 

the characteristic function of the correlated process (in 
our case, the underlying process is designed to correlate 
with the variance) as the Laplace transform under the 
new measure. That is Equation 15: 
 

Tt X t
izX (z)TQ ME [e ] E [e ]−ψ=  (15) 

 
Here the characteristic exponent of the Levy process 

ψx(z) of the process ( t

1
W t

2
− ) is 21

(iz z )
2

+ . To calculate 

Tt in Equation 16, we need to find the dynamic of vt 
under this new measure M by the Girsanov theorem 
(Theorem 1.2.4 in Zhu (2010)). The dynamic of vt is: 
 

M vM
t t t t

M

dv  (k k v )dt v dW ,

with k k iz

= θ − + σ

= − ρσ
 (16) 

 
The variable vM

tW is the Brownian motion associated 

to the variance process under this new measure. Here is 
the derivation of the above equation. Based on Girsanov 
Theorem, given a measurable space (Ω,F,Q), an Ito 
process for the dynamic of vt: 
 

v
t t t tdv k( v )dt v dW= θ − + σ  

 
Denote Mt as a exponential martingale under measure 

Q defined by: 
 

t

t

t T s X

0

dM
M (t) exp(izX v (z)ds)

dQ
= = + ψ∫  

 
with EQ
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1 1
X W T v dW v ds

2 2
= − = −∫ ∫  and 

2
X

1
(z) (iz z ).

2
ψ = +  Then MT can be expressed as: 
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2
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2
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0 0

T T
2

s t

0 0

dM 1 1
(T) exp(iz( v dW v ds) v ( (iz z )ds),

dQ 2 2

1
exp( iz v dW v z ds),

2

1
exp( dW ds) with =iz v

2

= − + +

= −

= γ + γ γ
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∫ ∫

∫ ∫

 

By the assumption, the underlying process is 
correlated with the variance process or v

t tdW dW dt= ρ . 

Then we have the following results: 
 
• M t defines the Radon Nikodym derivative. That is: 
 

t

dM
M (t)

dQ
=  

 • The new Brownian motion vM
tW under the measure 

M is defined by: 
 

vM v v v
t t t t t tdW dW dW dW dW iz v dt= − γ = − ρ  

 
Substituting v

tdW in the third equation of Equation 6, 

we have: 
 

vM
t t t t t

M vM
t t t

M

dv  k( v )dt iz v dt v dW ,

 (k k v )dt v dW ,  with

 k k iz

= θ − + ρσ + σ

= θ − + σ

= − ρσ

 

 
Then we can solve for the characteristic of the time 

changed Levy process as: 
 

Tt
X 0

dt
M

2

M dt

2 dt

M 2 2
X

M

M

     exp( C(t) D(t)v ),

k 1 ge
with C(t) (k d)t 2ln[ ] ,

1 g

k d 1 e
       D(t) ,

1 ge

            d= (k ) 2 ,

(k d)
           g

(k d)

φ = − −

 θ −= + − −σ − 

 + −=  −σ − 

+ ψ σ

+=
−

 (17) 

 
Here is the derivation of 

Tt
X .φ  From Equation 13, 

according to the Feynman-Kac theorem, the 
characteristic of 

tTX : 

 

Tt

t
M

s

0
X  = E [exp( (z)v ds](z) −ψφ ∫  

 
will satisfy the following Partial Differential Equation 
(PDE): 
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             (z) (x,T),
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− ψ φ
φ = =
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The equation for D(t) is called Riccati equation which 

is a nonlinear ordinary differential equation. To make it 
simple we will write the equation for D(t) as: 
 

2D(t)
P QD(t) RD (t)

t

∂ = − +
∂

 

 

where, P =  ψX, Q = kM and 21
R

2
= − σ . 

The solution for D(t) will be 
1 u '

D(t)
R u

= − where u 

will satisfy the following auxiliary differential equation: 
 

P'
u '' [ Q]u ' PR 0

P
+ + + =  

 
The general solution for the above equation is: 

 
t t

2

2

u(t) Ae Be ,
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2
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Therefore: 
 

t t

t t

A e B e 1
D(t) .

