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ABSTRACT 

In this study, the derivation of mathematical model for the wave modulation through an incompressible 
viscous fluid contained in a prestressed thin stenosed elastic tube is presented. The artery is assumed to be 
incompressible, prestressed thin walled elastic tube with a symmetrical stenosis, whereas the blood is 
considered to be incompressible and Newtonian fluid. By utilizing the nonlinear equations of tube and fluid, 
the weakly nonlinear wave modulation in such a medium is examined. Employing the reductive 
perturbation method and considering the long-wave approximation, we showed that the third-order term in 
the perturbation expansion is governed by the dissipative nonlinear Schrodinger equation with variable 
coefficient. Our results shown that this type of equation admits a downward bell-shape wave propagates to 
the right as time increases with decreasing wave amplitude. 
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1. INTRODUCTION 

Cholesterol is a sterol which serves principally as a 
constituent of blood plasma. High concentration of 
cholesterol in the blood will build up plaque on the inner 
walls of arteries. Over the time, the decomposition of 
plaque causes the arteries become less flexible and this 
leads to the phenomenon of narrowing of the arteries 
which commonly referred as stenosis. The stenosis will 
further cause the artherosclerosis which is hardening of 
the arteries. The artherosclerosis leads the arteries lose 
their elastic properties and the volume of blood carried 
through the arteries is reduced. Motivated with the 
stenosis in the artery, the study of wave propagation in 
a stenosed artery has been investigated by Kim (2006). 
Tay et al. (2007) and Gaik and Demiray (2008). 

Ravindran and Prasad (1979) were the first contributed 
to the derivation of mathematical model for the nonlinear 
wave modulation in an artery. They assumed the blood as 
an compressible inviscid fluid contained in a thin walled 
viscoelastic tube under certain simplifying assumptions. 
By using the method of operators of multiple scales, they 
shown that the governed equation can be reduced to the 
Nonlinear Schrodinger (NLS) equation for their 
mathematical model. The NLS equation is the simplest 
representative equation describing the self-modulation of 
one-dimensional monochromatic plane waves in 
dispersive media. It has a balance between the 
nonlinearity and dispersion. 

In a series of works of Demiray (1997; 1998; 2001; 
2003) and his co-workers (Akgun and Demiray, 2000; 
2001) conducted since 1997, in which they treated the 
artery as an incompressible, prestressed either thin elastic, 
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thick elastic or tapered elastic tube contained with an 
incompressible inviscid or viscous fluid as blood. Then by 
employing the reductive perturbation method, the 
modulation of nonlinear waves in the long-wave 
approximation were studied. They obtained various 
nonlinear evolution equations of the NLS type equations. 
In all the works of Demiray (1997; 1998; 2001; 2003) as 
well as Ravindran and Prasad (1979) they treated the artery 
as circularly cylindrical long tubes without stenosis. 

Recently, the studies of nonlinear waves modulation in 
an incompressible prestressed thin walled elastic tube with 
a symmetrical stenosis filled with an incompressible 
inviscid or viscous fluid, where the approximate equations 
of inviscid and viscous fluids without boundary condition is 
used have been carried by Choy et al. (2012) and Kim et al. 
(2010). By using the reductive perturbation method, in the 
long-wave approximation, they obtained the NLS 
equation with variable coefficient and dissipative NLS 
equation with variable coefficient for the study of 
inviscid and viscous fluids, respectively. 

Nevertheless, the study of nonlinear wave modulation 
in a prestressed thin elastic tube with a symmetrical 
stenosis filled with a viscous fluid, where the non 
approximate equations of viscous fluid with its boundary 
conditions are used has not been carried out yet in 
literatures. Therefore, we assumed the artery as an 
incompressible, prestressed, thin walled elastic tube with 
a symmetrical stenosis and the blood as an 
incompressible viscous fluid, a mathematical model for 
the nonlinear wave modulation in such a composite 
medium, in the long-wave approximation is developed. 
Applying the reductive perturbation method, we have 
shown that the amplitude modulation of this wave is 
governed by the dissipative NLS equation with variable 
coefficient. The dissipative term in the dissipative NLS 
equation with variable coefficient is due to the viscous 
effect. The presence of stenosis leads to the variable 
coefficient term in the dissipative NLS equation with 
variable coefficient. Our results reveal that the 
downward bell-shaped wave propagates to the right with 
decreasing wave amplitude as time increases. 

1.1. The Governing Equations 

The derivation of the field equations of a stenosed 
elastic tube, which is considered to be a model for an 
artery and a viscous fluid, which is assumed to be a 
model for blood has been carried out by Kim et al. 
(2010). By introducing the non-dimensional quantities 
(Kim et al., 2010) into the field equations of tube and 
fluid, one obtains the following non-dimensional 
Equations of tube, Pr and fluid as below: 
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The definition of each variable in the Equation 1-5 

has defined by Choy et al. (2012). The Equation 1-5 give 
sufficient relations to determine the field quantities u, v, 
q and pr respectively. 

