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ABSTRACT

A total description of a synchronous Boolean nekwsrtypically achieved by a matriecurrence relation. A
simpler alternative is to use a scaguation which is a possibly nonlinear equation itiheolves two or more
instances of a single scalar variable and someeBaabperator(s). Further simplification is possibléerms

of a linear reduced scalaquation which is the simplest two-term scalar #qnathat includes no Boolean
operators and equates the value of a scalar var#hd latter instance to its value at an earlier instange t
This equation remains valid when the timesad § are both augmented by any integral multiple of the
underlying time period. In other words, there afnitely many versions of a reduced scalar equagmy of
which is useful for deducing information about thyelic behavior of the network. However, to obtain correct
information about the transiebehavior of the network, one must find the trueuced scalar equation for
which instances, tand § are minimal. This study investigates the natuegivdtion and utilization of reduced
scalar equations. It relies on Boolean-algebraicipudations for the derivation of such equationd anggests
that this derivation can be facilitated by seekomgtain orthogonalityelations among certain successive
(albeit not necessarily consecutive) instanceshef $ame scalar variable. We demonstrate, contary t
previously published assumptions or assertions thiesie is typically no common reduced scalar eqndor

all the scalar variables. Each variable usuallysias$ its own distincteduced scalar equation. We also
demonstrate that the derivation of a reduced seajaation is achieved not only by proviiidut also by
disprovingan immediately preceding version of it when susle@ion might exist. We also demonstrate that,
despite the useful insight supplied by the redsmdar equations, they do not provide a total swoidike the
one offered by matrix methods and therefore thesdnee supported by other techniques of mathematical
reasoning. We present three classical exampldiustrate our techniques. Two examples are tutoal the
necessary Boolean-algebraic techniques. They preserections of previously published results aefilite
purported claims of discrepancies between scalhmaatrix methods. The third example illustrates hbes
reduced scalar equations can be supplemented byidgees of number theory, Diophantine equations and
Boolean equations in making subtle inferences aBootean networks. We achieved a better understgndi
of the nature of reduced scalar equations, deraiadtrBoolean-algebraic techniques for deriving them
presented other mathematical tools for utilizingnthand finally reconciled them with the more encasging

but more complex and less insightful matrix methods

Keywords: Synchronous Boolean Networks, Distinct Reduced &8d@bolean Equations, Orthogonality,
Proof and Disproof, Diophantine Equations, BoolEguations

1. INTRODUCTION any given time t. Each node is updated at time)(byl
inputs from any fixed subset of the set of nodes

A Synchronous Boolean network is a senhafodes,  according to any desired logical rule. Since th&lto
each of which is either in state 1 (on) or stat@ff) at number of possible network states is finité) (@nd the
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network changes states sequentially in discretee tim
steps, the network must necessarily return to @qusly
occupied state in a finite time (at mosttine points).
This means that all possible trajectories of thewvaek
consist of either cycles (loops or attractors) of Eength
from size one (a fixed point) to a maximum of 2r
transient states leading eventually to a cycle.ideal
total description of the network (in which one ascts

The longest possible transient trajectory =xn(s, ) 3)
Heidel et al. (2003) and Farrow et al. (2004)
apparently assumed thgtand g are the same for ail
This assumption is valid for most of the examples
studied by them. However, it is not valid for theadl 3-
variable example studied by Farraat al. (2004) and
Everest and Ward (2005), for which they asserted

for all 2» states) can be achieved by matrix methodsexpiicitly that all three nodes have exactly the same

(Brown, 2003; Cheng, 2009; Cheng and Qi, 2010a;

2010b; Chenget al., 2011; Cull, 1971; Rushdi and Al-
Otaibi, 2007), but can be realized only for smaland
would be unfeasible for most networks of interédwit t
usually have 100 or more nodes. Zhao (2005) shdiad
even the determination of the number of fixed Eofoycles

of length 1) for monotone Boolean networks and the

determination of the existence of fixed points demeral
Boolean networks are both strong NP-complete pnadle
which means among other things that both problems a
highly intractable and that the best algorithms tiaen ever
be devised for them are highly inefficient.

Utilizing the earlier work of Darby and Mysak (1993
and Heidelet al. (2003) suggested that sometimes the
matrix equations necessary to describe the logi@ of
given Boolean network can be reduced to a smadkeofs
higher-order scalar equations or even a singleascal

equation and that such a scalar equation is more

transparent to analyze for cycles, than the orlgimetrix
equations. The term “scalar equation” is used tootke
an ordinary recurrence equation for a particulatenof

a Boolean network. This means that a scalar equéio
an equation that involves two or more time instanae

a single scalar variable and some Boolean opegfor(
e.g., the equation )t + 3) = 1 + X(t). As a sequel of
Heidelet al. (2003) and-arrowet al. (2004) suggested that
a linear reduced scalar equation be derived framibre
rudimentary nonlinear scalar equation. The redwsmzdar
equation is a simpler but a higher-order equatibiis a
two-term scalar equation that includes no Boolgaeraiors
and equates a latter instance of each scalar learigb
(1<isn) to an earlier instance of the same variabltee T
general form of the reduced scalar Equation (1) is:
X, t+r)=X (t+s)l<i<n (1)
wherer; ands; are the smalleshtegers such that > s.
Such a set of equations yields the immediate inddion
that Equation (2 and 3):

Any possibal cycle length = adivisorof (r -s k¥i<n

(2)
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reduced scalar equation. The assumption of equality
among allr's and alls's is invalid also for the major 11-
variable example studied by Farretal. (2004). In fact,
the reduced scalar equation derived there in itheei
minimal nor valid for all the network variables. That is
why their value for the transient period of theiample
network does not agree with the corresponding value
obtained by Chengt al. (2011) via an exact matrix
method based on a semi-tensor product approach.

