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ABSTRACT 

In this study, we applied Randomized Neighborhood Search (RNS) to estimate the Weibull parameters to 
determine the severity of fire accidents; the data were provided by the Thai Reinsurance Public Co., Ltd. We 
compared this technique with other frequently-used techniques: the Maximum Likelihood Estimator (MLE), 
the Method of Moments (MOM), the Least Squares Method (LSM) and the weighted least squares method 
(WLSM) and found that RNS estimates the parameters more accurately than do MLE, MOM, LSM or WLSM. 
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1. INTRODUCTION 

The problem of estimating parameters in actuarial 
science is an important issue. Choosing an appropriate 
estimator is very important. In practice, constructive 
methods for parameter estimation are needed. The 
Maximum Likelihood Estimator (MLE), the Method of 
Moments (MOM), the Least Squares Method (LSM) and 
the Weighted Least Squares Method (WLSM) are 
frequently used for parameter estimation. Here, we 
consider the problem of the estimation of Weibull 
parameters. Many authors have investigated various 
aspects of this problem. Seyit and Ali (2009) presented 
power density method for Weibull parameters 
estimation. El-Mezouar (2010) proposed the Coefficient 
of Variation (CV) estimator comparing with Cran (1988) 
of the estimation of Weibull parameters. Yeliz et al. 
(2011) compared the method based on quantiles, 
maximum spacing method, MLE, MOM, LSM and 
WLSM for Weibull parameters estimation. 

In this study, we propose the Randomized 
Neighborhood Search technique (RNS) for the 

estimation of the Weibull parameters for the claim 
severity of fire accidents; the data were provided by the 
Thai Reinsurance Public Co., Ltd. Five estimation 
methods (MLE, MOM, LSM, WLSM and RNS) were 
used to estimate the Weibull parameters. Based on chi-
squared value, RNS estimates the parameters more 
accurately than do MLE, MOM, LSM or WLSM. 

2. MATERIALS AND METHODS 

2.1. Weibull Distribution 

Catastrophe insurance covers large insurance losses 
that happen infrequently, but have payouts for claims. 
Examples include large-scale fire, windstorm or flood 
insurance. In case of catastrophes, claim severity has 
heavy tails. The Weibull distribution with a shape 
parameter of less than one and a scale parameter greater 
than zero is a clear example of heavy-tailed distribution. 
The probability density and cumulative distribution 
function forth three-parameter Weibull random variable 
X, in which each is defined by Equation 1 and 2: 
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1
x x

f (x; , , ) exp
α− α    α − γ − γ

 α β γ = −    β β β    
 (1) 

 
And: 
 

x
F(x; , , ) 1 exp

α  − γ
 α β γ = − −  β  

 (2) 

 
where, α>0, β>0 and γ>0 and are the shape, scale and 
location parameters respectively. In this study, we 
consider claim severity x with a cost greater than 20 
million baht. Thus we set γ = 20 Let y = x-γ. It then 
follows from (1) and (2) that for each y≥0: 
 

1
y y

f (y; , ) exp
α− α    α

 α β = −    β β β    
 

 
And Equation 3: 
 

y
F(y; , ) 1 exp

α  
 α β = − −  β  

 (3) 

 
2.2. Estimation of the Weibull Parameters 

2.2.1. Maximum Likelihood Estimator (MLE) 

Let y1, y2, …, yn be a random sample for the Weibull 
distribution, then the likelihood function L is defined as 
Equation 4: 
 

1n
i i

1 2 n
i 1

y y
L(y ,y , , y ; , ) exp

α− α

=

    α
 α β = −    β β β    

∏…  (4) 

 
On taking the logarithms of (4), differentiated with 

respect to β and α and equal to zero, one gets: 
 

n

i1
i 1

n n
i i

i
i 1 i 1

ln L n 1
(y ) 0,

ln L n y y
n ln ln y ln 0

α
α+

=

α

= =

∂ = − + =
∂β β β

   ∂ = − β + − =   ∂α α β β   

∑

∑ ∑
 

 
After solving the above two equations, we obtain 

Equation 5 and 6: 
 

1
n

i
i 1

1
y

n

α
α

=

 β =  
 
∑  (5) 

1n

i i n
i 1

in
i 1

i
i 1

(y ) ln y
1

ln y
n(y )

−
α

=

α =

=

 
 
 α = −
 
  

∑
∑

∑
 (6) 

 
The value α has to be obtained from (6) by Newton-

Raphson and then α is inserted into (5) to obtain β. 