2. MATERIALS AND METHODS 

In this, we will investigate the amplitude modulation 
of weakly non-linear waves in a fluid-filled thin elastic 
tube with a stenosis whose non-dimensional governing 
equations are given in Equation 1-5. Considering the 
dispersion relation of the linearized field equations and 
the nature of the problem of concern, which is a 
boundary-value problem, the following stretched 
coordinates can be introduced: 
 

( ) 2z t ,    zξ = ε − λ τ = ε  (6) 

 
where, ε is a small parameter measuring the weakness of 
nonlinearity and λ is a constant to be determined from the 
solution. Introducing the following differential relations: 
 

2,    
t t z z

∂ ∂ ∂ ∂ ∂ ∂ ∂= − ελ = + ε + ε
∂ ∂ ∂ξ ∂ ∂ ∂ξ ∂τ

 (7) 
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and assuming that the field quantities may be expanding 
into asymptotic series of ε as: 
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where, u,v,q and pr are functions of the slow variables 
(ξτ)as well as the fast variable (z,t). 

Introducing (6)-(8) into the Equation 1-8, the 
following sets of differential Equations are obtained: 
O(ε) Equations: 
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and the boundary conditions: 
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O(ε2) Equations: 
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and the boundary conditions: 
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O (ε3) Equations: 
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Here, the coefficients of  α0, α1, α2,β0, β1, β2, β3 and 

γ1 are defines by: 
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Equation 15 is defined through series expansion of 

the stretch ratios, λ1 and λ2 which read Equation 16: 
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By solving the sets of differential Equation 9-14, we 

obtain the following dissipative nonlinear Schrodinger 
Equation with variable coefficient: 
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where, the coefficients µ,µ1,µ2,µ3 and µ4 are defined by: 
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 The group velo city, λ is defined as given in the 
Equation 19: 
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And the dispersion relation is read as given in the 
Equation 20: 
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 Refering Equation 18, we have defined the following 
function as given in the Equation 21: 
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 where, In referred as modified bessel’s function of order n.
 For the governing NLS type Equation 17, it is For the 

governing NLS type Equation 17, it is found that the 
dissipative term, iµ4U is caused by the viscous effect. 
Therefore, in the absence of viscous effect, the 
dissipative NLS equation with variable coefficient (17) 
will be reduced to the NLS equation with variable 
coefficient. Besides, noted that the presence of stenosis 
causes the variable coefficient term µ3h1 (τ) U in the 
Equation 17. In other words, without the presence of 
stenosis and viscous effect in the physical model, the 
dissipative NLS equation with variable coefficient will 
be reduced to the standard NLS equation. 

By solving Equation 17, the progressive wave 
solution for the dissipative NLS equation with variable 
coefficient is obtained as:
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 Inserting Equation (6) into Equation (22) yields given 
in the Equation 23:
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3. RESULTS  

In order to observe the wave modulation in the stenosed 
tube, one has to know the values of coefficients µ1, µ2, µ3 

and µ4. To obtain values of these coefficients, one can 
referred Kim et al. (2010). The modulus of the solution of 
the dissipative NLS equation with variable coefficient (22) 
versus space, τ and travelling wave profile, ξ are displayed 
in Fig. 1 and 2, respectively. Figure 3 illustrates the 
variations of the radial displacement, U(t,z) with space z 
when viscosity of the fluid. V = 100. 
 

 
 

Fig. 1. The modulus of the solution (22) versus space, τ for 
different travelling wave profile, ξ at δ = 0.30 

 

 
 
Fig. 2. The modulus of the solution (22) versus travelling wave 

profile, ξ for different space, τ at δ = 0.30 
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Fig. 3. The modulus of the solution (23) versus space, z for 

different time, t at δ = 0.30 when v = 100 

4. DISCUSSION 

The first and the second graphs reveal the downward 
bell-shaped wave travels to the left as travelling wave 
profile and space increase, respectively. Notice that in 
Fig. 2 due to the viscous effect, the wave propagates 
with decreasing wave amplitude when the space 
increases. As can be seen from the third figure, the 
viscous effect of the fluid causes the downward bell-
shaped wave propagates to the right with decreasing 
wave amplitude as time, t increases. The big 
nonlinearity effect leads the solitary wave performs a 
narrower downward bell-shaped wave. 

5. CONCLUSION 

We presented the modulation of nonlinear waves in a 
prestressed thin-walled elastic tube with a symmetrical 
stenosis filled with the Newtonian fluid. The governing 
equation is obtained as the dissipative Nonlinear 
Schrodinger (NLS) equation with variable coefficient. 

Through the model of Newtonian fluid in the stenosed 
artery, it is seen that the wave propagates to the right with 
decreasing wave amplitude when the time, t increases. 
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