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ABSTRACT 

A total description of a synchronous Boolean network is typically achieved by a matrix recurrence relation. A 
simpler alternative is to use a scalar equation which is a possibly nonlinear equation that involves two or more 
instances of a single scalar variable and some Boolean operator(s). Further simplification is possible in terms 
of a linear reduced scalar equation which is the simplest two-term scalar equation that includes no Boolean 
operators and equates the value of a scalar variable at a latter instance t2 to its value at an earlier instance t1. 
This equation remains valid when the times t1 and t2 are both augmented by any integral multiple of the 
underlying time period. In other words, there are infinitely many versions of a reduced scalar equation, any of 
which is useful for deducing information about the cyclic behavior of the network. However, to obtain correct 
information about the transient behavior of the network, one must find the true reduced scalar equation for 
which instances t1 and t2 are minimal. This study investigates the nature, derivation and utilization of reduced 
scalar equations. It relies on Boolean-algebraic manipulations for the derivation of such equations and suggests 
that this derivation can be facilitated by seeking certain orthogonality relations among certain successive 
(albeit not necessarily consecutive) instances of the same scalar variable. We demonstrate, contrary to 
previously published assumptions or assertions, that there is typically no common reduced scalar equation for 
all the scalar variables. Each variable usually satisfies its own distinct reduced scalar equation. We also 
demonstrate that the derivation of a reduced scalar equation is achieved not only by proving it but also by 
disproving an immediately preceding version of it when such a version might exist. We also demonstrate that, 
despite the useful insight supplied by the reduced scalar equations, they do not provide a total solution like the 
one offered by matrix methods and therefore they need be supported by other techniques of mathematical 
reasoning. We present three classical examples to illustrate our techniques. Two examples are tutorials on the 
necessary Boolean-algebraic techniques. They present corrections of previously published results and refute 
purported claims of discrepancies between scalar and matrix methods. The third example illustrates how the 
reduced scalar equations can be supplemented by techniques of number theory, Diophantine equations and 
Boolean equations in making subtle inferences about Boolean networks. We achieved a better understanding 
of the nature of reduced scalar equations, demonstrated Boolean-algebraic techniques for deriving them, 
presented other mathematical tools for utilizing them and finally reconciled them with the more encompassing 
but more complex and less insightful matrix methods. 

 
Keywords: Synchronous Boolean Networks, Distinct Reduced Scalar Boolean Equations, Orthogonality, 

Proof and Disproof, Diophantine Equations, Boolean Equations 

1. INTRODUCTION 

A Synchronous Boolean network is a set of n nodes, 
each of which is either in state 1 (on) or state 0 (off) at 

any given time t. Each node is updated at time (t+1) by 
inputs from any fixed subset of the set of nodes 
according to any desired logical rule. Since the total 
number of possible network states is finite (2n) and the 
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network changes states sequentially in discrete time 
steps, the network must necessarily return to a previously 
occupied state in a finite time (at most 2n time points). 
This means that all possible trajectories of the network 
consist of either cycles (loops or attractors) of any length 
from size one (a fixed point) to a maximum of 2n, or 
transient states leading eventually to a cycle. An ideal 
total description of the network (in which one accounts 
for all 2n states) can be achieved by matrix methods 
(Brown, 2003; Cheng, 2009; Cheng and Qi, 2010a; 
2010b; Cheng et al., 2011; Cull, 1971; Rushdi and Al-
Otaibi, 2007), but can be realized only for small n and 
would be unfeasible for most networks of interest that 
usually have 100 or more nodes. Zhao (2005) showed that 
even the determination of the number of fixed points (cycles 
of length 1) for monotone Boolean networks and the 
determination of the existence of fixed points for general 
Boolean networks are both strong NP-complete problems, 
which means among other things that both problems are 
highly intractable and that the best algorithms that can ever 
be devised for them are highly inefficient. 

Utilizing the earlier work of Darby and Mysak (1993) 
and Heidel et al. (2003) suggested that sometimes the 
matrix equations necessary to describe the logic of a 
given Boolean network can be reduced to a smaller set of 
higher-order scalar equations or even a single scalar 
equation and that such a scalar equation is more 
transparent to analyze for cycles, than the original matrix 
equations. The term “scalar equation” is used to denote 
an ordinary recurrence equation for a particular node of 
a Boolean network. This means that a scalar equation is 
an equation that involves two or more time instances of 
a single scalar variable and some Boolean operator(s), 
e.g., the equation X1(t + 3) = 1 + X1(t). As a sequel of 
Heidel et al. (2003) and Farrow et al. (2004) suggested that 
a linear reduced scalar equation be derived from the more 
rudimentary nonlinear scalar equation. The reduced scalar 
equation is a simpler but a higher-order equation. It is a 
two-term scalar equation that includes no Boolean operators 
and equates a latter instance of each scalar variable Xi 

(1≤i≤n)   to an earlier instance of the same variable. The 
general form of the reduced scalar Equation (1) is: 
 

i i i iX (t + r ) = X (t + s ),1 i n≤ ≤  (1) 

 
where ri and si are the smallest integers such that ri > si. 
Such a set of equations yields the immediate information 
that Equation (2 and 3): 
 

i iAny possibal cycle length = a divisorof (r - s ),1i n≤ ≤  (2) 

i iThe longest possible transient trajectory = max (s )  (3) 

 
Heidel et al. (2003) and Farrow et al. (2004) 

apparently assumed that ri and si are the same for all i. 
This assumption is valid for most of the examples 
studied by them. However, it is not valid for the small 3-
variable example studied by Farrow et al. (2004) and 
Everest and Ward (2005), for which they asserted 
explicitly that all three nodes have exactly the same 
reduced scalar equation. The assumption of equality 
among all '

ir s  and all '
is s is invalid also for the major 11-

variable example studied by Farrow et al. (2004). In fact, 
the reduced scalar equation derived there in is neither 
minimal nor valid for all the network variables. That is 
why their value for the transient period of their example 
network does not agree with the corresponding value 
obtained by Cheng et al. (2011) via an exact matrix 
method based on a semi-tensor product approach. 

