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ABSTRACT

A psycho-technology approach to discouraging gugssi multiple-choice formatted item can be done
through reducing the a priori guessing probabitiy an item. This study proposes a psychometrics
framework of Item Response Theory (IRT) to modet tbffect of having various priori guessing
probabilities across different items. A prior guegsparameter is proposed to serves as a modexhtbe
ability parameter in the two parameter logistic IRlhe results show that the proposed prior guessing
parameter successfully moderates the ability paiennef the subjects with different degrees of girep
However, the prior guessing parameter is insemsitiien the performance pattern is mixed within the
testlet but similar across testlet with differeribp guessing probabilities.

Keywords:. Item Response Model, Testlet, Priori Guessing Hiitibhg Multiple-Correct Responses

1. INTRODUCTION options but maintains single correct answer antba®es
the number of correct response options. Let thebmum
The pioneering Item Response Theory (IRT) to deal of response options be k. For response format siite
with guessing in multiple-choice formatted itemtise correct answer, the a priori guessing probabiktylik.
Parameter Logistic (3PL)-IRT model (Lord, 1980), By increasing the number of options but maintaining
where a guessing parameter is introduced to tat@uat  single correct answer, the a priori guessing priibhab
of the guessing effect on top of the difficulty and will be less than 1/k. In the case of increasireggriomber
discrimination parameters in the 2PL-IRT model of correct response options, r, the calculationtlue#
(Birnbaum, 1968). However, the empirical study from probability depends on whether the r is made kntavn
Pelton (2002) shows that the estimation of the gjngs  the subjects. If r is known, the probability isateld to
parameters is unstable unless the parameters ate mathe permutation of r correct response options &ag (
equal to a known or an unknown constant. Variafits o distractors, which is given by ri(k-)/k! =",. If the r
IRT models have been developed to improve theis unknown, the a priori probability then amounts t
modeling of guessing by modifying the parameters of (1/2), which only depends on the number of response
IRT, for examples, difficulty plus guessing PL mbde options. It can be seen that 1/k/> (1/2f. In other
(Kubinger and Draxler, 2006) and Ability-Based words, the a priori guessing probability is the éwsivif
Guessing (1PL-AG) model (Boech and Leuven, 2006). there are multiple correct response options and the
On the other hand, a psycho-technology approach towumber of correct response options is unknown.
reducing the a priori guessing probability of aanit  Kubingeret al. (2010) show that the difficulty parameter
(Kubinger et al., 2010) is proposed to discourage of the response format of ‘two of the five response
guessing. This approach involves two common ways ofoptions are correct’ is higher than ‘one out of six
formatting the item response i.e., increases tmebeu of response options is correct’ when the r is madenkno
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However, the finding focuses on the difficulties tbg
different response formats rather than the guesiegt
of the subjects.

In this study, we consider a mixture of items with
different number of multiple correct response amio
and therefore the priori guessing probabilitiestltdése

which is the 3PL-IRT model (Lord, 1980). The model
assumes that an individual guesses item | correudtly
probability g. If there is no guessing for all the items, ¢
= 0 and Equation (2) is then reduced to 2PL-IRT ehod
(Birnbaum, 1968) given by Equation (3):

items are different. We propose a prior guessing P(Yij =118 g .31)= 1/( 1+ ex'é—qj (q -8 ))) ()

parameter to be the moderator for the ability patam
in the psychometrics framework of IRT.

2. MATERIALSAND METHODS

2.1. IRT Model with Prior Guessing Parameter
We adopt the concept of testlet (Wainer and Kiely,

In this study, we propose a 2PL-IRT model with
testlet effect due to prior guessing. Consider em#
with numbers of response options k 5 k, ..., ks are
bundled into d testlets t {t, t,..., tq} respectively. The

priori guessing probabilities of these testlets @re2)

1987) to bundle the items with the same response(llz)k2 (1/2)kd respectively. The proposed model is

option. The priori guessing probabilities for items
within the same testlet are equal but differentoasr

testlets. We extend the notion of incorporating the

testlet into IRT by Wanget al. (2002) to propose a
variant of testlet response theory to model therpri
guessing effect by subjects.

given by Equation (4):