This study is a continuation of the earlier worlDafrby
and Mysak (1993); Heidek al. (2003) and Farrovet al.
(2004). It strives to enhance the method of redsmedar
equations and reconcile its results with the maneguful
(but less insightful) matrix methods.

2. MATERIALSAND METHODS

The methodology adopted herein is one of
mathematical analysis and demonstration by way of
examples. We utilize various techniques of switghin
algebra (two-valued Boolean algebra). We adhertheéo
linear representation (Reed-Miiller expansion) oflBan
functions (Rushdi and Al-Otaibi, 2007). Thereforee
need to utilize well known properties of the ExohasOR
(XOR) binary operator (+), also known as modulo-2
addition, or addition over the simplest finite oml@s
Field GF(2) (Rushdi and Al-Otaibi, 2007). These
properties include well known identities (Murog®79;
Gregg, 1998) such as Equation (4 to 8):

X+X=0 (4)
X+1=X ®)
X+0=X (6)
X+X=1 @)
X(1+X)=0 (8)

IMSS
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We base our analysis on updating or iterating giventheory, Diophantine equations and Boolean equations
equations and simplify our manipulations by seekind making subtle inferences about Boolean networks.
utilizing certain orthogonality relations that exaémong
successive (albeit not necessarily consecutiveanicss 3.1. Example 1
of the same scalar variable. We augment the reduced Figure 1 presents a 3-variables Boolean network
scalar-equation method by other methods of studied by Farrowet al. (2004). For simplicity, the 3
mathematical reasoning, including number theory, nodes of the network are represented by the symbols

Diophantine equations and Boolean equations. through C. Here, a solid arrow indicates a “positiv
effect and a dotted arrow indicates a “negative8.orhe
3.RESULTS network equations are as follows Equation (1139to ¢
We demonstrate, contrary to previously published s« +1) =) c(t) (11a)

assumptions or assertions, that there is typically
common reduced scalar equation for all the scalar

variables, i.e.,jfand sin (1) are not necessarily the same Bt+1)=1+A0 (11b)

for all i. Each variable usually satisfies its owistinct

reduced scalar equation. We also demonstrate tigat t C(t+1)=B(t) (11c)
derivation of a reduced scalar equation is achiawetd

only by provingit but also by disprovingn immediately Figure 2 shows a Karnaugh-map representation for

preceding version of it, when such a version caxbt. the three next-state functions of A(t+1), B(t+1)dan
In fact, one must prove (1) for the smallest intsgeand C(t+1) as functions of A(t), B(t) and C(t). For
S, namely g, and s, where the extra subscript m convenience, the current value of each map cell is
denotes “minimal”. However, (1) is valid not onlyrfi=" shown in the top right corner of the cell. Frétiy. 2,

rm and $= sm, but also forir=r, + k and s= g, + k we obtain the state diagramhing. 3, which is a map of
wherek is an arbitrary nonnegative integersif 0, then  all possible trajectories among th&=28 states of the

it is minimal and equals,s Otherwise, a plausible way network. This diagram shows that the network has a
to guarantee that the smallest valygsand g, of r; and single cycle of length five and two transient

si were attained is to prove Equation (9): trajectories, the longest of which is of length two
Since equations resulting from any increment awve
X, (t+1,)=X (t+s,).1gi<n 9) also valid [An equation valid for t ia also validrft + 1, t

+2,t+ 3, ...], we obtain Equation (12):

and Equation (10): A(t+2) = Bt +1)C(t +1) = (L+ A®)B() (12)

X[t -1)# X (t+s, -7) 1< i< (10) Multiplying both sides of (12) by A(t), one obtains
the orthogonality condition Equation (13):
With the proof in (9) and the disproof in (10), one

makes sure that (10) is indeed the true minimal A(®)A{t+2)=0 (13)
reduced scalar equation, simply referred to as the
reduced scalar equation. A further increment of t produces Equation (14):

Despite the useful insight supplied by the reduced

scalar equations, they do not provide a total smiutke A(t+3) = (1+A(t+1))B(t +1)

the one offered by the more-powerful matrix methods = (1+ At +1))(L+ A) (14)
and therefore they need be supported by other ipobs

of mathematical reasoning. The following examples
illustrate the Boolean-algebraic techniques; nergser

the derivation of the reduced scalar equationssgme
corrections of previously published results, refute
purported claims of discrepancies between scaldr an
matrix methods and illustrate how the reduced scala
equation can be supplemented by techniques of numbeA(t +1)A(t+3) =0 (16)

which is a scalar equation for A that implies theot
orthogonality conditions Equation (15 and 16):