This study is a continuation of the earlier work of Darby 
and Mysak (1993); Heidel et al. (2003) and Farrow et al. 
(2004). It strives to enhance the method of reduced scalar 
equations and reconcile its results with the more powerful 
(but less insightful) matrix methods. 

2. MATERIALS AND METHODS 

The methodology adopted herein is one of 
mathematical analysis and demonstration by way of 
examples. We utilize various techniques of switching 
algebra (two-valued Boolean algebra). We adhere to the 
linear representation (Reed-Müller expansion) of Boolean 
functions (Rushdi and Al-Otaibi, 2007). Therefore, we 
need to utilize well known properties of the Exclusive-OR 
(XOR) binary operator (+), also known as modulo-2 
addition, or addition over the simplest finite or Galois 
Field GF(2) (Rushdi and Al-Otaibi, 2007). These 
properties include well known identities (Muroga, 1979; 
Gregg, 1998) such as Equation (4 to 8): 
 
X + X = 0  (4) 

 
X +1 = X  (5) 
 
X + 0 = X  (6) 

 
X + X = 1  (7) 
 

( )X 1 X 0+ =  (8) 
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We base our analysis on updating or iterating given 
equations and simplify our manipulations by seeking and 
utilizing certain orthogonality relations that exist among 
successive (albeit not necessarily consecutive) instances 
of the same scalar variable. We augment the reduced-
scalar-equation method by other methods of 
mathematical reasoning, including number theory, 
Diophantine equations and Boolean equations. 

3. RESULTS 

We demonstrate, contrary to previously published 
assumptions or assertions, that there is typically no 
common reduced scalar equation for all the scalar 
variables, i.e., ri and si in (1) are not necessarily the same 
for all i. Each variable usually satisfies its own distinct 
reduced scalar equation. We also demonstrate that the 
derivation of a reduced scalar equation is achieved not 
only by proving it but also by disproving an immediately 
preceding version of it, when such a version could exist. 
In fact, one must prove (1) for the smallest integers ri and 
si, namely rim and sim, where the extra subscript m 
denotes “minimal”. However, (1) is valid not only for ri = 
rim and si = sim, but also for ri = rim + k and si = sim + k 
where k is an arbitrary nonnegative integer. If si = 0, then 
it is minimal and equals sim. Otherwise, a plausible way 
to guarantee that the smallest values rim and sim of ri and 
si were attained is to prove Equation (9): 
 

( ) ( )i im i imX t + r = X t + s ,1 i n≤ ≤  (9) 

 
and Equation (10): 
 

( ) ( )i im i imX t + r 1 X t + s 1 .1 i n− ≠ − ≤ ≤   (10) 

 
With the proof in (9) and the disproof in (10), one 

makes sure that (10) is indeed the true minimal 
reduced scalar equation, simply referred to as the 
reduced scalar equation. 

Despite the useful insight supplied by the reduced 
scalar equations, they do not provide a total solution like 
the one offered by the more-powerful matrix methods 
and therefore they need be supported by other techniques 
of mathematical reasoning. The following examples 
illustrate the Boolean-algebraic techniques; necessary for 
the derivation of the reduced scalar equations, present 
corrections of previously published results, refute 
purported claims of discrepancies between scalar and 
matrix methods and illustrate how the reduced scalar 
equation can be supplemented by techniques of number 

theory, Diophantine equations and Boolean equations in 
making subtle inferences about Boolean networks. 

3.1. Example 1 

Figure 1 presents a 3-variables Boolean network 
studied by Farrow et al. (2004). For simplicity, the 3 
nodes of the network are represented by the symbols A 

through C. Here, a solid arrow indicates a “positive” 
effect and a dotted arrow indicates a “negative” one. The 
network equations are as follows Equation (11a to c): 
 
A(t +1) = B(t) C(t)   (11a) 
 
B(t +1) = 1+ A(t)   (11b) 

 
C(t +1) = B(t)   (11c) 

 
Figure 2 shows a Karnaugh-map representation for 

the three next-state functions of A(t+1), B(t+1) and 
C(t+1) as functions of A(t), B(t) and C(t). For 
convenience, the current value of each map cell is 
shown in the top right corner of the cell. From Fig. 2, 
we obtain the state diagram in Fig. 3, which is a map of 
all possible trajectories among the 23 = 8 states of the 
network. This diagram shows that the network has a 
single cycle of length five and two transient 
trajectories, the longest of which is of length two. 

Since equations resulting from any increment in t are 
also valid [An equation valid for t ia also valid for t + 1, t 
+ 2, t + 3, …], we obtain Equation (12): 
 
A(t + 2) = B(t +1)C(t +1) = (1+ A(t))B(t) (12) 
 

Multiplying both sides of (12) by A(t), one obtains 
the orthogonality condition Equation (13): 
 
A(t)A(t + 2) = 0  (13) 
 
 A further increment of t produces Equation (14): 
 
A(t + 3) = (1+ A(t +1))B(t +1)

= (1+ A(t +1))(1+ A(t))
 (14) 

 
which is a scalar equation for A that implies the two 
orthogonality conditions Equation (15 and 16): 
 
A(t)A(t + 3) = 0  (15) 

 
A(t +1)A(t + 3) = 0   (16) 
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Fig. 1. The Boolean network of Example 1 and the truth tables 

of its excitations 
 

 
 
Fig. 2. A karnaugh-map representations of the next-next state 

functions {A(t + 1) B(t + 1) C(t + 1)}of the network in 
Example 1 

 

 
 
Fig. 3. The state diagram or map of all possible trajectories of 

the states {A(t)B(t)C(t)}of Example 1 

While (15) is a novel condition, (16) is just an 
iteration of (13).  