P(Yij =116 A )= 1/( e ex;é—uj ((Q ”\n(j))‘ﬁ ))) 4)

where, t(j) = ¢ = {ty, ..., td for j =1, 2, ..., m, is

Let the observed dichotomous responses of n sabjectconsidered as the testlet of items having the same

to mitems be Y, wherei=1,2,...,nandj=1,2, ..., m.
The item is scored as 1 if correct and O if nottdstlet
response model, the conditional probability thdtject i
responses correctly to the item j;(¥ 1) is given by:

(%, =118 v,y

C; +(1— q) /(1+ ex;(o(i (q -B +yit(j)))) @)

where,q;, f; and ¢ are the discrimination, difficulty and
guessing parameters respectively for itemfj,is the
ability parameter of subjects tyy; is the testlet
parameter accounts for the random effect of subject
across items that belong to the same testlet ahdst(
the function relates the belonging of items to the
testlets, for example, t(1) = 2 means Item 1 bedotng
Testlet 2. Each testlet parameter is assumed towvfol
normal distribution N(O,ozt(j)) and represents a testlet
effect through its own testlet specific variancgy.

number of multiple-correct response options aggl is
the testlet effect due to guessing items with cffie
priori guessing probabilities for subject i.

Let the number of items in the s-th testlet be Tine
i-th subject has a d-dimensional response vectors Y
(Yila Yiz,e..s Yid)a where Y = (Yi151 Yiogee-s Yimss)' is the
response vector at the s-th testlet and has aguissing
effect vectord; = (hig, Mia, .-, Aig)', wherels is the prior
guessing effect at testlet fThe correlation among the
prior guessing parameters measured on the samecsubj
across d different testlets i.&;;, A, ..., Aig, IS €xpected
to be higher than the prior guessing among différ-e
subjects within the same testlet i.By5 Aog ..., Ans We
consider this correlation structure of prior guegsas a
moderator for the ability parameter. The distribatiof
the ability parameters is normal, we assume ther pri
guessing effect vectors are also come from a normal
distribution,A; ~ N(u,, Z,), with mean structurey, and
covariance.X,. The covariance matriX, is considered
unstructured and decomposed using Cholesky

Procedures have been developed to estimate thgarameterization and becomBs= M,M,’, where M is

variance of the testlet, Wainet al. (2007); Glast al.
(2000) and Jiacet al. (2013). Note that without the
testlet effect, Equation (1) becomes:

P(Y, =118 a & .¢)
=, +(1-¢) /(1+ exqo; (8 -B)))
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the lower triangular matrix with positive diagonal
elements and unrestricted elements below the dagon
Higher value inz; indicates higher variation of the prior
guessing effect for subject i across testlets witferent
multiple-correct response options and implies highe
guessing in responding the items. Therefore, it lsan
used as a moderator for the ability parameter.
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2.2. Simulations parameters of the proposed response model. The
MCMC method is not only provides a framework to
experiment with new models (Kim and Bolt, 2007;
Martin et al., 2011), it is also more effective for heavy
parameters IRT model (Baker, 1998; Azevesaal.,
2012; Cho et al., 2013). We adopt the prior
distributions imposed on parametdis- N (0, 1),0; ~

N (0.8, 0.3), B; ~ N(O, 1) from Waineet al. (2007) and
>,~ gamma (0.5, 1), from Bradloet al. (1999) which

is proposed for testlet and to restrict the diagjona
elements of M to be positive. Random initial values

consists of 20 subjects each is generated. Thestshj are generated_for the parameters. Since the nun_fber
are considered to have 3 categories of ability laaw, |te_rat|ons reqm_red for testlet parameters to cogeds
average and high which respective ability paranseter quite large (Sinharay, 2003; Suet al., 2012), we
are -2.5,0.5 and 2.5. The subjects respond toettbet consider 10,000 iterations in our study. The Des@&an
of items in 3 performance patterns i.e., poor, ager Information Criterion (DIC) (Spiegelhaltet al., 2002;
and good. Difficulty parameters used to represhat t Francois and Laval, 2011) developed as model sefect
performance patterns for all the 9 groups of sulsiec method for Bayesian estimates of model paramesers i
are shown inTable 1. The IRT models used to ysed to compare the model fit of the pro-posed tode
generate the data are considered to have condlrainegnd the benchmarked IRT model.