Ae Be R(t)

α β

α β

α + β= −
+

 

 
Replace P,Q,R and we have: 

 
M M

M 2 2
X

k d k d
 and 

2 2

where d= (k ) 2

− + − −α = β =

+ ψ σ
 

 
With D(0) = 0, we can solve for: 
 

M dt M
j

2 dt M

k d 1 e (k d)
D(t) ,with g

1 ge (k d)

+  − += = −σ − − 
 

Then C(t) can be solved from D(t) and equation. 
The computation of stochastic interest rate part is 

similar to the calculation of characteristic of time 
changed Levy part. We can write Equation 18: 
 

T
Q

t 0

0

dt

2 dt

dt

2

2 2

E [exp( (iz 1) r dt)] exp(G(t)r H(t)),

d 1 e
with G(t) ( ),

1 ge

1 ge
        H(t) ( d)t 2ln( ) ,

1 g

d
             d 2(iz 1)  and g=

d

− + = +

α + −=
β −

 αω −= α + − β − 

α += α + + β
α −

∫

 (18) 

 
The last part is the characteristic of the compensated 

compound Poison process which is computed below 
Equation 19:  
 

T

T

T

N
Q

J k Y
k 1

N
Q

k Y
k 1

J J

2
J j

(z) E [exp(iz( ln Y k t)],

exp(E [(iz ln Y )] iz k t),

1
exp( iz t(exp(u v ) 1)

2
1

( t(exp(izu z v ) 1))
2

=

=

φ = − λ

= − λ

= − λ + − +

λ − −

∑

∑
 (19) 

 
1.3. Calibration 

Calibration is the process to obtain a model’s 
parameters that match to the market prices of the options. 
This model’s parameters generally will be different from 
parameters estimated by the statistical methods. The 
statistical parameters reflect the past dynamic of the 
underlying asset and not guarantee that the models built 
out of this parameters are arbitrage free. Contrary to the 
statistical method, the parameters from the calibration 
are arrived with the principles of no arbitrage at least for 
the traded options that included in the calibration 
process. The differences of these two methods reflect in 
the investors risk preferences, hedging costs and views 
of the participants in the market which is not be able to 
be captured by a statistical method. 

Given we can observe the prices of the option from 
the market, the equation for the value of the option based 
on the risk-neutral valuation is Equation 20: 
 

T
Q

0 p t T

0

V ( ,T,K) E [exp( r dt)(S K) ]+θ = − −∫  (20) 
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Here θp is the set of the model parameters, T and K 
are the time to maturity and strike of the observed option 
respectively. The dynamic of ST is described as a 
parametric model under the risk neutral measure. If we 
can obtain the prices of options at any time T for all K, we 
could determine the parameters of the dynamic of ST by 
the above equation. But this is impossible in the real 
market where we have limited prices of option in any 
maturity, one possible way is to minimize the discrepancies 
between the available market prices and model prices 
generated from a parametric model. Therefore the problem 
of calibration has transformed to an optimization problem 
for the least square of the discrepancies. 

The scenario is that the market prices consists of the 
price of European call options spanning a set of 
expiration dates T1,…,TN and for each Ti, the market 
quotes for strike Ki1,…,KiM. The least square method to 
find the minimum of different of prices and the parameters 
of the model can be described by Equation 21: 
 

p

N M
M 2

ij p i ij i ij
i 1 j 1

Min F( )

arg min w [C ( ,T ,K ) C(T ,K )]
θ = =

θ

= θ −∑∑
 (21) 

 
The function F(θ) is the objective function with 

parameter θp. The function CM(θp,Ti,Kij) and C(Ti,Kij) are 
the value of the call option generated by parameters θp 
and the observed price at maturity Ti and strike Kij  
respectively. The variable wij is the weight associated to 
the confidence of the observed price which varies with 
the vega of option. The detail of weighing can be found 
in chapter 4.2 of Poklewski-Koziell (2012). This least 
square problem will have at least a solution given the 
domains of parameters are compact. 

To find the above minimum problem, we employ the 
simulated annealing method which is one of the most 
efficient method to find a global optimum. In this part, 
we will calibrate the models to the DAX index option 
prices on July 5, 2002 as shown in Table 1. Based on 
Equation 17-19, our model will have 12 parameters, that 
are v0 , k , θ, σ , ρ , λ , uJ , vJ, r0 ,α , ω and β. 

We run the calibration algorithm in MATLAB 
optimization toolbox which provides both a simulated 
annealing algorithm and gradient based optimization 
algorithms. We compare our model with The Jump-
Diffusion with Stochastic Volatility model (JDSV). 

1.4. Calibrating of The Model 

The simulated annealing method is the global 
optimization method that replicates the way the metal is 

heated to a suitable temperature and cooled down slowly 
to get the optimum structure. The suitable temperature is 
called the initial temperature T0 and the way the 
temperature is reduced is called the annealing schedule. 
The algorithm is summarized below. 

