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ABSTRACT

In this study, we applied Randomized Neighborhoedréh (RNS) to estimate the Weibull parameters to
determine the severity of fire accidents; the detee provided by the Thai Reinsurance Public Cl, We
compared this technique with other frequently-ussthniques: the Maximum Likelihood Estimator (MLE),
the Method of Moments (MOM), the Least Squares MetfLSM) and the weighted least squares method
(WLSM) and found that RNS estimates the parameterg accurately than do MLE, MOM, LSM or WLSM.
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1. INTRODUCTION estimation of the Weibull parameters for the claim

L _ . severity of fire accidents; the data were provittgdthe
The problem of estimating parameters in actuarial,; Reinsurance Public Co., Ltd. Five estimation
science is an important issue. Choosing an ap@iepri  athods (MLE, MOM, LSM, WLSM and RNS) were
estimator is very important. In practice, CONSW&Et e 1o estimate the Weibull parameters. Basedhbn ¢

metr_lods fo_r parameter_ estimation are needed. Th%quared value, RNS estimates the parameters more
Maximum Likelihood Estimator (MLE), the Method of accurately than do MLE, MOM, LSM or WLSM.
Moments (MOM), the Least Squares Method (LSM) and ' ’

the Weighted Least Squares Met_hod_ (WLSM) are 2 MATERIALSAND METHODS

frequently used for parameter estimation. Here, we

consider the problem of the estimation of Weibull . T

parameters. Many authors have investigated variousz'l' Weibull Distribution

aspects of this problem. Seyit and Ali (2009) pnésé Catastrophe insurance covers large insurance losses

power density method for Weibull parameters that happen infrequently, but have payouts fornutai

estimation. EI-Mezouar (2010) proposed the Coeffiti Examples include large-scale fire, windstorm oroflo

of Variation (CV) estimator comparing with Cran §8) insurance. In case of catastrophes, claim sevédty

of the estimation of Weibull parameters. Yebg al. heavy tails. The Weibull distribution with a shape

(2011) compared the method based on quantilesparameter of less than one and a scale parametategr

maximum spacing method, MLE, MOM, LSM and than zero is a clear example of heavy-tailed distion.

WLSM for Weibull parameters estimation. The probability density and cumulative distribution
In this study, we propose the Randomized function forth three-parameter Weibull random valea

Neighborhood Search technique (RNS) for the X, in which each is defined by Equation 1 and 2:
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e o 5] o
And:
F(x;o,B,y)=1- exp[—(xs_y]j (2)

where,a>0, >0 andy>0 and are the shape, scale and
In this study, we

location parameters respectively.
consider claim severity x with a cost greater tfedh
million baht. Thus we sey = 20 Let y = xy. It then
follows from (1) and (2) that for eack:

o33 4]
(y;0.P) sl 5

And Equation 3:

F(y;a,B)=1- —yja
(y:a,B) ex;{ [B

2.2. Estimation of the Webull Parameters
2.2.1. Maximum Likelihood Estimator (MLE)

Let yi, Yo, ..., ¥ be a random sample for the Weibull
distribution, then the likelihood function L is deéd as

Equation 4:
Bl =4 3]
= BUB B

On taking the logarithms of (4), differentiated hwit
respect t@3 anda and equal to zero, one gets:

®3)

L(YpYar 4)

6InL__g “_p
aB - B Ba+1z(y)

et o 4o

Ja =

After solving the above two equations, we obtain
Equation 5 and 6:

(1e L)
B—[n;yi]

///// Science Publications

(5)

13

Z(Y) Iy«
a=|2——-=ny,

(6)
Z(y. ni=

The valuea has to be obtained from (6) by Newton-
Raphson and themis inserted into (5) to obtafh

2.3. Methods of Moments (MOM)

We know that the kth moment, |for the Weibull
distribution is given by:

u =pr 144
a
where I'(t) defines the gamma function as:
r(t)j e X ldx,t> 0
0

In particular, the mean u (the first moment) anel th
variances” are Equation 7 and 8:

u=pr(1+2]
oralfogole]

The coefficient of variation CV for the Weibull
distribution can be determined as follows Equafion

(@)

8)

\/r(1+3)—r2(1+i)
cv=2= a a

9)
H ra+)
a

The shape parameter as appears in (9) will be
determined by bisection and the scgle may be
calculated from (7).