2.3. Methods of Moments (MOM) 

We know that the kth moment µk for the Weibull 
distribution is given by: 

 

k
k

k
1
 µ = β Γ + α 

 

 
where, Γ(t) defines the gamma function as: 

 

( ) x t 1

0

t e x dx, t 0
∞

− −Γ >∫  

 
In particular, the mean µ (the first moment) and the 

variance σ2 are Equation 7 and 8: 

 
1

1
 µ = βΓ + α 

 (7) 

 

2 2 2 2
2

2 1
( ) 1 1

    σ = µ − µ = β Γ + − Γ +    α α    
 (8) 

 
The coefficient of variation CV for the Weibull 

distribution can be determined as follows Equation 9: 
 

22 1
(1 ) (1 )

CV
1

(1 )

Γ + − Γ +σ α α= =
µ Γ +

α

 (9) 

 
The shape parameter α as appears in (9) will be 

determined by bisection and the scale β may be 
calculated from (7). 

Another method of moment has been proposed by 
Cran (1988). Let x(1)≤x(2)≤… )≤x(n) be an ordered random 
sample of the cumulative distribution function F(y) as in 
(3). Then F(y) can be estimated by Sn(x) where: 
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(1)

n (r) ( r 1)

(n )

0, x x ,

r
S (x) , x x x , r 1, ,n 1

n
1, x x.

+

<

= ≤ < = −

 ≤

…  

 
Then the population moment µk is estimated by: 

 

[ ]k

k n

0

kn 1

(r 1) (r ) (0)
r 0

m 1 S (x) dx

r
1 (x x ), x 0

n

∞

−

+
=

= −

 = − − = 
 

∫

∑
 

 
He expresses the parameters in terms of lower order 

moment as follows: 
 

( ) 1

1 2 2 4(ln 2) ln( ) ln( )
−α = µ − µ − µ − µ  

 
And: 
 

1

1

1
(1 )

−
 β = µ Γ + α 

 

 
Therefore, α and β can be obtained by substituting 

m1, m2 and m4 for µ1, µ2 and µ4 respectively. 

2.4. Least Squares Method (LSM) 

We note from (3) that a probability Fi is assigned to 
each yi. Since true value of Fi is unknown, a prescribed 
estimator must to be used. The following four 
expressions which are often used to define the 
probability estimator Equation 10a-10d. 
 

i

i 0.5
F

n

−=  (10a) 

 

i

i
F

n 1
=

+
 (10b) 

 

i

i 0.3
F

n 0.4

−=
+

 (10c) 

 

i

i 3 / 8
F

n 1 / 4

−=
+

 (10d) 

 
where, Fi is the probability for the ith ranked yi and n is 
the sample size. 

By applying the logarithm to (3), we get a linear form: 

 
1

ln ln ln y ln
1 F
  = α − α β − 

 (11) 

 
The shape parameter α can be obtained from the 

slope term in (11) and the scale parameter β can be 
solved from the intercept term. 

2.5. Weighted Least Squares Method (WLSM) 

For this method, we follow the technique given by 
Wu et al. (2006). Equation (11) can be rewritten in the 
form Y = mS+b, where: 

 
1

Y ln ln , m , S ln y and b ln
1 F
 = = α = = −α β − 

 

 
WLSM is based on the hypothesis that a straight 

line fitting must minimize the weighted sum of the 
squares of deviations for the data Yi from the fitting 
function Y(Si), so the equation: 

 
n

2 2
i i i

i 1

l W (Y b mS )
=

= − −∑  

 

gives the minimum value. By solving 
2 2l l

0
m b

∂ ∂= =
∂ ∂

, 

we compute: 

 
n n n n

i i i i i i i i
i 1 i 1 i 1 i 1

n n n
2 2

i i i i i
i 1 i 1 i 1

n n

i i i i
i 1 i 1

n

i
i 1

W S YW S W YW
m ,

W S W ( S W )

Y W S W
b

W

= = = =

= = =

= =

=

−
= α =

−

− α
=

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

∑

 

 
where, Wi is the weight factor for the ith datum point. 
The parameter β can be calculated from: 
 

b
exp

m
 β = − 
 

 

 
It is clear that LSM is a special case of WLSM at Wi = 1. 
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They used the weight factor based on the theory of 
error propagation Equation 12a and 12b: 
 

[ ]2

i i iW (1 F )ln(1 F )= − −  (12a) 

 
0.025

i i iW 3.3F 27.5 1 (1 F ) = − − −   (12b) 

 
Similar to LSM, the probability F for each datum 

ranked in ascending order is also approximated by Fi as 
shown from (10a) to (10d). 

 We consider a data set of fire insurance claims in 
Thailand from 2000 to 2004. These data were provided 
by the Thai Reinsurance Public Co., Ltd. They consist of 
the claim times and the claim severity xi. The amount yi 
as shown in Table 1, is represents amounts above 20 
million baht, i.e., yi = xi-20. For convenience, we still 
call the amount yi claim severity. 

Table 2 shows the shape parameters α and scale 
parameters β using different estimation methods for the 
data found in Table 1. 