Further increments in t produce (with the invocation 
of (13) and (8)) Equation (17): 
 
A(t + 5) = (1+ A(t + 3))(1+ A(t + 2))

= (1+ (1+ A(t))(1+ A(t +1)))

(1+ A(t + 2))

= (1+ A(t + 2)) + (1+ A(t))

(1+ A(t +1))(1+ A(t + 2))

= 1+ A(t + 2) +1+ A(t) + A(t +1)

+ A(t + 2) + A(t)A(t + 2)

+ A(t)A(t +1) + A(t +1)

A(t + 2) + A(t)A(t +1)A(t + 2)

= A(t) + A(t +1) + A(t)A

[ ]

[ ]

(t +1)

+ A(t +1)A(t + 2)

= A(t) + A(t +1) 1+ A(t) + A(t + 2)

B(t +1)
= A(t) + B(t)C(t)

+B(t +1)B(t)

= A(t) + B(t) 1+ B(t) C(t)B(t +1)

= A(t) + 0 = A(t)

 
 
 

  (17) 

 
which is a reduced scalar equation for A. It is the 
minimal such equation, since it has no preceding version 
(Here sa = 0). 

Similarly, we increment (11b) to obtain Equation (18): 
 
B(t + 2) = 1+ A(t +1) = 1+ B(t)C(t) (18) 
 
which can be used to produce an orthogonality relation 
Equation (19): 
 
B(t + 2)B(t) = 0 (19) 
 

Further updating of t produces Equation (20 and 21): 
 
B(t + 3) = 1+ B(t +1)C(t +1)  (20) 
 
= 1+ B(t +1)B(t)  (21) 
 
which is the scalar equation for B. An orthogonality 
relation involving three instances can be obtained from 
(20) Equation (22): 
 
B(t)B(t +1)B(t + 3) = 0 (22) 
 

Tow further increments in t produce Equation (23): 
 

( ) ( ) ( )
[ ]

B t + 5 = 1+ B t + 3 B t + 2

= 1+ 1+ B(t +1)B(t) B(t + 2)
  (23) 
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which does not reduce to B(t) in general. A further 
increment in t results in Equation (24): 
 

[ ]
[ ]

[

B(t + 6) = 1+ 1+ B(t + 2)B(t +1)

1+ B(t)B(t +1)

= B(t +1)

B(t + 2) + B(t) + B(t)B(t + 2)]

B(t + 6) = B(t +1)

  (24) 

 
which is the reduced scalar equation for B. It resulted 
from Equation (25): 
 

( )B t + 2 + B(t) + B(t)B(t + 2)

= 1+ B(t)C(t) + B(t) + B(t) + B(t)C(t)

= 1

 (25) 

 
Now, we increment (11c) to get Equation (26 to 28): 

 
C(t +1) = B(t)   (26) 
 
C(t + 2) = B(t +1) = 1+ A(t)  (27) 
 
C(t + 3) = 1+ A(t +1) = 1+ B(t)C(t)

= 1+ C(t +1)C(t)
  (28) 

 
which is the scalar equation for C. It is similar to that for 
B (Equation (21)). However, as will turn out shortly, the 
reduced scalar equations for B and C are not the same. 
The variable C has a 3-instance orthogonality relation 
Equation (29): 
 
C(t)C(t +1)C(t + 3) = 0  (29) 
 

Further increments in t produce Equation (30 to 32): 
 
C(t + 4) = 1+ C(t + 2)C(t +1)  (30) 
 

[ ]
C(t + 5) = 1+ C(t + 3)C(t + 2)

= 1+ 1+ C(t)C(t +1) C(t + 2)

= 1+ C(t + 2) + C(t)C(t +1)C(t + 2)

  (31) 

 
[ ]
[ ]
[ ]

[ ]
[ ]

C(t + 6) = 1+ 1+ C(t +1)C(t + 2) C(t + 3)

= 1+ 1+ C(t +1)C(t + 2)

1+ C(t)C(t + 2)

= 1+1+ C(t +1)C(t + 2)

+ C(t)C(t +1)

+ C(t)C(t +1)C(t + 2)

= C(t +1) C(t) + C(t + 2) + C(t)C(t + 2)

= C(t +1) C(t)VC(t + 2)

  (32) 

Note that the candidate reduced scalar equation: 
?

C(t 6) S(t 1)+ = +  is valid if {C(t)VC(t + 2) = 1}, i.e., if 

{C(t)C(t + 2 = 0,i.e., if CtAt = 0, which is not necessarily 

the case. 
The next updated equation Equation (33): 

 
[ ]C(t + 7) = C(t + 2) C(t +1)VC(t + 3)  (33) 

 
suggest that the next candidate reduced scalar equation: 
 
C(t + 7) = C(t + 2) (34) 
 
is true provided {C(t + 1) VC (t + 3) = 1}, i.e., provided 

{C(t +1)A(t +1) = 0}, which is true, since {C(t +1) = B(t)}  

and {A(t+1)=B(t)C(t)}. Hence (33) is the reduced scalar 
equation for C. 

Contrary to a claim made in [10, p. 350], the reduced 
scalar equations for the variables A, B and C (Equation 
(17), (24) and (34)) are not the same. Each of these 
equations is satisfied when any of the eight states in the 
state diagram in Fig. 1 is taken as the basis or t state. 
When combined together, they indicate that X (t+7) = 
X(t+2), where X stands for A, B, or C. This means that the 
maximum transient in the state diagram is of length two 
and the smallest common multiple of cycle length is 7-2 = 
5. This allows the possibility of cycles of length equal to 
divisors of 5 (i.e., 1or 5). It can be shown that the network 
has no fixed points (cycle of length 1) {the system A(t) = 
B(t)C(t), B(t) = 1+A(t), C(t) = B(t) is obviously 
inconsistent and has no solution}. The network could have 
only a single cycle of length 5 since its total number of 
states is 8. Since the network has a single cycle of length 5 
and one transient of length 2, it must have a second 
transient of length 1. Here, we used very simple reasoning 
to account for all network states, but this will not suffice 
when dealing with large complicated networks. 