AMDA(L+3)=0 (15)
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//'_"\ TN While (15) is a novel condition, (16) is just an
(A |____ J B iteration of (13).
N / Further increments in t produce (with the invocatio
- "" of (13) and (8)) Equation (17):
- \/ A(t+5) = (L+A(t +3))(L+A(t + 2))
[ c ) =1+ @+ AM)L+A+1)
N (1+A{t+2)
=(1+A(t+2) +(1+A(1)
(I+A+1))(L+A(t+2)
=1+A(t+2)+1+A() + At +1)
_ _ +A(t+2) + AA(L +2)
? ‘ ]|3 ? ‘ ((]: (]]3 ((}: ? + ADA(t+1) + At +1) (17)
At +2) + A(DA( +1)A(t + 2)
Lo L o 1o = A@t)+ At +1) + AA(t+1)
Off On 1 0| 0 +A(t+1)A(t +2)
EEE =A@ + At +1)[1+A() + At +2)]
And - B(t+1)
_ =AM+ B(t)C(t)LB(t +1)B(t)
Fig. 1. Zpi(tesl?;(:((;li?;?OEEMOrk of Example 1 and the truttetab = A®) + B(1) [1+ B(t)] COB(t+1)
=A@ +0=A(t)
A1)
| | which is a reduced scalar equation for A. It is the
1000 1010 110 (100 minimal such equation, since it has no precedingion
(Here = 0).
010 011 001 000 Similarly, we increment (11b) to obtain EquatioB)(1
c 010 111 101 000 which can be used to produce an orthogonality icglat
Equation (19):

| | B(t+2)B(t) =0 (19)
B(D)

Further updating of t produces Equation (20 and 21)

Fig. 2. A karnaugh-map representations of the next-neate st
functions {A(t + 1) B(t + 1) C(t + 1)}of the netwkrin B(t+3)=1+B(t+1)C(t +1, (20)
Example 1
=1+B(t+1)B(t) (22)

0 m m which is the scalar equation for B. An orthogomnalit

relation involving three instances can be obtaifreth
(20) Equation (22):

B(t)B(t+1)B(t+3)=0 (22)
0 o Tow further increments in t produce Equation (23):
B(t+5)=1+B(t+ t+
Fig. 3. The state diagram or map of all possible trajéesoof (t+5) BtryEt+3 (23)
the states {AM)B(t)C(t)}of Example 1 =1+[1+B(t+1)B(t] B(t +2)
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which does not reduce to B(t) in general. A further
increment in t results in Equation (24):

B(t+6) =1+ 1+B(t + 2)B(t +1)
[1+B(®)B(t +1)]
=B(t+1)
[B(t+2)+B(t) + B(H)B(t +2)]
B(t+6)=B(t+1)

(24)

which is the reduced scalar equation for B. It ltesu
from Equation (25):

B(t+2) +B(t) + BH)B(t + 2)
=1+ B(t)C(t) + B(t) + B(t) + B(t)C(t)
=1

(25)

Now, we increment (11c) to get Equation (26 to 28):

C(t+1)=B(t) (26)
C(t+2)=B(t+1)=1+A() 27)
Ct+3)=1+A(t+1)=1+B(t)C(1) (28)

=1+C(t+1)C(t)

which is the scalar equation for C. It is similarthat for
B (Equation (21)). However, as will turn out shgrtthe
reduced scalar equations for B and C are not theesa
The variable C has a 3-instance orthogonality imiat
Equation (29):
CHC(t+1)C(t+3)=C (29)
Further increments in t produce Equation (30 ta 32)
Ct+4)=1+C(t+2)C(t+1 (30)

Ct+5)=1+C(t+3)C(t+2)
=1+[1+C(HC(t+1} C(t+2)
=1+C(t+2)+CH)C(t+1)C(t+2

(31)

C(t+6)=1+1+C(t+1)C(t+2) C(t+3)
=1+[1+C(t+1)C(t +2)
[1+C®)C(t + 2]
=1+1+C(t+1)C(t+2)
+C(@{H)C(t+1)
+C(t)C(t+1)C(t+2)
= C(t+1) C(t) + C(t+2) +C(t)C(t + I
= C(t+1) C)VC(t + 2]

(32)
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Note that the candidate reduced scalar equation:

C(t+6);S(t+ 1) is valid if {C(H)VC(t + 2) = 1}, i.e., if
{6(t)6(t+2 =0,i.e., if CtAt = 0, which is not necessarily
the case.

The next updated equation Equation (33):

C(t+7)=C(t+2] Ct+1)VC(t+3) (33)

suggest that the next candidate reduced scalatiequa

Ct+7)=C(t+2) (34)
is true provided {C(t + 1) VC (t + 3) = 1}, i.e.rqvided
{Ct+1)At+1) =0}, which is true, sincC(t+1) = B(t)}
and {A(t+1)=B(t)C(t)}. Hence (33) is the reducedatar
equation for C.

