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ABSTRACT 

In this study we considered a deformed elastic solid with a unilateral contact of a rigid body. We studied the 
existence, uniqueness and continuity of the deformation of this solid with respect to the data. We proved the 
existence of solutions for a class of variational inequalities. 
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1. INTRODUCTION 

Several problems in mechanics, physics, control and 
those dealing with contacts, lead to the study of systems 
of variational inequalities. 

This model has been studied by Slimane et al. (2004); 
Bernardi et al. (2004); Brezis (1983); Brezis and 
Stampacchia (1968); Ciarlet (1978); Grisvard (1985); 
Haslinger et al. (1996); Lions and Stampacchia (1967). 

We consider a solid occupying an open bounded 
domain Ω of a sufficiently regular boundary Γ = ∂Ω with 
unilateral contact with a rigid obstacle. 

Theorem 1.1 

Let P∈L2 (ΩR3) be the resulting of force density. 
Then there exists a unique solution for the variational 
problem: find u∈V such that: 
 

( ) ( )a u,v l v , v V= ∀ ∈  
 
With: 
 

( ){ }1 3
0V v H ,R= ∈ Ω  

 
a(u,v) = The bilinear form 
l(v) = The linear form 
 

To prove this theorem we make use of the Lax-Milgram 
which is based on proving the continuity and V-ellipticity of 
the bilinear form a(u,v) and the continuity of l(v). 

2. FORMULATION OF THE 
CONTACT PROBLEM 

Here we consider a solid occupying an open bounded 
domain Ω of a sufficiently regular boundary Γ = ∂Ω. 

The solid is supposed to have: 
 
• A density on the volume, of force P in Ω 
• Homogenous boundary conditions on Γ 
• Unilateral contact with a rigid obstacle of equation 

x3 = 0 on contact surface Ωc = Ω/Γ. 
 

The displacement is given by: 
 

( )( ) 3 cu x .e 0, in≥ Ω  

 
With (e1, e2, e3) Cartesian base we denote by η the 

reaction of the obstacle on the solid. The relations leading 
to a unilateral contact (without friction) are given by: 
 

( )( )
( )

( )( )

3 c

3 c

3 c

u x .e 0, in

.e 0, in

u x .e 0, in

 ≥ Ω
 η ≥ Ω
 η = Ω

 

 
We use the space ( )1 3

0H ,RΩ  of functions in H1 (Ω, 

R3) equals to zero on Г. 
Let us introduce the convex subspace K for the 

authorized displacements, to be defined as:  
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( ) ( ){ }1 3
0 3 cK v H ,R , v .e 0, in= ∈ Ω ≥ Ω  

 
We consider the following variationnal 

formulation Find: 
 

( ) ( ) ( )1 3 1
0u, H ,R H−η ∈ Ω × Ω  

 
Such that: 

 
( ) ( ) ( ) ( ) ( )1 3

e 0P a u,v c ,v l v , v H ,R− η = ∀ ∈ Ω  

 
With: 

 
( )

c

c ,v vdx
Ω

η = η∫  

 
And the reduced problem becomes: 
Find u∈K such that: 

 

( ) ( )
( )I

a u,v u
P

l v u

 − ≥


−
 

Theorem 2.1 

For any solution (u, η) of problem (Pe), u is a solution 
of problem (PI). 

Proof 

Let (u,η) be a solution of problem (Pe) and u∈K, 
∀v∈K and we have: 
 

, v 0 ,v 0η ≥ ⇔ − η ≤  

 
Problem (Pe) leads to: 

 
,u 0, Kχ − η ≥ ∀χ ∈  

 
We assume that x = 0: 

 
,u 0 ,u 0− η ≥ ⇔ η ≤  

 
By replacing v by v-u in line one of problem (Pe), 

we get: 
 

( ) ( ) ( )a u,v u c ,v u l v u− − η − = −  
 
Where: 
 

( )
( ) ( )

c ,v u ,v u ,v ,u 0

a u,v u l v u , v K

− η − = − η − = − η + η ≤

⇒ − ≥ − ∀ ∈
 

Let u be a solution of problem (PI) then (u,η) is a 
solution of (Pe): 
 

( ) ( )a u,v u l v u 0, v K− − − ≥ ∀ ∈  

 
By using Green's formula, we get: 

 
( ) ( )a u,v u ,v u l v u 0− − η − − − ≥  

 
We assume that v = i±ϕ, with ϕ∈D(ΩR3), (i.e., ϕ 

is of a compact support), then the integral on the 
contour is zero: 
 

( ) ( )a u, l ,φ = φ ∀φ  

 
The integral on a contact area leads to: 

 
, v u 0, v Kη − ≥ ∀ ∈  

 
By assuming that: 

 
v 0

,u 0
v 2u

=
⇒ η = =

 

 
And with the property of convexity of K, we get: 

 
,u 0 ,u ,u ,u 0χ − η = χ − η = χ ≥  

 
Theorem 2.2 

For any P∈H−1(Ω, R3), the problem (Pe) has a unique 
solution (u,η) ∈H0

1 (ΩR3)×H−1 (Ω) 

Proof 

The existence of the solution u of problem is a direct 
application of Slimane et al. (2004). 