3.2. Example 2 

Figure 4 presents the Boolean model of cell growth, 
differentiation and apoptosis (programmed cell death) 
introduced by Huang and Ingber (2000) and solved by 
Farrow et al. (2004) and by Cheng et al. (2011). For 
simplicity, the 11 nodes of the network are represented 
by the symbols A through K. The connectivity graph and 
logic tables are shown in Fig. 4 (IMP = 
“IMPLICATION”, NIF = “NOT IF”, which is also 
called “INHIBIT” and represents the complement of 
IMP, NAND = “NOT AND”).  
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Fig. 4. The Boolean network of Example 2 and the truth tables of its excitations 
 
 
Again, we use a solid arrow to indicate a “positive” effect, 
while a dotted arrow indicates a “negative” one. The 
network equations are as follows (Heidel et al., 2003; 
Huang and Ingber, 2000) Equation (35a to 35k): 
 
A(t +1) = K(t) + K(t) H(t)  (35a) 
 
B(t +1) = A(t) + A(t) C(t)  (35b) 

 
C(t +1) = 1+ D(t) + D(t) I(t) (35c) 

 
D(t +1) = J(t) K(t) (35d) 

 
E(t +1) = 1+ C(t) + C(t) F(t) (35e) 

 
F(t +1) = E(t) + E(t) G(t) (35f) 

 
G(t +1) = 1+ B(t) E(t) (35g) 

H(t +1) = F(t) + F(t) G(t) (35h) 
 
I(t +1) = H(t) + H(t) I(t) = H(t) I(t)  (35i) 
 
J(t +1) = J(t) (35j) 
 
K(t +1) = K(t)  (35k) 
 
 Huang and Ingber (2000) have shown that a 
nontrivial growth attractor exists, assuming that the 
growth factor (node k) and cell spreading (node J) are 
both ON, which means that node D is also ON (k(t) = 
J(t) = Dt = 1. In this case Equation (35a’ and 35b’): 
 
A(t +1) = 1+ H(t) = H(t)  (35a’) 
 
C(t +1) = I(t)  (35b’) 
 

Incrementing the value of t in (35i), one obtains 
Equation (36): 
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I(t + 2) = H(t +1)(1+ I(t +1))

= F(t)(1+ G(t))(1+ I(t +1)),

I(t + 3) = F(t +1)(1+ G(t +1))(1+ I(t + 2))

= F(t +1)(B(t) E(t))(1+ I(t + 2)),

I(t + 4) = F(t + 2)(B(t +1)E(t +1))

(1+ I(t + 3)

I(t + 5) = F(t + 3)(B(t + 2)E(t + 2))

(1+ I(t + 4)

 (36) 

 
where Equation (37): 
 
F(t + 2) = E(t +1)(1+ G(t +1))

= (1+ C(t) + C(t) F(t)) (B(t)E(t)),

F(t + 3) = (1+ C(t +1) + C(t +1) F(t +1))

(B(t +1) E(t +1)),

= (1+ I(t) + I(t) F(t +1))

(B(t +1) E(t +1))

F(t + 4) = (1+ I(t +1) + I(t +1)F(t + 2))

(B(t + 2)E(t + 2))

  (37) 

 
 Now Equation (38): 
 

[ ]

B(t + 2)E(t + 2) = A(t +1)(1+ C(t +1))

(1+ C(t +1) + C(t +1)F(t +1)) = A(t +1)

(1+ C(t +1)

+(1+ C(t +1))C(t +1)F(t +1)

= A(t +1) (1+ C(t +1)) + 0

= A(t +1)(1+ C(t +1)) = B(t + 2)

= (1+ H(t))(1+ I(t))

= 1+ I(t) + H(t) + H(t)I(t)

= 1+ I(t) + I(t +1)

= (1+ I(t)

 
 
 

)(1+ I(t +1))

  (38) 

 
In (38), we made use of the orthogonality relation 

Equation (39): 
 
I(t)I(t +1) = I(t)H(t) + H(t)I(t) = 0   (39) 
 
 Hence, we can substitute (38) in (36) to obtain 
Equation (40): 
 
I(t + 5) = F(t + 3)(1+ I(t))(1+ I(t +1))(1+ I(t + 4))  (40) 
 

If (40) is ANDed (multiplied) with I(t), I(t+1 and 
It+4) respectively, it yields the orthogonality relations 
Equation (41 to 43): 
 
I(t)I(t + 5) = 0  (41) 

I(t +1)I(t + 5) = 0  (42) 
 
I(t + 4)I(t + 5) = 0  (43) 
 
 Of which (41) and (42) are new orthogonality 
relations, while (43) is simply a consequent or an 
updating of (39). We now substitute (38) in (37) to 
obtain Equation (44): 
 

[ ]

F(t + 4) = (1+ I(t +1) + I(t +1)F(t + 2))

(1+ I(t))(1+ I(t +1))

= (1+ I(t +1)) + 0 (1+ I(t))

= (1+ I(t))(1+ I(t +1))

= B(t + 2)

  (44) 

 
Now, we iterate (40) further to obtain Equation (45a 

and 45b): 
 
I(t + 6) = F(t + 4)(1+ I(t +1))(1+ I(t + 2))(1+ I(t +5))

= (1+ I(t))(1+ I(t +1))(t + I(t +1))

(1+ I(t + 2))(1+ I(t + 5)

= (1+ I(t))(1+ I(t +1))(t + I(t + 2))(1+ I(t + 5)

  (45a) 

 
= I(t +1) + (1+ I(t))(1+ I(t + 2))(1+ I(t + 5)) (45b) 
 
= 1+ I(t) + I(t +1) + I(t + 2) + I(t + 5)

+ I(t)I(t + 2)

+ I(t + 2)I(t + 5)

  (45c) 

 
where, we involved the orthogonality conditions (39), 
(41), (42) and an updated version of (39). 

Equation (45) is the scalar equation for I(t) and has 
been derived earlier by Farrow et al. (2004). If (45) is 
ANDed (multiplied) with I(t), I(t + 1), I(t + 2 and It + 5) 
respectively, it yields the relations: 
 
I(t)I(t + 6) = 0   (46a) 
 
I(t +1)I(t + 6) = 0  (46b) 
 
I(t + 2)I(t + 6) = 0  (46c) 
 
I(t + 5)I(t + 6) = 0   (46d) 
 
 Of which only Equation (46a) is new, while 
Equation (46b), (42c) and (46d) are simply latter 
instances of Equation (41), (42) and (39), respectively. 
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If we iterate (45) further, we obtain an expression of I(t 
+ 7), in which we substitute for I(t + 6) from (45) to obtain 
Equation (47): 
 
I(t + 7) = (1+ I(t +1))(1+ I(t + 2))

(1+ I(t + 3))(1+ I(t + 6))

= (1+ I(t +1))(1+ I(t + 2))

(1+ I(t + 3)) + (1+ I(t))

(1+ I(t +1))(1+ I(t + 2))

(1+ I(t + 3))(1+ I(t + 5)).