Contrary to a claim made in [10, p. 350], the redlic
scalar equations for the variables A, B and C (Egoa
(A7), (24) and (34)) are not the same. Each ofethes
equations is satisfied when any of the eight statdke
state diagram irFig. 1 is taken as the basis or t state.
When combined together, they indicate that X (t=7)
X(t+2), where X stands for A, B, or C. This meamattthe
maximum transient in the state diagram is of lerigth
and the smallest common multiple of cycle lengti-B=
5. This allows the possibility of cycles of lengtqual to
divisors of 5 (i.e., 1or 5). It can be shown theg hetwork
has no fixed points (cycle of length 1) {the systa(t) =
B(t)C(t), B(t) = 1+A(t), C(t) = B(t) is obviously
inconsistent and has no solution}. The network ddave
only a single cycle of length 5 since its total fam of
states is 8. Since the network has a single cydength 5
and one transient of length 2, it must have a skcon
transient of length 1. Here, we used very simpdsaeaing
to account for all network states, but this wilt soiffice
when dealing with large complicated networks.

3.2. Example 2

Figure 4 presents the Boolean model of cell growth,
differentiation and apoptosis (programmed cell keat
introduced by Huang and Ingber (2000) and solved by
Farrow et al. (2004) and by Chenegt al. (2011). For
simplicity, the 11 nodes of the network are repné=e
by the symbols A through K. The connectivity gragptd
logic tables are shown inFig. 4 (IMP
“IMPLICATION", NIF “NOT IF”, which is also
called “INHIBIT” and represents the complement of
IMP, NAND = “NOT AND”).

JMSS
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7N

K H|A r C| B D r|\c J K| D C F"| E
0 00 0 00 0 o1 0 00 [
o 110 o 110 o 11 o 110 [
101 ol 1 0o 1 0|0 1 o]0
I 1]0 I 1|0 I I [

NIF NIF IMP AND IMP
LG F B E|G FoGH H 1|1 J | J K | K
0 010 0o 01 0 0jo 0 0|0 0 (0 0|0
[ o 1|1 0o 1]0 o 110 1 1 1 1
I 0|0 ol 1 o1 101
[N I 1|0 I 1]0 1 1]0 ON ON

NIF NAND NIF NIF

Fig. 4. The Boolean network of Example 2 and the truthetabf its excitations

Again, we use a solid arrow to indicate a “positietfect,
while a dotted arrow indicates a “negative” one.eTh
network equations are as follows (Heidlal., 2003;
Huang and Ingber, 2000) Equation (35a to 35k):

At +1) = K(t) + K(t) H(t) (35a)
B(t+1) = A(t) + A(t) C(t) (35b)
C(t+1) =1+ D(t) + D(t) I(t) (35¢)

D(t +1) = J(t) K(0) (35d)
E(t+1) =1+ C(t) + C(t) F(t (35¢€)

F(t +1) = E(t) + E(t) G(t) (35f)
G(t+1) =1+ B(t) E(t) (350)
WY sencepavications 267

H(t +1) = F(t) + F(H) G() (35h)
I(t+1) = H(t) + H(E) I(t) = H(E) 1() (35i)
J(t+1) = () (35))
K(t+1) = K(t) (35K)

Huang and Ingber (2000) have shown that a
nontrivial growth attractor exists, assuming thae t
growth factor (node k) and cell spreading (hodeard
both ON, which means that node D is also ON (k(t) =
J(t) = Dt = 1. In this case Equation (35a’ and 35b’

A(t+1) =1+ H(t) = H(t) (35a)

Clt+1) = I(t) (35b)

Incrementing the value of t in (35i), one obtains
Equation (36):

JMSS
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I(t+2)=H(t+1)(1+It+1)) I(t+1)It+5)=0 (42)
= F()(1+ G(t)(A+ I(t +1)),
I(t+3) = F(t +1)(1+ G(t + 1)L+ I(t + 2) I(t+4)i(t+5)=0 (43)
= 2)),
FL+0)EO BOL+ It+2) (36) Of which (41) and (42) are new orthogonality

I(t+4)=Ft+2)B(t+1)E(t+1))

@+1(t+3) updating of (39). We now substitute (38) in (37) to
I(t+5) = F(t +3)(B(t + 2)E(t + 2)) obtain Equation (44):
A+I(t+4)

F(t+4) = (1+1(t+1) +1(t + DF(t +2))

where Equation (37): (L+1()(2+ It +1))

F(t+2) = Et+1)(1+ G(t+1)) =[@+1t+1)+q (1+1(t) (44)
= (1+C(t) + C(t) F(t)) (B(HE(L)), =@ +1))A+ 1t +1)
Ft+3)= (1+C(t+1)+C(t+1) F(t +1) =B(t+2)
(B(t+1) E(t+1)),
= (L+1() + I(t) F(t +1)) (37) Now, we iterate (40) further to obtain Equationg45
(B(t+1) E(t +1)) and 45b):
F(t+4)=(1+1t+1)+ 1t +1)F(t+2)) I(t+6) = F(t +4)(1+ I(t +1))(1+ I(t + 2))(1+ I(t 5))
(Blt+2)E(t+2) = (L+ D)L+ I+ D)(E+IE+1) (45a)
Now Equation (38): (L+1(t+2))(L+ 1t +5)
=(@A+I))A+IE+L)E+I(t+2)(A+I(t+5)
B(t+2)E(t+2) = A(t+1)(1+ C(t +1))
(L+Ct+1)+C(t+1)F(t+1)) = At +1 =1t +1) + (L+IR))(L+ It +2))(1+I(t +5)) (45b)
A+C(t+1)
L(1+ C(t +1))C(t +1)F(t + 1} =141 +IE+1) +1(t+2) +1(t +5)
= At+1)[(1+Ct+1) +( +IRIt+2) (45c)
= A(t+1)(1+C(t+1)) = B(t +2) (38) +1(t+2)I(t+5)

=1+ HOA+ 1)
=1+1(t) + H(t) + H()I(t)
=141 +1(t+1)

=1+ 1))+ I(t+1))

where, we involved the orthogonality conditions )39
(41), (42) and an updated version of (39).