Another method of moment has been proposed by
Cran (1988). Let =<x<...)<Xm be an ordered random
sample of the cumulative dlstrlbutlon functiog, Fas in
(3). Then k, can be estimated by,@&) where:
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0, X< Xy, By applying the logarithm to (3), we get a lineamf:
r
S, (X)= o Xy S XS Xy 1 1,..,n-1 |n|n[i}—a|n e )
L Xg,SX 1-F)
Then the population moment js estimated by: The shape parameter can be obtained from the

slope term in (11) and the scale paramdgtecan be
solved from the intercept term.

2.5. Weighted Least Squares Method (WL SM)

=Z(1_er (Koo = X)) Xy =0 For this method, we follow the technique given by
n Wu et al. (2006). Equation (11) can be rewritten in the
form Y = mS+b, where:

He expresses the parameters in terms of lower order
moment as follows:

m, = T[l— S (x) dx

Y=In|n[i}m=a,S: Iny and b=-a If8

-1

o =(In2)(In(, —p,) = I, — 1))

WLSM is based on the hypothesis that a straight

And: line fitting must minimize the weighted sum of the
. squares of deviations for the data flom the fitting
B= “l(r(“%)] function Y(S), so the equation:
Therefore,a and can be obtained by substituting 12=3 W(Y,-b-mg )’
i=1

my, m, and m for Yy, Y and 4 respectively.

2.4. Least SquaresMethod (L SM) a2 Az

B ] gives the minimum value. By solvin%u:—-o,

We note from (3) that a probability 5 assigned to m ob
each y. Since true value of;Fs unknown, a prescribed we compute:
estimator must to be used. The following four
expressions which are often used to define the n n n n
probability estimator Equation 10a-10d. meg= ;VV';S W _gs W; YW

i~ YWY W - O SWY
F= :-5 (10a) = le le
LYW —aY SW
i b= i=1
F=_' 10b y
et (10b) .Z“VV'

_i-0.3 ) ) ) )

F= 704 (10c)  where, Wis the weight factor for the ith datum point.
The paramete can be calculated from:
i-3/8
: n+ 1/4 ( ) B:ex{—BJ
m

where, Fis the probability for the ith ranked &nd n is
the sample size. Itis clear that LSM is a special case of WLSM at\¥.
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They used the weight factor based on the theory ofTable 1. Claim times and claim severity ymillion baht)