= (1+ I(t +1))(1+ I(t + 2))

(1+ I(t + 3))

1+1+ I(t) + I(t + 5)

+I(t)I(t + 5)

= (I(t) + I(

 
 
 

t + 5))(1+ I(t +1))

(1+ I(t + 2))(1+ I(t + 3))

 (47) 

 
where, the orthogonality condition (41) is invoked. Note 
that in general, there is no orthogonality between I(t + 4) 
and I(t+7), namely Equation (48): 

 
I(t + 4)I(t + 7) = (I(t)I(t + 4) + I(t + 4)I(t + 5))

(1+ I(t +1))

(1+ I(t + 2))

I(t + 4)

+I(t + 3)I(t + 4)

= I(t)I(t + 4)(1+ I(t +1))1+ I(t + 2))

= I(t)I(t + 4)(1+ I(t + 2))

0

 
 
 

≠

 (48) 

 
 In (48), we utilized the orthogonality condition (39) 
three times. 

Now, we iterate (47) further and use (45c) to obtain: 

 
I(t + 8) = (I(t +1) + I(t + 6))(1+ I(t + 2))

(1+ I(t + 3))(1+ I(t + 4))

= (1+ I)(t))(1+ 2))(1+ I(t + 3))

(1+ I(t + 4))(1+ I(t + 5))

  (49) 

 
Equation (49) is a much simpler expression for I(t+8) 

than the one in Farrow et al. (2004). It supplies a new 
orthogonality relation Equation (50): 

 
I(t + 5)I(t + 8) = 0  (50) 

Table 1 summarizes the orthogonality relations 
obtained so far. Clearly, some of them start from the 
outset, while some start after some delay. 
 Further iteration yields Equation (51): 
 
I(t + 9) = (1+ I(t +1))(1+ I(t + 3))

(1+ I(t + 4))(1+ I(t + 5))(1+ I(t + 6)
 

= (1+ I(t +1))(1+ I((t + 3) 

(1+ I(t + 4))(1+ I(t + 5)) + (1+ I(t))(1+ I(t +1)) 

(1+ I(t + 2))(1+ I(t + 3))(1+ I(t + 4))(1+ I(t + 5)) 

= (1+ I(t +1))(1+ I(t + 3))(1+ I(t + 4))(1+ I(t + 5))  

[ ]I(t) + I(t + 2) + I(t)I(t + 2)

I(t +10) = (1+ I(t + 2))(1+ I(t + 4))
 

(1+ I(t + 5))(1+ I(t + 6))

I(t +1) + I(t + 3)

+I(t +1)I(t + 3)

 
 
 

 

= [(1+ I(t + 2))(1+ I(t + 4))

(1+ I(t + 5)) + (1+ I(t))
 

(1+ I(t +1))(1+ I(t + 2))

(1+ I(t + 4))(1+ I(t + 5))]

I(t +1) + I(t + 3)

+I(t +1)I(t + 3)

 
 
 

 

[ ]
= (1+ I(t + 2))(1+ I(t + 4))

(1+ I)(t + 5) I(t) + I(t +1)

I(t +1) + I(t + 3)

+I(t +1)I(t + 3)

= (1+ I(t + 2))(1+ I(t + 4))

 
 
 

 

[ ]
(1+ I(t + 5))

I(t)I(t + 3) + I(t +1)
  (51) 

 
where, the condition (39) and the identity (4) are used. 
Note that Equation (52a): 
 
I(t)I(t + 3)(1+ I(t + 2))(1+ I(t + 4))(1+ It + 5)

= (I(t + 3) + I(t + 2)I(t + 3))

(I(t + 3) + I(t + 3)I(t + 4))

(I(t) + I(t)I(t + 5))

= (I(t + 3) + 0)(I(t + 3) + 0)(I(t) + 0)

= I(t)I(t + 3)

(I(t +1)(1+ I(t + 2))(1+ I(t + 4))(1+ I(t + 5))

= (I(t +1) + I(t +1)I(t + 2))

(1+ I(t + 4))

(I(t +1) + I(t +1)I(t + 5))

= (I(t +1) + 0)(1+ I(t + 4))(I(t +1) + 0)

= I(t +1) +1(t +1)I(t + 4)

 (52a) 



Ali Muhammad Ali Rushdi and Adnan Ahmad Alsogati / Journal of Mathematics and Statistics 9 (3): 262-276, 2013 

 
270 Science Publications

 
JMSS 

Table 1. Set of orthogonality relations for I(t) 
Time First instance of an Equation 
distance orthogonality relation number 
1  I(t)I(t + 1) = 0  (39) 
2  -  - 
3  I(t + 5) I(t + 8) = 0 (50) 
4  I(t + 1) I(t + 5) = 0  (42) 
5  I(t) I(t + 5) = 0  (41) 
6  I(t) I(t + 6) = 0  (46) 
 

Hence, expression (51) for I(t+10) simplifies to 
Equation (52b-e-54): 
 
I(t +10) = I(t +1) + I(t)I(t + 3) + I(t +1)I(t + 4) (52b) 
 
I(t +11) = I(t + 2) + I(t +1) + I(t + 4) + I(t + 2)I(t + 5)  (52c) 
 
I(t +12) = I(t + 3) + I(t + 2) + I(t + 5) + I(t + 3)I(t + 6)  (52d) 
 
I(t +13) = I(t + 4) + I(t + 3) + I(t + 6) + I(t + 4)I(t + 7)  (52e) 
  
I(t +14) = I(t + 5) + I(t + 4) + I(t + 7) + I(t + 5)I(t + 8)

= I(t + 5) + I(t + 4)I(t + 7)
  (53) 

 
I(t +14) I(t + 5)≠   (54) 
 
where we made use of (50) and (48). We further update 
(53) and utilize (50) to obtain Equation (55): 
 
I(t +15) = I(t + 6) + I(t + 5)I(t + 8)  (55) 
 
I(t +15) = I(t + 6)   (56) 
 

The reduced scalar equation for I(t), Equation (56) 
is one time-period ahead of that given in (Farrow et al., 
2004). Furthermore, contrary to assumptions made in 
(Farrow et al., 2004), other variables of the Boolean 
network do not necessarily have the same reduced 
scalar equation.  