Step 1: Initialization 

Set the initial solution x0 and the initial temperature 
T0 which is high enough for the acceptance probability of 
0.80 to 0.95. 

Step 2: Perturbation 

Generate the new solution xi according to the 
designed probability distribution and determine the 
difference of objective function ∆f = f(xi)-f(x i-1). 

Step 3: Acceptance Determination 

The new point is tested to accept if it falls on the 
following criterior: 
 
 If ∆f < 0 
 or r < exp(-K∆f/T) 
 
where, r is a uniformly distributed random number 
between [0,1]. The term exp(-K∆f/T) is referred to as the 
acceptance probability where K is normally equals 1. 

Repeat step 2 and 3 until the equilibrium is reached 
(not much improvement for the objective function in this 
temperature). 

Step 4: Annealing 

The temperature is slowly reduced with a specific 
schedule to zero. 

Repeat step 2 to step 4 until the objective function 
reach a specified goal. 

The simulated annealing method differs from the 
gradient based methods in that it can avoid trapping in 
the local minimum by allowing the candidate point to be 
accepted even the objective function is worse than the 
existing objective function as shown in step 2. The 
accepting probability depends on the temperature which 
is high when the temperature is high and low in when the 
temperature is at low level.  

1.5. Results 

The simulated annealing tool, in the MATLAB’s 
optimization toolbox 2012, provides a lot of options that 
cater to natures of the problem including the temperature 
setting, annealing schedule and stopping criterior. We 
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have run the optimization the numbers of times and set 
the initial temperature at 400. For the random search, the 
Boltzmann generating function seems to be the best choice 
to obtain the minimum point to our problem. We compare 
our model (JDSVSI) with the Jump Diffusion with 
Stochastic Volatility (JDSV) with has 8 parameters, that 
are v0, k , θ, σ, ρ, λ, uJ and vJ. The data points that are the 
in-sample on this calibration are all the data in Table 1 
except for the columns of 1 month and 18 months that we 
use as the out-of-sample points. Due to the nature of 
simulated annealing method, the search for the candidate 
points being random can locate only the neighborhood of 

the minimum. We need the gradient based method or call 
here “local search” to fine tune the minimum point.  

The minimum of objective functions of JDSV and 
JDSVSI are just approximately 1.20 and 1.10 times 
higher compared to the BS’s one percent error in implied 
volatility as shown in Table 2. These errors are 
consistent with the bid/offer spread in the real market 
which is just about a little higher than 1 percent. The 
errors are due to the factors that we do not recognize and 
do not include in the models, the data error and the 
landscape of the domain of the problem. 

The parameters of the calibration of both models are 
shown in Table 3 and 4. 

 
Table 1. Implied Volatility Surface of DAX Index Options on Jul. 5,2002 at Spot of 4468.17 
Expiry Jul. 02 Aug. 02 Sep. 02 Dec. 02 Mar. 03 Jun. 03 Dec. 03 Jun. 04 
Time 2 weeks 1 month 3 months 6 months 9 months 12 months 18 months 24 months 
Date 19 Jul. 02 16 Aug. 02 20 Sep. 02 20 Dec. 02 21 Mar. 03 20 Jun. 03 19 Dec. 03 18 Jun. 04 
Tenor (T) 0.0389 0.1139 0.2083 0.4583 0.7111 0.9583 1.4556 1.9528 
Interest rate (r) 0.0357 0.0349 0.0341 0.0355 0.0359 0.0368 0.0386 0.0401 
Strike 
3600 0.6007 0.4543 0.3967 0.3511 0.3279 0.3154 0.2984 0.2921 
4000 0.4541 0.3869 0.3492 0.3149 0.2963 0.2926 0.2819 0.2800 
4400 0.3726 0.3396 0.3108 0.2871 0.2788 0.2722 0.2661 0.2686 
4800 0.3302 0.3062 0.2799 0.2631 0.2573 0.2533 0.2504 0.2544 
5200 0.3460 0.2845 0.2624 0.2463 0.2425 0.2385 0.2373 0.2422 
5600 0.3976 0.286 0.2607 0.2356 0.2297 0.2268 0.2241 0.2320 
 
Table 2. Minimum Objective Function Comparison  
 Obj. function Percent over BS 
BS with 1% implied error 419.3167 100.00 
Jump with SV 503.6367 120.11 
Jump with SV and SI 460.3675 109.79 
 
Table 3. JDSV Parameters 
 v0 k θ σ ρ λ uJ vJ 

Annealing 0.1205 7.0371 0.0197 0.3937 -0.5852 0.3686 -0.2675 0.0793 
Local search 0.1294 8.4472 0.0242 0.4717 -0.6318 0.3387 -0.2832 0.0744 
 