Equation (45) is the scalar equation for I(t) ared h
been derived earlier by Farrog al. (2004). If (45) is
ANDed (multiplied) with I(t), I(t + 1), I(t + 2 andt + 5)

In (38), we made use of the orthogonality relation ) N .
respectively, it yields the relations:

Equation (39):

1)1t +1) = IOHE) + HOIE) = 0 (39) ()1t +6)=0 (46a)
Hence, we can substitute (38) in (36) to obtain I(t+1)It+6)=0 (46b)

Equation (40):
I(t+5) = F(t+3)(1+ 1)1+ 1t +1))(1+ I(t + 4) (40) I(t+2)i(t+6)=0 (46¢)
I(t+5)I(t+6)=0 (46d)

If (40) is ANDed (multiplied) with I(t), I(t+1 and
It+4) respectively, it yields the orthogonality agbns

Equation (41 to 43): Of which only Equation (46a) is new, while

relations, while (43) is simply a consequent or an

Equation (46b), (42c) and (46d) are simply Ilatter

IIt+5)=0 (42) instances of Equation (41), (42) and (39), respelsti
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If we iterate (45) further, we obtain an expressbi(t
+ 7), in which we substitute for I(t + 6) from (4%) obtain
Equation (47):

It+7)= @A+t +1))(L+I(t+2))
@A+I1t+3)(L+I1(t+6))
=(A+It+1)(A+1t+2)
@A+1t+3))+(1+I1(1)
@A+IE+1)(A+ 1t +2))
@+t +3))(L+I(t +5)).
=(A+I(t+1)(1+ 1t +2))
@a+1t+3))
1+1+I(t)+1(t+5)
Ll(t)l(t +5) }
=(@®) +1(t+5)(Q+I(t+1))
@A+I1t+2)(2+I1(t+3))

(47)

where, the orthogonality condition (41) is invokédbte
that in general, there is no orthogonality betwkerm 4)
and I(t+7), namely Equation (48):

It+ )t +7)= ()t +4)+1(t+4)I(t+5))
(1+1(t+1))
1+t +2)
I(t +4)
(+I(t +3)I(t +4)j
=IOt +4)( A+ It +1)1+1(t+2))
=1t +4)(L+1(t+2)
z0

(48)

In (48), we utilized the orthogonality conditioB9)
three times.
Now, we iterate (47) further and use (45c) to abtai

It+8)=(I(t+1) +I(t +6))(1+ I(t + 2))
@A+I1t+3)(L+I1(t+4))

= (1+ D)L+ 2)(A+I(t+3))
@A+1t+4)(2+I(t+5))

(49)

Equation (49) is a much simpler expression for8jt+
than the one in Farrowt al. (2004). It supplies a new
orthogonality relation Equation (50):

It+5)I(t+8)=0 (50)
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Table 1 summarizes the orthogonality relations
obtained so far. Clearly, some of them start frdma t

outset, while some start after some delay.
Further iteration yields Equation (51):

I(t+9) = (1+I1(t+1))(1+I(t+3))
(A+1(t+4)A+It+5)A+I(t+6)
=(A+IE+1)@A+ 1L+ 3)
A+It+4)@A+I(t+5))+@Q+ID))L+I1t+1))
@A+It+2)A+It+3)A+I(t+4)A+I(t+5))
=(A+It+1)A+It+I))(L+ It +4)(L+ 1t +5)
[1(t) + 1t + 2) + 1)1t + 2)]
It+10) = (1+I(t+2))(1+ It +4))
L+ 1(t+5))(1+I(t+6))
It+1)+I1(t+3)
{+I(t+1)l(t+3) }
=[A+1(t+2)(A+1(t+4))
(A+I1(t+5))+@+I(1)
A+t +1))(2+1t+2)
(L+1(t+4))(1+1(t+5))]
It+1)+I1(t+3)
{+I(t+1)l(t+3) }
=(1+IE+2)(2+ 1+ 4)
@A+ DE+5)[ 1) + It +1)]
It+1) +I1(t+3)
{+I(t+1)l(t+3) }
= (141t +2)(1+I(t +4))
(1+1(t+5))

[1)1t+3) +1(t +1)] (51)

where, the condition (39) and the identity (4) ased.
Note that Equation (52a):

IOIE+3)A+ 1t +2))(L+ It +4)(1+1t+5)
=(It+3) + It +2)I(t +3))
(It +3) + It +3)I(t + 4))
(1) + 1)1t +5))
=(I(t+3)+0)(I(t +3) + 0)(I(t) + 0)
= 1(D)I(t +3)
(It +1)(X+ 1+ 2))(A+ It +4)(L+ It +5))
=(It+1) + It +D)I(t + 2))
a+1(t+4)
(It+21) + It +1)I(t +5))
=(It+1) +0)(1+1(t +4))(I(t+1) +0)
=It+1) +1(t+1)I(t +4)