To obtain the reduced scalar equation for E(t), we 
start from (35e) and substitute from (35b’), (35f), (35g), 
(38), (39), (50), (52a) and (53) as follows Equation (57): 
 
E(t + 2) = 1+ C(t +1)(1+ F(t +1)) = 1+ I(t)(1+ E(t)

+E(t)G(t))E(t + 3) = 1+ I(t +1)(1+ E(t +1)(1+1+ B(t)

E(t))) = 1+ I(t +1)(1+ E(t +1)E(t)B(t))E(t + 5) =1+ I(t + 3)

 

{ }

1+ I(t +1)

1+ 1+ E(t +1)
1+ E(t + 3)

E(t)B(t)= 1+ I(t + 3)
E(t + 2)B(t + 2)

(1+ I(t))

(1+ I(t +1))

  
  

                 
  
   

 

[ ]= 1+ I(t + 3) 1+ (1+ I(t))(1+ I(t +1))  

= 1+ I(t + 3)(I(t) + I(t +1))

E(t +10) = 1+ I(t + 8)(I(t + 5) + I(t + 6))
 

= 1+ I(t + 6)I(t + 8)

E(t +14) = 1+ I(t +10)I(t +12)
 

[ ]

I(t +1) + I(t)I(t + 3)
= 1+

+I(t +1)I(t + 4)

I(t + 3) + I(t + 2)I(t + 5)

+I(t + 3)I(t + 6)

= 1+ I(t + 3) I(t) + I(t +1) =

 
 
 

 
 
 

 

E(t + 5) (57) 
 

In the last step towards (57), use has been made of 
the orthogonality relations (39), (41) and (42). Clearly, 
the reduced scalar Equation (56) and (57) for I and E, 
respectively, are not the same. 

Now, we obtain the reduced scalar equation for H(t) 
from (35h) and making use of (35f), (35g), (38), (52c), 
(52d) and (52e) as follows Equation (58 and 59): 
 
H(t + 2) = F(t +1)(1+ G(t +1))

= E(t)(1+ G(t))(B(t)E(t))

H(t + 3) = E(t +1)B(t +1)B(t)E(t)

H(t + 5) = E(t + 3)B(t + 3)B(t + 2)E(t + 2)

= (1+ I(t))(1+ I(t +1))(1+ I(t + 2))

= 1+ I(t))I(t +1)) + I(t + 2)

+ I(t)I(t + 2)

H(t + 7) +1+ I(t + 2) + I(t + 3) + I(t + 4)

+ I(t + 2)I(t + 4)

 (58) 

 
H(t +16) = 1+ I(t +11) + I(t +12)

+ (I(t +13) + I(t +11)I(t +13)

= 1+ I(t + 2) + I(t +1)I(t + 4)

+ I(t + 2)I(t + 5)

+ I(t + 3) + I(t + 2)I(t + 5)

+ I(t + 3)I(t + 6)

+ I(t + 4) + I(t + 3)I(t + 6)

+ I(t + 4)I(t + 7)

+ I(t + 2)I(t + 4)

+ I(t +1)I(t + 4)

= 1+ I(t + 2) + I(t + 3) + I(t + 4)

+ I(t + 2)I(t + 4)

+ I(t + 4)(I(t + 7)

= H(t + 7) + I(t + 4)I(t + 7)

H(t + 7)≠

  (59) 
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H(t +17) = H(t + 8) + I(t + 5)I(t + 8) = H(t + 8) (60) 
 

Equation (60), is the reduced scalar equation for H. It 
resulted from the orthogonality relation (50), while (59) 
resulted from the denial of orthogonality in Equation (48). 

To obtain the reduced scalar equation for B(t), we start 
from (38) and utilize (53), (56), (48) and (50) as follows 
Equation (61): 
 
B(t + 2) = (1+ I(t))(1+ I(t +1))

= 1+ I(t) + I(t) + I(t +1)

B(t + 7) = 1+ I(t + 5) + I(t + 6)

B(t +16) = 1+ I(t +14) + I(t +15)

= 1+ I(t + 5) = +I(t + 4) + I(t + 7) + I(t + 6)

= B(t + 7) = +I(t + 4) + I(t + 7) B(t + 7)≠

 (61) 

 
B(t +17) = B(t + 8) + I(t + 5)I(t + 8) = B(t + 8) (62) 
 

The reduced scalar Equation (56), (57), (60) and (62) 
for I, E, H and B were verified by simulations. Reduced 
scalar equations for other variables of the network are 
Equation (63 to 66): 
 
A + (t +18) = A(t + 9) (63) 
 
C + (t +16) = C(t + 7) (64) 
 
F + (t +19) = F(t +10) (65) 
 
G + (t +18) = G(t + 9) (66)  
  
 These were proved with the aid of the earlier 
reduced scalar equations and were verified by simulation 
as well. In particular, (65) is deducible from (44) and 
(56). The maximum delay (transient period) Tt 
encountered is 10 and takes place for F(t) according to 
(65). This result is in agreement with that provided by 
the more elaborated matrix method of Cheng et al. 
(2011). The earlier scalar result in (Heidel et al., 2003), 
which is Tt≤7 is incorrect. Our update of the reduced 
scalar method refutes the possibility of existence of a 
discrepancy between scalar and matrix methods. 

3.3. Example 3 

The network in Fig. 5 is a simple case of an affine 
system (that has linear terms plus constant terms in the 
Reed-Müller expressions of its next state functions). 
Affine Boolean networks have been studied in great 
detail and their cyclic structure is completely understood 
in a general way (Milligan and Wilson, 1993; Wilson 

and Milligan, 1992), but the network of Fig. 5 has been 
analyzed by Heidel et al. (2003) and Rushdi and Al-
Otaibi (2008) via the scalar-equations technique. 