?lsi:ngnnatlon parameteu, = 1 (fjortj =12, g” T'Tr? . The simulations are performed using BUGS language
IS groups areé assumed fo respond withou implemented in OPENBUS version 3.2.1 (Luenal.,

guessing and 2PL-IRT model is used to generate th - ; .
response data. For the rest of the 6 groups, 3FL-IR 009) and the statistical programming environment R

model with guessing parameters equal to the priori(RDCT, 2010) version 2.14.1.

guessing probabilities is used to generate theoresp

data. Groups 4 and 5 are assumed to guess more than 3.RESULTS

Groups 6 and 7. Groups 8 and 9 are having mixed _

performance pattern in both of the testlets. Owufo The results of the proposed model are compared with

is only on the subjects with lower ability. 2PL-IRT model to evaluate the model fit and the
In this study, Bayesian estimation with Markov performance of the prior guessing parameter in

Chain Monte Carlo (MCMC) is used to estimate the moderating the ability parameter.

Simulations are performed to study the inclusion of
the proposed prior guessing parameter to modehate t
ability parameter. Twenty items with multiple cate
response options are considered. The items ardeolintb
2 testlets with each consists of 10 items. The rusbf
response options for the 2 testlets afe=k4 and k= 5
respectively but the numbers of correct responsergpare
assumed unknown. Thus, the priori guessing pratesil
of the 2 testlets are (1/2nd (1/2 respectively.

Response data of 9 groups of subjects which

Table 1. Simulated performance patterns and the difficpliyameters used for data generation

Group Ability Testlet Performance patterns Riffty parameters

1 Low 1, k=4 Poor 15,2
2,lk=5 Poor 15,2

2 Average 1,k=4 Average -0.5,0.5
2,lk=5 Average -0.5,0.5

3 High 1, k=4 Good -2,-1.5
2,k=5 Good -2,-1.5

4 Low 1, k=4 Poor 15,2
2,k=5 Good -2,-1.5

5 Low 1, k=4 Average -0.5,0.5
2,k=5 Good -2,-1.5

6 Low 1, k=4 Good -2,-1.5
2, k=5 Average -0.5,0.5

7 Low 1, k=4 Good -2,-1.5
2, k=5 Poor 15,2

8 Low 1, k=4 Mixed poor and good 15,-15
2, k=5 Mixed poor and good 15,-15

9 Low 1, k=4 Mixed poor and good 15,-15
2, k=5 Mixed good and poor -15,15
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Table2. Means of the estimated ability and prior guessing The results also show that the scale of the prior

parameters for all the 9 groups guessing parameter for the subjects from the same
Proposed model ZCF;'-I"RT ability level related to their performance patteross
. . o model testlets of items with different priori guessing
Group Prior guessing Ability Ability A . - .
probabilities. In the analysis, the low ability gps i.e.,
1 -1.60 -1.25 -1.36 .
2 0.63 0.58 0.46 from Group_ 4to Grogp 9 are considered. It cand®ns
3 0.24 261 2.38 that the prior guessing parameters are the lowast f
4 -0.44 -0.71 -0.32 Groups 6 and 7, which are -1.52 and -1.66 respagtiv
5 -0.42 -0.50 -0.16 These two groups perform worse in the testlet with
6 -1.52 -0.05 -0.37 lower prior guessing probability. For groups that
; :é'gg :8%3 :8'32 perform better in the testlet with lower prior gsieg
9 -1.08 042 045 probability i.e., Groups 4 and 5, the prior guessin

parameters are the highest, which are -0.44 amtP -O.

DIC selects the proposed model as a better model tgespectively. For groups that with mixed perforneanc
fit the simulated data. The DICs for the proposextieh pattern within testlet but similar across testiets Groups 8

and 2PL-IRT are 3325 and 3341 respectiv@lgble 2 and 9, the values of prior guessing parameterbetreeen
shows the means of the estimated ability and priorthe range of two aforementioned clusters of groups.
guessing parameters for all the 9 groups. The

performance of the proposed prior guessing paranwete 4. DISCUSSION

evaluated through three analyses as discuss below. ) ] )
The first analysis focuses on the performance of This paper has described a psychometrics framework

the prior guessing parameter in the non-guessingbaSEd on testlet response model to deal with ggesin
groups of Groups 1, 2 and 3. The ability parametérs effect and shown that it measures subject’s ahilibye
all the 3 groups estimated by the proposed model ar reflectively than 2PL-IRT model. The proposed model
higher than the 2PL-IRT model. The abilities introduces a prior guessing parametéy, which
estimated by the proposed model are adjusted by thénodels the prior guessing effect of subjeat testlet4,