2.6. Chi-Squared 

Chi-squared is defined as: 
 

2k
2 i i

i 1 i

(O E )
x

E=

−=∑  

 
where, k is the total number of intervals, Oi is the 
observed frequency for intervali, Ei is the expected 
frequency for interval i and:  
 

i i i 1 0E n[F(y ) F(y )], i 1, 2, ,F(y ) 0−= − = =…  

 
Here n is the sample size, F is the cumulative 

distribution function as in (3) and yi, yi-1 are the endpoints 
of the interval. 

We performed the chi-squared goodness of fit test for 
all methods in Table 2. The null hypothesis H0: data is 
assumed for Weibull (α,β). We found that the chi-
squared value is less than the chi-squared critical value 
for degree of freedom 4 at a significance level of 0.05 
For example, H0: data is the assumed Weibull (α = 
0.9286, β = 30.0055). The chi-squared critical valuefor 
degree of freedom 4 at a significance level of 0.05 is 
9.49, whereas the chi-squared value is 4.0569 (Table 3). 
Thus we can assume that the distribution of the data 
(Table 1) is Weibull at a 5% degree of significance. 

Table 1. Claim times and claim severity y1 (million baht) 
2000 
6-Mar 12-Mar 12-Mar 25-Mar 13-Jul 26-Aug 
15.5 6.4 44.9 107.3 37.7 1.8 
3-Sep 24-Oct 
47.3 28.5 
2001 
16-Jan 28-Jan 17-Feb 22-Feb 9-Mar 19-Jun 
3.6 2.3 64.6 1.4 31.5 0.7 
20-Jun 5-Jul 6-Aug 24-Aug 18-Sep 23-Oct 
20.1 9.3 6.7 12.4 56.5 13.2 
29-Nov 1-Dec 
5.7 40.2 
2002 
27-Jan 2-Mar 10-Apr 13-Apr 2-Jun 23-Aug 
112.2 0.9 45.8 35.3 13 2.1 
26-Oct 29-Oct 
4.2 24.4 
2003 
9-Jan 5-Feb 8-Apr 14-Apr 7-May 23-Nov 
0.4 10.8 49.9 102.7 138.9 13.1 
2004 
2-Jan 2-Jan 2-Jan 7-Feb 28-Feb 5-Mar 
40 84.3 9.2 43.1 70 7.2 
14-Mar 22-Apr 8-Jul 1-Nov 24-Dec 
2.4 7.5 37.2 14.2 33.2 
 
Table 2. Shape α and scale β parametersusing various 

estimation methods
 

Method Type Wi Fi α β 
1 MLE - - 0.8633 28.8668 
2 MOM (CV) - - 0.9286 30.0055 
3 MOM (Cran) - - 0.9552 30.4239 
4 LSM_1 - 10a 0.8580 28.6168 
5 LSM_2 - 10b 0.7984 29.1888 
6 LSM_3 - 10c 0.8310 28.8602 
7 LSM_4 - 10d 0.8405 28.7721 
8 WLSM_1 12a 10a 0.7647 29.9050 
9 WLSM_2 12a 10b 0.7455 30.1924 
10 WLSM_3 12a 10c 0.7571 30.0176 
11 WLSM_4 12a 10d 0.7600 29.9750 
12 WLSM_5 12b 10a 0.7967 29.2036 
13 WLSM_6 12b 10b 0.7710 29.5150 
14 WLSM_7 12b 10c 0.7868 29.3166 
15 WLSM_8 12b 10d 0.7907 29.2713 

 
Table 3. Chi-Squared, α = 0.9286 and β = 30.0055 

Rowi yi i i 1F(y ) F(y )−−  Ei Oi (Oi-Ei)
2/Ei 

1 6 0.20094 9.4441 11 0.2563 
2 12 0.14658 6.8892 7 0.0018 
3 18 0.11571 5.4384 6 0.0580 
4 30 0.16883 7.9350 3 3.0692 
5 42 0.11295 5.3088 7 0.5388 
6 66 0.12996 6.1082 7 0.1302 
7  ∞ 0.12503 5.8763 6 0.0026 
  Totals 1 47 47 4.0569 
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3. RESULTS 

3.1. Randomized Neighborhood Search (RNS) 

Randomized neighborhood search is a numerical 
optimization method whose objective functions may be 
discontinuous and non-differentiable. This optimization 
is also known as a direct-search or derivative-free 
method. Randomized neighborhood search operates by 
iterative random moving from the initial solution to a 
better solution. The RNS algorithm is as follows: 

 
Step 1 : Start from the initial parameters α and β. 

Compute the chi-squared value. 
 Step 2 : Randomly change the value α to ′α and β 

to ′β . We can do this by choosing a uniform 
variate µ from the interval [0,1] and let: 

 
/ 2(0.5 u)(0.1998),α = α + −  

/ 2(0.5 u)(4.995)β = β + −  

 
Step 3 : Compute chi-squared value with ′α and ′β . 
Step 4 : Compare the chi-squared values which were 

obtained from steps 1 and 3.  