(52a)

JMSS



Ali Muhammad Ali Rushdi and Adnan Ahmad Alsogaiiournal of Mathematics and Statistics 9 (3): 268;2D13

Table 1. Set of orthogonality relations for I(t)

Time First instance of an Equation
distance orthogonality relation number
1 IMIt+1)=0 (39)

2 - -

3 It+5)I(t+8)=0 (50)

4 It+21)It+5)=0 (42)

5 I I(t+5)=0 (41)

6 I I(t+6)=0 (46)

Hence, expression (51) for I(t+10) simplifies to
Equation (52b-e-54):

I(t+10) = I(t +1) + I(t)I(t + 3) + I(t +1)I(t + 4) (52b)

I(t+11) = It +2) +I(t +1) + 1t +4) + It + )it +5  (52¢)

I(t+12) = It +3) +1(t+2) +I(t +5) + It +3)I(t+§  (52d)

I(t+13) = I(t+4) +I(t +3) +I{t +6) + 1t + At +7)  (52€)

I(t+14) = I(t+5) + It +4) + It +7) + 1t +5)I(t +§ (53)
=t +5)+I(t+4)IE+7)

I(t+14) # I(t + 5) (54)

where we made use of (50) and (48). We further igpda
(53) and utilize (50) to obtain Equation (55):
I(t+15) = I(t +6) + I(t + 5)I(t + 8) (55)
I(t+15) = I(t + 6) (56)

The reduced scalar equation for I(t), Equation (56)
is one time-period ahead of that given in (Farebwal.,

=1+1E+3)[ 1+ (L+ 1)L+ 1t +1))
=1+1t+3)() + 1t +1))

E(t+10) =1+ I(t +8)(I(t +5) + I(t + 6))
=1+I(t+6)I(t +8)
E(t+14)=1+I(t+10)I(t +12)
_ J{l(t +1) + 1Ot +3)}

+(t+21)I(t +4)

I(t+3)+I(t +2)I(t +5)
Ll(t +3)I(t + 6) }
=1+1E+3) 1) + 1t +1)] =

E(t+5) (57)

In the last step towards (57), use has been made of
the orthogonality relations (39), (41) and (42)ed&ly,
the reduced scalar Equation (56) and (57) for | Bnd
respectively, are not the same.

Now, we obtain the reduced scalar equation for H(t)
from (35h) and making use of (35f), (359g), (38)2¢h
(52d) and (52e) as follows Equation (58 and 59):

H(t+2) = Ft+1)(1+G(t+1))
=E@®)(1+G®H))(BMOE®)
H(t +3) = E(t +1)B(t +1)B(t)E(t)
H(t+5) = E(t + 3)B(t + 3)B(t + 2)E(t + 2)
=(A+I)A+IE+D)(L+ It +2)
=1+IE)IE+1) + It +2)
+I(®)It +2)
Ht+7)+1+1t+2)+ 1t +3) +I(t + 4)
+I(t+2)I(t+4)

(58)

2004). Furthermore, contrary to assumptions made inH(t+16) =1+I(t+11) +I(t +12)

(Farrow et al., 2004), other variables of the Boolean

network do not necessarily have the same reduced

scalar equation.

To obtain the reduced scalar equation for E(t), we
start from (35e) and substitute from (35b’), (3%859),
(38), (39), (50), (52a) and (53) as follows Equate?):

E(t+2)=1+C(t+1)(A+F(t+1)) =1+ 1)1+ E(t)
+E@@)GH)E(t+3) =1+ It +1)(1+ E(t +1)(1+1+ B(t)
EM))=1+I(t+1)(1+E(t+1)EMt)B()E(+5) 2 +I(t+3)

1+I1(t+1)
{1+E(t+3) 1{(1+ E(t+1)}]
=1+I(t+3) E(t)B(t)
2 2 }
{E(t+2)B(t+2} L 10)
{(l+ I(t +1))}
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+(I(t +13) + I(t +11)I(t +13)
=141t +2) + It +1)I(t +4)
+I(t +2)I(t +5)
+I(t+3) +I(t + 2)I(t +5)
+I(t +3)I(t + 6)
+I(t+4) +1(t +3)I(t +6)
+I(t+4)I(t+7)
+I(t+2)I(t + 4)
+I(t+1)I(t+4)
=1+t +2) +I(t+3) +1(t +4)
+I(t+2)I(t +4)
+It+4)(I(t+7)
=HE+7)+I(t+4)It+7)
ZH(t+7)

(59)
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H(t+17) = H(t +8) + I(t + 5)I(t + 8) = H(t + 8) (60) and Milligan, 1992), but the network &ig. 5 has been
analyzed by Heidekt al. (2003) and Rushdi and Al-
Equation (60), is the reduced scalar equation fott H  Otaibi (2008) via the scalar-equations technique.

resulted from the orthogonality relation (50), \&hi{59) The logic for this network is expressed by the
resulted from the denial of orthogonality in Eqoat{48). following Equation (67a to f):
To obtain the reduced scalar equation for B(t),steet _
from (38) and utilize (53), (56), (48) and (50) faiows ~ At+1)=1+F(@) (672)
Equation (61):
B(t+1) = A() (67b)