The logic for this network is expressed by the 
following Equation (67a to f): 
 
A(t +1) = 1+ F(t)   (67a) 
 
B(t +1) = A(t)  (67b) 
 
C(t +1) = B(t)  (67c) 
 
D(t +1) = C(t) (67d) 
 
E(t +1) = D(t) (67e) 
 
F(t +1) = E(t) (67f) 
 

A scalar equation for A(t) is obtained as follows 
Equation (68a to e): 
 
A(t + 2) = 1+ F(t +1) = 1+ E(t) (68a) 
 
A(t + 3) = 1+ E(t +1) = 1+ D(t) (68b) 
 
A(t + 4) = 1+ D(t +1) = 1+ C(t) (68c) 
 
A(t + 5) = 1+ C(t +1) = 1+ B(t) (68d) 
 
A(t + 6) = 1+ B(t +1) = 1+ A(t) (68e) 
 

A reduced scalar equation can be derived by 
continuing as follows Equation (68f to k): 
 
A(t + 7) = 1+ A(t +1) = F(t) (68f) 
 
A(t + 8) = F(t +1) = E(t) (68g) 
 
A(t + 9) = E(t +1) = D(t) (68h) 
 
A(t +10) = D(t +1) = C(t) (68i) 
 
A(t +11) = C(t +1) = B(t) (68j) 
 
A(t +12) = B(t +1) = A(t)  (68k) 
 

Equation (68k) represents the reduced scalar equation 
for A(t). This does not result from (68k) alone, since we 
need to show also that the condition Equation (69a): 
 

?
A(t +11) A(t)=   (69a)
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Fig. 5. The Boolean network of Example 3 and the truth tables of its excitations 
 
Is not satisfied for all t, which can be reduced by virtue 
of (67b) and (68j) to the condition that Equation (69b): 
 

?
B(t) B(t +1)=   (69b) 
 
 Is not satisfied for all t. Now if (69b) is true for all t, 
then B(t) remains constant and by virtue of equations 
(67c) to (67f) and (67a), also C(t), D(t), E(t), F(t) and 
A(t) remain constant. Hence, asserting (69b) amounts to 
stucking the network at single particular states, i.e., 
making every network state a fixed point. This cannot be 
the case, since it contradicts (68e), which explicitly 
asserts that A(t) switches its value every six time units. 
This means that neither (69a) nor (69b) is true and hence 
(68k) is indeed the reduced scalar equation for A(t). 
Now, we seek a reduced scalar equation for A(t) (since 
we might not be sure that it is the same as that of A(t)). 
From (68d), we have Equation (70 and 71): 
 
B(t) = 1+ A(t + 5) (70) 
 
B(t +12) = 1+ A(t +17) = 1+ A(t + 5) = B(t) (71) 
 
 Equation (71) represents the reduced scalar equation 
for B(t) provided we can show that the condition 
Equation (72a): 
 

?
B(t +11) B(t)=  (72a) 
 
 Is not satisfied for all t. By virtue of (67b), (68i) and 
(67c), condition (72a) reduces to the requirement that 
Equation (72b): 
 

?
C(t) C(t +1)=  (72b) 
 
 Be satisfied for all t, which is not the case according 
to  our previous arguments. Note that B satisfies the 

same reduced scalar equation as A. Similarly, we can 
show that each of the other nodes C, D, E and F satisfies 
the same equation. This means that there is no transient 
state for this network (nt = 0) and hence the length of the 
maxim transient trajectory is zero (Tt = 0) and there are 
cycles of period twelve. These cycles might include 
cycles of divisors of 12 (1, 2, 3, 4, 6 and 12), but thanks 
to (68e) we can negate the possibility of cycles of period 
six and its divisors (1, 2, 3 and 6). Therefore, the only 
possible cycle lengths are four and twelve. 

The total number of states can be expressed as: 
 

6
4 122 = 64 = 4n +12n  (73) 

 
where n4 is the number of period-four cycles and n12 is 
the number of period-twelve cycles. Equation (73) can 
be rewritten as: 
 

4 12n + 3n = 16  (74) 
 
 Equation (74) is a special Diophantine equation, i.e., an 
equation with integer coefficients for which integer 
solutions are sought (Andreescu and Andrica, 2009; 
Andreescu et al., 2010; Everest and Ward, 2005; Schroeder, 
2009). This equation can be solved under the conditions that 
n4 and n12 are nonnegative integers as shown in Fig. 6. 
Equation (74) is represented a straight line in the two-
dimensional space of n12 versus n4, which initially suggests 
that (74) has an infinite number of solutions. However, both 
n4 and n12 are restricted to be nonnegative integers. This 
means that Equation (74) has a finite number of solutions. 
To stress the nonnegative integral nature of possible 
solutions of (74), the straight line representing (74) is drawn 
over a rectangular grid of lines, for which each of n4 and n12 
has nonnegative integer values. 
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Fig. 6. Representation of the equation n4 + 3n12 = 16 as a straight line in the two-dimensional space of n12 versus n4 Permissible 

nonnegative integer solutions of (n4, n12) are highlighted 
 

There are six possible solutions for the pair (n4, n12), 
(16, 0) (13, 1), (10, 2), (7, 3), (4, 4) and (1, 5). The scalar 
equation technique has no explicit way for distinguishing 
between these six candidate solutions. The solution n4 = 
1, n12 = 5 cited by Heidel et al. (2003) has five distinct 
cycles of period twelve and one cycle of period four. 
This solution represents the actual network solution as 
can be verified by viewing the map of all possible 
trajectories for the network, as shown in Fig. 7. 

Unfortunately, there is no immediate way to single 
out this desirable solution out of the mathematically 
valid six solutions. The scalar equation technique fails to 
identify the actual network solution without some 
implicit help or pre-knowledge from an exhaustive 
exponential-cost technique. 