Let us consider: 
 

( ) ( ) ( )L v a u,v l v= −  

Remark  

In problem (PI), we have: 
 
• if v = 0, then: 
 

 ( ) ( )a u,u l u− ≥ −  

• if v = 2u, then: 
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 ( ) ( ) ( )a u,u l u L u 0≥ ⇒ =  

 
The Ker of the form (η, v) is characterized by: 

 

( ){ }1 3
0 3V v H ,R , u.e 0, in= ∈ Ω = Ω  

 
Let v∈V, then v and -v are in K from the problem 

(PI) and L(u) = 0, we have: 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

a u,v a u,u b v, l v l u 0

l v l u 0 a u,v l v a u,u

l u 0 a u,v l v 0 L u 0

− + λ − + ≥

− + ≥ ⇔ − −

− ≥ ⇔ − ≥ ⇒ =

 

 
We remplace v by -v in L(u) to get: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
a u,v l v 0 a u,v l v 0

a u,v l v 0 L u 0

− − ≥ ⇔ − + ≥

⇔ − ≤ ⇔ =
 

 
L is of a compact support in V and from the 

following inf-sup condition: 
 

1H

, v
sup

v
−

η
≥ β η  

 
We can prove that there exists η∈H−1(Ω). 
Then (u, η) satisfies line one of problem (Pe).  
The definition of K and L(u) = 0, leads to: 

 
,u ,u ,u ,u 0, Kχ − η = χ − η = χ ≥ ∀χ ∈  

 
This proves the existence of the solution. 
Let U1 and U2 be two solutions of problem (PI). With 

U1 = u1 and U2 = u2 then: 
 

( ) ( )1 1 1a U ,W U l W U , W K− ≥ − ∀ ∈  

( ) ( )2 2 2a U ,W U l W U , W K− ≥ − ∀ ∈  

 
By adding that W = U2 and W = U1we have: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 2 1 2 1 2 1 2 1 2 2

1 2 1 1 2 1 2

2 1 2 1 2

a U ,U U l U U a U ,U U b U U ,

l U U a U ,U U l U U

a U ,U U l U U

− ≥ − − + − λ

≥ − ⇔ − ≥ −

− ≥ −

 

( )
( )
1 2 1 2

1 2 1 2

2

1 2 1 2

a U U ,U U 0

a U U ,U U 0

U U 0 U U

− − ≤

⇔ − − ≤

⇔ α − ≤ ⇔ =

 

 
By the inf-sup condition of problem (Pe) gives us: 

 

( )1 3
0 1 2 1 2v H ,R , ,v ,v∀ ∈ Ω η = η ⇔ η = η  

 
3. THE DISCRETE PROBLEM 

We introduce a discrete subspace Vh of V such that: 
 

( ) ( ){ }3
h h h 1 hV v C ,R , v P k v 0,on= ∈ Ω ∈ = ∂Ω  

 
And dim Vh<∞, therefore there exists a basis: {ωi}, I 

= 1 to Nh, we can then write: 
 

hN

h i i
i 1

v
=

= β ω∑  

 
Now, let us construct a closed convex subset Kh of Vh 

such that Kh should be reduced to a finite number of 
constraints on the βi: 
 

h h 3
h

v V , v.e
K

at every vertex of each triangle K

∈ ≥ ϕ 
=  
 

 

 
Then Kh⊂K and Kh⊂Vh. 
We remark that problem (PI) is equivalent to find 

uh∈Kh such that: 
 

( ) ( ) ( )h h h h h h h hP a u ,v u l v u , v K− ≥ − ∀ ∈  

 
We assume U = u and W = v. 

Theorem 3.1 

Let U and Uk be the solutions of problems (PI) and 
(Ph), respectively. Let us denote by A∈L (V, V’) the map 
defined, by a(U, W) = (AU, W), then: 
 

'

1
2 22

h2 V

h V V

h hV V

M 1
U W

U U P AU

U W U W

 
− + α α 

 − = −
 

− + − 
  
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With P is the resultant of the volume force. 

Proof 

By the definitions of U and W, we have: 

 

( ) ( )
( ) ( )h h h h h h h

a U,U W P,U W ,

W Ka U ,U W P,U W , W K

− ≤ −

∀ ∈ − ≤ − ∀ ∈
 

By adding these inequalities and transposing terms, 
we obtain: 

 

( ) ( ) ( )
( ) ( ) ( )

h h

h h h h

a U,U a U ,U P,U W

P,U W a U,W a U ,W

+ ≤ −

+ − + +
 

 
By subtracting a(U, Uh)+ a(Uh, U) from both sides 

and grouping terms and by using the continuity and 
the coercively of the bilinear form a(U, W), we 
deduce:  

 

'

'

hV V
2

h hV V V

h hV V

P AU U W

U U P AU U W

M U U U W

 − −
 

α − ≤ + − − 
 

+ − −  

 

 
Since: 

 
2

h h h

M
M U U U W U W− − ≤ −

α
 

 
We obtain: 

 

'

1
2 22

h2 V V
h V

h hV V

M 1
U W P AU

U U
U W U W

 
− + − − = α α 

 − + − 

 

 

h hW K and W K∀ ∈ ∀ ∈  

 

4. NUMERICAL RESULTS 

Consider elastic plate with the undeformed 
rectangle shape (0, 10)×(0, 2). The body force is the 
gravity force f and the boundary force g is zero on 
lower and upper side. On the two vertical sides of the 
beam are fixed (Fig. 1-3). 

 
 
Fig. 1. Mesh 
 

 
 
Fig. 2. Isovalue of deplacement ux 

 

 
 
Fig. 3. Isovalue of deplacement uy 
 

5. CONCLUSION 

By starting with the classical model for a deformed 
elastic solid with a unilateral contact of a rigid body, we 
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proved the existence of solutions for a class of 
variational inequalities. 
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