B(t+2) = (L+10O)(1+I(t+1)

=1+I1@E) +I(t) +1(t +1) Clt+1) =B (67¢)
B(t+7)=1+I(t+5)+I(t+6) 61) D(t+1) = C(t) (67d)

B(t+16) =1+I(t +14) +I(t +15)
=1+1(t+5) = +I(t +4) + I(t + 7) + I(t + 6) E(t+1)=D(t) (67€)

=B(t+7) =+t +4) +I(t+7)% B(t+7) F(t+1) = E) (671)

BU+17)=B(t+8)+I(t+5)I(t+8)=B(t+8) (62) A scalar equation for A(t) is obtained as follows

The reduced scalar Equation (56), (57), (60) a) (6 Equation (68a 1o e):
for I, E, H and B were verified by simulations. Redd

At+2)=1+F(t+1)=1+E(t 68
scalar equations for other variables of the netwame (t+2)=1+Fa+D)=1+EC (682)
Equation (63 to 66): At+3)=1+E(t+1)=1+D(t (68D)
AT (+18)=A(+9) 63)  pt+ay=1+D@+1)=1+C) (68c)
Cr{t+16)=C(t+7) 64  pt+s)=1+Ci+1)=1+B( (68d)
F+(t+19) =F(t+10, (65 A+6)=1+B(t+1)=1+AQ) (68e)
G+(t+18)=G(t+9 (66)

A reduced scalar equation can be derived by

continuing as follows Equation (68f to k):
These were proved with the aid of the earlier (o @ O ws Equation ( )

reduced scalar equations and were verified by sitiaul Alt+7)=1+A(t+1) = F@) (68f)
as well. In particular, (65) is deducible from (4dnd
(56). The maximum delay (transient period); T At +8) = F(t +1) = E(t) (689)
encountered is 10 and takes place for F(t) accgrtin
(65). This result is in agreement with that prodday At+9) = E(t +1) = D(t) (68h)

the more elaborated matrix method of Chegigal.
(2011). The earlier scalar result in (Heigekl., 2003),
which is T<7 is incorrect. Our update of the reduced
scalar method refutes the possibility of existenéea At +11) = C(t +1) = B(t) (68j)
discrepancy between scalar and matrix methods.

A(t+10) = D(t +1) = C(t) (68i)

3.3. Example 3 At+12) = B(t+1) = A®H) (68Kk)

The network inFig. 5 is a simple case of an affine Equation (68Kk) represents the reduced scalar eguati
system (that has linear terms plus constant temtSeé  for A(t). This does not result from (68k) alonencs we

Reed-Mdller expressions of its next state funcions peed to show also that the condition Equation (69a)
Affine Boolean networks have been studied in great

detail and their cyclic structure is completely argtood ?
in a general way (Milligan and Wilson, 1993; Wilson A(t+11)=A() (69a)
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Fig. 5. The Boolean network of Example 3 and theh tables of its excitations

Is not satisfied for all t, which can be reducedvioyue
of (67b) and (68)) to the condition that Equati6é8l):

?

B(t)=B(t +1) (69b)

Is not satisfied for all t. Now if (69b) is truerfall t,
then B(t) remains constant and by virtue of equmtio
(67c) to (67f) and (67a), also C(t), D(t), E(t)t)Fand
A(t) remain constant. Hence, asserting (69b) anmotmt
stucking the network at single particular states,, i
making every network state a fixed point. This azrive
the case, since it contradicts (68e), which expjici
asserts that A(t) switches its value every six tumés.
This means that neither (69a) nor (69b) is truelzamte
(68k) is indeed the reduced scalar equation fon.A(t
Now, we seek a reduced scalar equation for A(t)cési
we might not be sure that it is the same as tha(9j.
From (68d), we have Equation (70 and 71):

B(t)=1+A(t+5) (70)

B(t+12)=1+A(t+17)=1+A(t+5) =B(t (71)

Equation (71) represents the reduced scalar equati
for B(t) provided we can show that the condition
Equation (72a):

B(t +11)§ B(t) (72a)

Is not satisfied for all t. By virtue of (67b),86 and
(67c), condition (72a) reduces to the requireméat t
Equation (72b):

?

C(t)=C(t+1) (72b)

Be satisfied for all t, which is not the case adowgy
to our previous arguments. Note that B satisfies t
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same reduced scalar equation as A. Similarly, we ca
show that each of the other nodes C, D, E andi&fisat
the same equation. This means that there is ngiénain
state for this network (& 0) and hence the length of the
maxim transient trajectory is zero, 0) and there are
cycles of period twelve. These cycles might include
cycles of divisors of 12 (1, 2, 3, 4, 6 and 12}t thanks

to (68e) we can negate the possibility of cycleperiod

six and its divisors (1, 2, 3 and 6). Therefores tnly
possible cycle lengths are four and twelve.