In the following, we employ some Boolean-equation 
techniques (Brown, 2003; Hammer and Rudeanu, 1968; 
Rudeanu, 1974; Rushdi, 2001; 2004) (as a supplement to 
the scalar equation method) to identify the states and the 
numbers of all period-four cycles. For this purpose, we 
augment the Equations (1) with the Equation (75a to f): 
 
A(t + 4) = A(t)  (75a) 
 
B(t + 4) = B(t)  (75b) 
 
C(t + 4) = C(t) (75c) 
 
D(t + 4) = D(t)  (75d) 
 
E(t + 4) = E(t) (75e) 
 
F(t + 4) = F(t) (75f) 
 

By virtue of Equation (67) and (75), we have 
Equation (76a to f): 

A(t + 4) = 1+ F(t + 3) = 1+ E(t + 2)

= 1+ D(t +1) = 1+ C(t) = A(t)
 (76a) 

 
B(t + 4) = A(t + 3) = 1+ F(t + 2)

= 1+ E(t +1) = 1+ D(t) = B(t)
 (76b) 

 
C(t + 4) = B(t + 3) = A(t + 2) = 1+ F(t +1)

= 1+ E(t) = C(t)
 (76c) 

 
D(t + 4) = C(t + 3) = B(t + 2) = A(t +1)

= 1+ F(t) = D(t)
 (76d) 

 
E(t + 4) = D(t + 3) = C(t + 2) = B(t +1)

= A(t) = E(t)
 (76e) 

 
F(t + 4) = E(t + 3) = D(t + 2) = C(t +1)

= B(t) = F(t)
 (76f) 

 
The results in (76) can be combined to give Equation 

(77a and b): 
 
A(t) = C(t) = E(t) =α  (77a) 
 
B(t) = D(t) = F(t) =β  (77b) 
 
 Table 2 assigns all possible arbitrary values for the 
constants α and β above and hence identifies all states on 
period-four cycles. The number of these states is four, 
which indicates the existence of a single period four cycle 
(n4 = 1) and hence the existence of five period-twelve cycles 
(n12 = 5). The four states in Table 2 can indeed fit into a 
cycle, as can be verified from Equation (67) or Fig. 7. 



Ali Muhammad Ali Rushdi and Adnan Ahmad Alsogati / Journal of Mathematics and Statistics 9 (3): 262-276, 2013 

 
274 Science Publications

 
JMSS 

 
 

Fig. 7. A map of all possible trajectories for Example 3 showing five period-twelve cycles and a single period four cycle 
 
Table 2. Solution for states on period-four cycles 
α  β  A(t)  B(t)  C(t)  D(t)  E(t)  E(t) 
0  0  0  0  1  1  0  0 
0 1 0 1 1 0 0 1 
1 0 1 0 0 1 1 0 
1 1 1 1 0 0 1 1 
 

4. DISCUSSION 

Derivation of the reduced scalar equation for a 
synchronous Boolean network is typically a cumbersome 
and time-consuming task. However, it could be 
somewhat simplified by adhering to the linear 
representation (Reed-Müller expansion) of the Boolean 
functions. Our examples show that this derivation is 
considerably facilitated by seeking and utilizing 
orthogonality relations among some successive instances 
of the same scalar Boolean variable. For some Boolean 
networks (see, e.g., Example 3), the reduced scalar 
equations are identical for all the Boolean variables. Our 
examples 1 and 2 demonstrate clearly that this is not 
always the case. In both examples, each variable has its 
own distinct reduced scalar equation. 

There are infinitely many versions of a reduced scalar 
equation that are all equally suitable for deducing 
information about the network cycles or attractors. 
However, the true minimal reduced scalar equation is the 
only equation capable of predicting the transient 
behavior of the network. In some cases (see, e.g., 
Examples 1 and 2), this equation has a preceding version 
in which the pertinent times could be decremented by a 
single time period. Here, it is necessary to disprove this 
preceding version if one is to make sure that the reduced 
equation is truly minimal. In other cases (see, e.g., 
Example 3), the earlier time instant in the equation is the 
initial instant and cannot be decremented. Hence, no 
preceding version of the equation exists and there is no 
doubt about the minimality of the equation. 

5. CONCLUSION 

A description of a synchronous Boolean network is 
possible in terms of a linear reduced scalar equation which 
is the simplest two-term scalar equation that includes no 
Boolean operators and equates a latter value of a scalar 
variable X(t2) to an earlier value of the same variable X(t1), 
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t2 > t1. In this study, we achieved a better understanding of 
the nature of reduced scalar equations, demonstrated 
Boolean-algebraic techniques for deriving them, employed 
certain deduced orthogonality conditions for facilitating this 
derivation, presented other mathematical tools for utilizing 
the reduced scalar equations and finally reconciled the 
scalar methods with the more encompassing but more 
complex and less insightful matrix methods. In particular, 
we demonstrated, contrary to previously published 
assumptions or assertions, that there is typically no common 
reduced scalar equation for all the derivation of a reduced 
scalar equation necessitates validating it for the smallest 
instances t1 and t2 and hence is achieved not only by 
proving it but also by disproving an immediately preceding 
version of it when such a version happens to exist. 

Since the disproof required for the equation 
preceding the minimal reduced equation is usually more 
tedious than the proof of the minimal equation itself, the 
reduced-scalar-equation method does not seem 
particularly helpful for evaluating transient length. 
Therefore, one might be content to quickly derive any 
reduced scalar equation, ignoring whether it is the true 
minimal version or a belated version and use this equation 
to study the cyclic behavior of the network. This strategy 
might make the most of reduced scalar equations, which 
are, as intended by Heidel et al. (2003), more transparent to 
analyze for cycles than the original matrix equations. There 
is a paramount interest in the study cycles in Boolean 
networks used as models of gene-regulatory network 
(Hopfensitz et al., 2013). As a network is trapped in a cycle 
as soon as one of its states is entered, cycles comprise the 
states in which the network resides most of the time. It is 
assumed that cycles in gene-regulatory networks are linked 
to phenotypes (Hopfensitz et al., 2013). Therefore, 
restricting the utility of scalar equations to cyclic behavior 
does not lead to a significant reduction of their importance. 
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