prior guessing parameter by +0.11 (= -1.25-(-1.36)) in the testlet response model. The notion is adbpte
+0.12 (= 0.58-0.46) and +0.23 (= 2.61-2.38) form Glaset al. (2000) where there are at least three
respectively for Groups 1, 2 and 3. mathematically isomorphic ways to include the #istl
The second analysis evaluates the effect of thar pri parameter in the IRT model. With the proposed prior
guessing parameter in moderating the abilities ofguessing parameter, the logit of Equation (4) cdnaly
subjects with different degrees of guessing. Grodips be configured as;((8 + Aigy) — Byj) wherehy as part of
and 5 performed better in Testlet 2 which has lower gpjlity, or o8 + (g — By) where Ay as part of
priori guessing prob_ability. The_sg groups are agglm difficulty, or a® + Ay — B) where Ay as an
;()rohue:)vseen;tﬁ)rfa?e%eiil?ﬁé ;?gp?)gg'éynﬁ’gézn;:grlz \;e;’erﬂ}[h independent entity. However, the focus of this pape
_ the first case where prior guessing parameter e taof
the 2PL-IRT model by -0.39 (= -0.71-(-0.32)) and30 ability is considered. The simulation results shthat

(= -0.50-(-0.16)) for Group 4 and 5 respectivelyn the ) ;
contrary, Groups 6 and 7 which have opposite the proposed prior guessing parameter works weh as

performance pattern to Groups 4 and 5 are assumed tmoderator for the ability parameter. The resultsrfithe
have less guessing. The estimated ability parameter ~first analysis imply that the prior guessing partere
Group 6 and 7 are respectively +0.32 (= -0.05-@).3 from the proposed model merits ability for beingt no
and +0.36 (= -0.10-(-0.46)) higher in the proposed guessing. The second analysis result supportsitsie f
model compare to the 2PL-IRT. analysis and further implies that the prior guegsin

The third analysis evaluates the sensitivity of the parameter merits ability of subjects with lower diEgof
prior guessing parameter across testlets with rdiffe  guessing but penalize ability of subjects with leigh
priori guessing probabilities but with similar mike degree of guessing. In terms of the scale of ther pr
performance pattern. The result shows that thetwbil guessing parameter, it is lower for subjects whowsh
parameters estimated by both models are very close.  higher degree of guessing.
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However, this model has some limitations. First, Boech, P.D. and K.U. Leuven, 2006. IRT models for

comparison between the third and first analysisiltes ability-based guessing. Applied Psychol. Measur.,
shows that the prior guessing parameter does na ss 30: 183-203. DOI: 10.1177/0146621605282773

a sensitive moderator in the case of similar pereorce ~ Bradlow, E.T., H. Wainer and X. Wang, 1999. A
pattern across testlets but mixed performance rpatte Bayesian random effects model for testlets.
within testlet. Second, the a priori guessing pbolis Psychometrika, 64: 153-168. DOL:

considered in this study is depending on the nunalber 10.1007/BF02294533

response options rather than the number of correc€h0 S.J., A.S. Cohen and S.H. Kim, 2013. Markov
responses. In other words, the use of the design of chain Monte Carlo estimation of a mixture item

multiple correct responses has not been utilised. response theory model. J. Stat. Comput. Simulat,
83: 278-306. DOI: 10.1080/00949655.2011.603090
5. CONCLUSION Francois, O. and G. Laval, 2011. Deviance inforomati

criteria for model selection in approximate Bayasia
This study proposes a psychometrics framework of computation. Stat. Applied Genet. Mol. Biol., 16: 1
IRT to model the effect of having various priori 25. DOI: 10.2202/1544-6115.1678
guessing probabilities across items. The inclugén Glas, G.AW., H. Wainer and E.T. Bradlow, 2000. MML
the proposed prior guessing parameter in the 2PL-IR and EAP Estimation in Testlet-based Adaptive

model successfully serves as a moderator for the  Testing.In: Computerized Adaptive Testing: Theory
ability parameters. However, there are limitaticns and Practice, van der Linden, W.J. and C.A.W. Glas

(Eds.), Kluwer Academic Publishers, Netherlands,

ISBN: 978-0792364252, pp: 271-287.
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