The total number of states can be expressed as:
2°=64=4n +121, (73)
where n is the number of period-four cycles ang i
the number of period-twelve cycles. Equation (78h ¢
be rewritten as:
n, +3n, =16 (74)

Equation (74) is a special Diophantine equatien, &n
equation with integer coefficients for which intege
solutions are sought (Andreescu and Andrica, 2009;
Andreesctet al., 2010; Everest and Ward, 2005; Schroeder,
2009). This equation can be solved under the dondithat
n, and n, are nonnegative integers as showrfig. 6.
Equation (74) is represented a straight line in tihe-
dimensional space of swversus i which initially suggests
that (74) has an infinite number of solutions. Hegveboth
n, and n, are restricted to be nonnegative integers. This
means that Equation (74) has a finite number aftisois.

To stress the nonnegative integral nature of plassib
solutions of (74), the straight line representirg) (s drawn
over a rectangular grid of lines, for which eacmgdind n,
has nonnegative integer values.
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Fig. 6. Representation of the equatiop3n,, = 16as a straight line in the two-dimensional space;efversusns Permissible

nonnegative integer solutions(of,, n;,) are highlighted

There are six possible solutions for the pair (),
(16, 0) (13, 1), (10, 2), (7, 3), (4, 4) and (1, Bhe scalar
equation technigue has no explicit way for distisbing
between these six candidate solutions. The solution
1, n,= 5 cited by Heidekt al. (2003) has five distinct
cycles of period twelve and one cycle of periodrfou
This solution represents the actual network saluas
can be verified by viewing the map of all possible
trajectories for the network, as showrtigy. 7.

Unfortunately, there is no immediate way to single
out this desirable solution out of the mathemalycal
valid six solutions. The scalar equation technifgiks to
identify the actual network solution without some
implicit help or pre-knowledge from an exhaustive
exponential-cost technique.

In the following, we employ some Boolean-equation

At+4)=1+Ft+3)=1+E(t+2)

techniques (Brown, 2003; Hammer and Rudeanu, 1968;

Rudeanu, 1974; Rushdi, 2001; 2004) (as a suppletoent
the scalar equation method) to identify the states the
numbers of all period-four cycles. For this purpose
augment the Equations (1) with the Equation (73 to

At +4) = At) (75a)
B(t + 4) = B(t) (75b)
C(t +4) = C(t) (75c)
D(t +4) = D(t) (75d)
E(t +4) = E(t) (75€)
F(t+4) = F(t) (75f)

By virtue of Equation (67) and (75), we have
Equation (76a to f):
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(76a)

=1+D(t+1) =1+ C(t) = A(t)
B(t+4) = At+3) =1+ F(t+2)

=1+E(t+1)=1+D(t) = B(t) (76b)
Ct+4)=B(t+3)=A(t+2)=1+F(t+1

=1+ E(t) =C(t) (76¢)
D(t+4)=C(t+3)=B(t+2)=A(t+1)

=1+ F(t) = D(t) (76d)
E(t+4)=D(t+3)=C(t+2)=B(t+1 (76¢)

=A®) = E(t)
Ft+4)=E(t+3)=D(t+2)=C(t+1 (760)

=B =F(1)

The results in (76) can be combined to give Equatio
(77a and b):

A(t) = C(t) = E(t) =a (77a)

B(t) = D() = F(t) =B (77b)

Table 2 assigns all possible arbitrary values for the
constantsr and p above and hence identifies all states on
period-four cycles. The number of these statesois, f
which indicates the existence of a sing&iod four cycle
(ns = 1) and hence the existence of five period-twelges
(nz = 5). The four states imable 2 can indeed fit into a
cycle, as can be verified from Equation (67, 7.
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4 D>~ E )

Fig. 7. A map of all possible trajectories for Exampleh®wing five period-twelve cycles and a single peérfiour cycle

Table 2. Solution for states on period-four cycles There are infinitely many versions of a reducedasca

a B A1) B(t) C(t) D(t) E(t) E(t) equation that are all equally suitable for deducing
0 0 0 0 1 1 0 0 information about the network cycles or attractors.
0 1 0 1 1 0 0 1 However, the true minimal reduced scalar equatahé

1 0 1 0 0 1 1 0 only equation capable of predicting the transient
1 1 1 1 0 0 1 1

behavior of the network. In some cases (see, e.g.,
Examples 1 and 2), this equation has a precedirgjore
4. DISCUSSION in which the pertinent times could be decrementgc b

o ) single time period. Here, it is necessary to digerthis
synchronous Boolean network is typically a cumbe¥so  equation is truly minimal. In other cases (see,.e.g
and time-consuming task. However, it could be gyample 3), the earlier time instant in the equatiothe
somewhat simplified by adhering to the linear jpitial instant and cannot be decremented. Hence, n
representation (Reed-Miiller expansion) of the Bawle preceding version of the equation exists and tiereo
functions. Our examples show that this derivatisn i Joubt about the minimality of the equation.
considerably facilitated by seeking and utilizing
orthogonality relations among some successivenosts 5. CONCLUSION
of the same scalar Boolean variable. For some Boole
networks (see, e.g., Example 3), the reduced scalar A description of a synchronous Boolean network is
equations are identical for all the Boolean vagablOur  possible in terms of a linear reduced scatgwation which
examples 1 and 2 demonstrate clearly that thisois n s the simplest two-term scalar equation that ihesuno
always the case. In both examples, each varialdétha Boolean operators and equates a latter value afalkars
own distinct reduced scalar equation. variable X($) to an earlier value of the same variable)X(t
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