error propagation Equation 12a and 12b: 2000
6-Mar 12-Mar 12-Mar 25-Mar 13-Jul 26-Aug
) 15.5 6.4 449 107.3 37.7 1.8
W, =[(1- F)In(- F) (12a) 3-Sep  24-Oct
47.3 28.5
2001
W, =33F- 275 + (& P (12b) 16-Jan  28-Jan 17-Feb 22-Feb 9-Mar 19-Jun
3.6 2.3 64.6 1.4 315 0.7
20-Jun  5-Jul 6-Aug  24-Aug 18-Sep 23-Oct
Similar to LSM, the probability F for each datum 20.1 9.3 6.7 12.4 56.5 13.2
ranked in ascending order is also approximated;lasF 29-Nov  1-Dec
shown from (10a) to (10d). 5.7 40.2
We consider a data set of fire insurance claims in2202
. . 27-Jan 2-Mar  10-Apr  13-Apr 2-Jun 23-Aug
Thailand fr_om _2000 to 2004. _These data were pravide 1,55 0.9 45.8 353 13 21
by the Thai Reinsurance Public Co., Ltd. They csinsi 26-Oct  29-Oct
the claim times and the claim severity khe amountyy 4.2 24.4
as shown inTable 1, is represents amounts above 20 2003
million baht, i.e., y= %-20. For convenience, we still 9-Jan 5-Feb  8-Apr  14-Apr 7-May 23-Nov
call the amountyclaim severity. 0.4 108 499 1027 1389 13.1
2004
Table 2 shqws the shape _para_lmet@rsand scale 5 3an 2.Jan  2-Jan 7.Feb  28-Feb 5-Mar
parameterd using different estimation methods for the 49 84.3 9.2 43.1 70 7.2
data found inrable 1. 14-Mar  22-Apr 8-Jul 1-Nov  24-Dec
. 24 7.5 37.2 14.2 33.2
2.6. Chi-Squared
Chi-squared is defined as: Table2. Shape a and scale parametersusing various
estimation methods
. ) Method  Type W K a B
x2=> (9 "E) 1 MLE - 0.8633  28.8668
E 2 MOM (CV) - - 0.9286  30.0055
3 MOM (Cran) - - 0.9552  30.4239
where, k is the total nu.mber qf intervals; @ the g tgm:g ) 183 8:?332 gg:fégg
observed frequency for intervali,; Bs the expected ¢ LSM 3 - 10c  0.8310  28.8602
frequency for interval i and: 7 LSM 4 - 10d  0.8405  28.7721
8 WLSM_1 12a 10a 0.7647 29.9050
. 9 WLSM_2 12a 10b 0.7455 30.1924
E =nlF(y)-Flys)li=1 2,.. ,F(y = C 10 WLSM 3  12a 10c 07571  30.0176
11 WLSM_4 12a 10d 0.7600 29.9750
Here n is the sample size, F is the cumulative 12 WLSM_5 12b 10a 07967  29.2036
T . . . WLSM_6 12b 10b 0.7710 29.5150
dlstrlbytlon function as in (3) and, ;.1 are the endpoints 4 WLSM_7 12b 10c 07868 293166
of the interval. WLSM 8  12b 10d  0.7907  29.2713
We performed the chi-squared goodness of fit st f
all methods inTab!e 2. The null hypothesis §1 data is. Table 3. Chi-Squaredg = 0.9286 an@ = 30.0055
assumed for V_Velbullo(,B). We fqund that th(_a chi-  Row v Fo)-Fy,) E o) (O-E)IE,
squared value is less than the chi-squared critiahle
for degree of freedom 4 at a significance leveDdf5 1 6 0.20094 9.4441 11 0.2563
. . 12 0.14658 6.8892 7 0.0018
For example, Kl data is the assumed Weibulk = 3 18 0.11571 5.4384 6 0.0580
0.9286,3 = 30.0055). The chi-squared critical valuefor 4 30 0.16883 7.9350 3 3.0692
degree of freedom 4 at a significance level of 095 5 42 0.11295 5.3088 7 0.5388
9.49, whereas the chi-squared value is 4.09&®l¢ 3). 6 66 0.12996 6.1082 7 0.1302
Thus we can assume that the distribution of the dat 7 © 0.12503 5.8763 6 0.0026
(Table 1) is Weibull at a 5% degree of significance. Totals 1 47 47 4.0569
///// Science Publications 15 JMSS
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Table 4. Parameters, 3 and chi-squared value by RNS

B

Chi-Squared

3.RESULTS
Times o
3.1. Randomized Neighborhood Search (RNS) 1 0.9286000000
2 0.8381502696

Randomized neighborhood search is a numerical3
optimization method whose objective functions may b 4

discontinuous and non-differentiable. This optirtiza

5

is also known as a direct-search or derivative-freey
method. Randomized neighborhood search operates bg

iterative random moving from the initial solution & 9
better solution. The RNS algorithm is as follows: %8
30
Step 1 : Start from the initial parametess and f. 40
Compute the chi-squared value. 28
Step 2 : Randomly change the valoeto o' and 3 70
top'. We can do this by choosing a uniform gg
variate p from the interval [0,1] and let: ?80
200
a’ =a +2(0.5- u)(0.1998) 300
B’ =B +2(0.5- u)(4.995 400
500
. . 600
Step 3 : Compute chi-squared value withandp' . 700
Step 4 : Compare the chi-squared values which wereB00
obtained from steps 1 and 3. 900
1,000
2,000
If the chi-squared value of step 3 is greater than 3,000
equal to that of step 1, then repeat step 2. 4,000
If not, we seb=a' , =B’ and then go on to step 2. 2'888
7,000
Step 5 : Repeat until a termination criterion istme 8,888

(adequate fitness reached).