Table 4. JDSVSI parameters 
 v0 k θ σ ρ λ uJ vJ r0 α ω β 

Annealing 0.1538 11.3981 0.0188 0.4810 -0.6681 0.3677 -0.5257 0.1793 0.0330 2.9368 -0.0003 0.7644 
Local search 0.1369 9.1408 0.0228 0.4788 -0.5882 0.2968 -0.5388 0.1640 0.0100 2.9800 -0.0088 0.8600 
 
Table 5. Errors of option implied volatility for JDSV 
Strike 2 weeks 1 month 3 months 6 months 9 months 12 months 18 months 24 months Σ(error)2 %Σ(error)2 

3600 1.16E-05 9.61E-06 9.60E-05 2.50E-07 4.00E-06 1.09E-05 1.02E-05 2.92E-05 1.72E-04 0.1109 
4000 4.75E-04 1.16E-05 2.30E-05 2.50E-07 7.29E-06 1.96E-06 7.84E-06 4.00E-08 5.27E-04 0.3405 
4400 1.06E-04 2.25E-06 2.03E-05 2.25E-06 1.37E-05 8.10E-07 2.89E-06 1.76E-05 1.66E-04 0.1071 
4800 2.30E-05 1.22E-05 5.93E-05 1.69E-06 5.29E-06 9.00E-08 8.41E-06 5.29E-06 1.15E-04 0.0745 
5200 1.12E-04 6.72E-05 4.10E-05 6.25E-06 1.37E-05 3.60E-07 1.94E-05 2.50E-07 2.60E-04 0.1682 
5600 1.23E-04 6.89E-05 0.00E+00 1.37E-05 9.00E-06 1.21E-06 7.74E-05 1.44E-05 3.08E-04 0.1988 
Σ(error)2 0.00085 0.00017 0.00024 0.00002 0.00005 0.000015 0.000126 0.000067 1.55E-03 
%Σ(error)2 0.5499 0.1109 0.1547 0.0157 0.0342 0.0099 0.0815 0.0432 
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Table 6. Errors of option implied volatility for JDSVSI 
Strike 2 weeks 1 month 3 months 6 months 9 months 12 months 18 months 24 months Σ(error)2 %Σ(error)2 

3600 2.53E-04 8.41E-06 5.48E-05 6.40E-07 4.90E-07 2.50E-07 2.89E-06 1.00E-08 3.20E-04 0.1331 
4000 6.45E-04 3.84E-05 6.25E-06 1.60E-07 2.60E-05 4.41E-06 3.03E-05 4.90E-07 7.51E-04 0.3121 
4400 4.10E-05 2.89E-06 7.29E-06 1.16E-05 8.41E-06 2.25E-06 2.21E-05 1.52E-05 1.11E-04 0.0460 
4800 1.32E-04 3.02E-05 5.18E-05 1.16E-05 7.29E-06 1.69E-06 2.30E-05 4.41E-06 2.62E-04 0.1090 
5200 1.94E-05 1.51E-04 5.78E-05 1.44E-05 1.94E-05 4.90E-07 2.92E-05 3.60E-07 2.92E-04 0.1214 
5600 3.31E-04 1.99E-04 1.02E-05 1.44E-05 1.22E-05 6.40E-07 8.65E-05 1.60E-05 6.70E-04 0.2784 
Σ(error)2 0.00142 0.00043 0.00019 0.00005 0.00007 0.00001 0.00019 0.00004 2.41E-03  
%Σ(error)2 0.5907 0.1787 0.0782 0.0219 0.0307 0.0040 0.0806 0.0152 

 
The Table 5 and 6 show the square discrepancies of 

both models’ implied volatility with the corresponding 
BS implied volatility. The second last line presents the 
sum of the square error and the last line is the error 
adjusted by the total of square error for all columns. As 
expected, the JDSV is better for the short tenor but the 
JDSVSI is better in the longer tenor in accordance with 
the finding from Abudy and Izhakian (2011). The total 
errors of the out-of -sample data points that shows on the 
last line of the column of 1 month and l8 months of both 
tables are within the average 0.125 except for the error 
for 1 month of JDSVSI model. 

2. CONCLUSION 

The combining methods that we implement give a 
short route and straightforward option pricing formula 
compared with the existing ones which normally are 
derived by riskless portfolio partial differential equations 
or high dimensional risk neutral expectation method. 
From the calibration results, our model is better than 
JDSV for the longer tenors but not for the short one. 
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