From Table 1, we compute the mean (u) and

variance ¢°):

0.8381502696
0.8381502696
0.8381502696
0.7076414583
0.7076414583
0.7076414583
0.7076414583
0.7076414583
0.7095244694
0.7148708496
0.7148708496
0.7148708496
0.7148708496
0.7148708496
0.7131632905
0.7131632905
0.7131632905
0.7160097628
0.7160097628
0.7160097628
0.7160097628
0.7160097628
0.7160097628
0.7157118026
0.7157118026
0.7158868924
0.7157825238
0.7158410970
0.7158324217
0.7158182813
0.7158147162
0.7158161544
0.7158168650
0.7158170080

10,000 0.7158169062

30.0055000000
33.0173413017
33.0173413017
33.0173413017
33.0173413017
28.7762666642
28.7762666642
28.7762666642
28.7762666642
28.7762666642
29.5717808657
26.9714010325
26.9714010325
26.9714010325
26.9714010325
26.9714010325
30.1643026571
30.1643026571
30.1643026571
28.1949938030
28.1949938030
28.1949938030
28.1949938030
28.1949938030
28.1949938030
28.4146840369
28.4146840369
28.4191078089
28.7701321511
28.7428309644
28.7679580993
28.8071827518
28.8246778976
28.8206039617
28.8183923908
28.8179670891
28.8182970081

4.0569000000
3.2266108642
3.2266108642
3.2266108642
3.2266108642
2.6481293827
2.6481293827
2.6481293827
2.6481293827
2.6481293827
2.6140305005
2.5856511398
2.5856511398
2.5856511398
2.5856511398
2.5856511398
2.5559654901
2.5559654901
2.5559654901
2.4788283052
2.4788283052
2.4788283052
2.4788283052
2.4788283052
2.4788283052
2.4783086176
2.4783086176
2.4745204778
24707423531
2.4697671190
2.4697088719
2.4696879774
2.4696432384
2.4696395832
2.4696393961
2.4696392513
2.4696391693

Table5. Chi-squared value for various estimation methods

1 =31.055319
0% =1,120.333774

When we replace p an@® in (8) and then
approximatea by bisection, we gett = 0.9286. The
approximate value off = 30.0055 can be obtained
from (7). These two parametensand3 will be used
as the initial parameters for the RNS algorithm. We 10
iterated RNS 10,000 times and obtained the results}%
shown inTable 4. 13

Table 5 shows the shape parametess scale 14
parametersp and chi-squared value using different 15
estimation methods. 16
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Method Type B Chi-Squared
1 MLE 0.8633 28.8668 5.9412
2 MOM (CV) 0.9286  30.0055 4.0569
3 MOM (Cran) 0.9552  30.4239  4.4097
4 LSM_1 0.8580 28.6168 5.9758
5 LSM_2 0.7984 29.1888 3.4099
6 LSM_3 0.8310 28.8602 6.0731
7 LSM_4 0.8405 28.7721 6.0239
8 WLSM 1 0.7647 29.9050 3.7284
9 WLSM_2 0.7455 30.1924 3.4214
WLSM_3 0.7571 30.0176  3.8360
WLSM_4 0.7600 29.9750 3.7936
WLSM_5 0.7967 29.2036 3.4216
WLSM_6 0.7710 29.5150 3.6609
WLSM_7 0.7868 29.3166  3.4988
WLSM_8 0.7907 29.2713  3.4662
RNS 0.7158 28.8183 2.4696
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