 
If the chi-squared value of step 3 is greater than or 

equal to that of step 1, then repeat step 2. 
If not, we set α= ′α ,β = ′β  and then go on to step 2. 

 
Step 5 : Repeat until a termination criterion is met 

(adequate fitness reached). 
From Table 1, we compute the mean (µ) and 

variance (σ2): 

 

2

31.055319

1,120.3337743

µ =

σ =
 

 
When we replace µ and σ2 in (8) and then 

approximate α by bisection, we get α = 0.9286. The 
approximate value of β = 30.0055 can be obtained 
from (7). These two parameters α and β will be used 
as the initial parameters for the RNS algorithm. We 
iterated RNS 10,000 times and obtained the results 
shown in Table 4. 

Table 5 shows the shape parameters α, scale 
parameters β and chi-squared value using different 
estimation methods. 

Table 4. Parameters α, β and chi-squared value by RNS 
Times α  β Chi-Squared 
1 0.9286000000 30.0055000000 4.0569000000 
2 0.8381502696 33.0173413017 3.2266108642 
3 0.8381502696 33.0173413017 3.2266108642 
4 0.8381502696 33.0173413017 3.2266108642 
5 0.8381502696 33.0173413017 3.2266108642 
6 0.7076414583 28.7762666642 2.6481293827 
7 0.7076414583 28.7762666642 2.6481293827 
8 0.7076414583 28.7762666642 2.6481293827 
9 0.7076414583 28.7762666642 2.6481293827 
10 0.7076414583 28.7762666642 2.6481293827 
20 0.7095244694 29.5717808657 2.6140305005 
30 0.7148708496 26.9714010325 2.5856511398 
40 0.7148708496 26.9714010325 2.5856511398 
50 0.7148708496 26.9714010325 2.5856511398 
60 0.7148708496 26.9714010325 2.5856511398 
70 0.7148708496 26.9714010325 2.5856511398 
80 0.7131632905 30.1643026571 2.5559654901 
90 0.7131632905 30.1643026571 2.5559654901 
100 0.7131632905 30.1643026571 2.5559654901 
200 0.7160097628 28.1949938030 2.4788283052 
300 0.7160097628 28.1949938030 2.4788283052 
400 0.7160097628 28.1949938030 2.4788283052 
500 0.7160097628 28.1949938030 2.4788283052 
600 0.7160097628 28.1949938030 2.4788283052 
700 0.7160097628 28.1949938030 2.4788283052 
800 0.7157118026 28.4146840369 2.4783086176 
900 0.7157118026 28.4146840369 2.4783086176 
1,000 0.7158868924 28.4191078089 2.4745204778 
2,000 0.7157825238 28.7701321511 2.4707423531 
3,000 0.7158410970 28.7428309644 2.4697671190 
4,000 0.7158324217 28.7679580993 2.4697088719 
5,000 0.7158182813 28.8071827518 2.4696879774 
6,000 0.7158147162 28.8246778976 2.4696432384 
7,000 0.7158161544 28.8206039617 2.4696395832 
8,000 0.7158168650 28.8183923908 2.4696393961 
9,000 0.7158170080 28.8179670891 2.4696392513 
10,000 0.7158169062 28.8182970081 2.4696391693 
 
Table 5. Chi-squared value for various estimation methods 
Method Type α β Chi-Squared 
1 MLE 0.8633 28.8668 5.9412 
2 MOM (CV) 0.9286 30.0055 4.0569 
3 MOM (Cran) 0.9552 30.4239 4.4097 
4 LSM_1 0.8580 28.6168 5.9758 
5 LSM_2 0.7984 29.1888 3.4099 
6 LSM_3 0.8310 28.8602 6.0731 
7 LSM_4 0.8405 28.7721 6.0239 
8 WLSM_1 0.7647 29.9050 3.7284 
9 WLSM_2 0.7455 30.1924 3.4214 
10 WLSM_3 0.7571 30.0176 3.8360 
11 WLSM_4 0.7600 29.9750 3.7936 
12 WLSM_5 0.7967 29.2036 3.4216 
13 WLSM_6 0.7710 29.5150 3.6609 
14 WLSM_7 0.7868 29.3166 3.4988 
15 WLSM_8 0.7907 29.2713 3.4662 
16 RNS 0.7158 28.8183 2.4696 
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4. DISCUSSION 

We should apply the RNS to other distributions for 
parameter estimation. The RNS should be applied to a 
mixture models; it is using the MLE via the 
Expectations-Maximization (EM) algorithm 
(Sattayatham and Talangtam (2012) for detail). In the 
other, we should consider the data of truncated and/or 
censored data sets in further research.  

5. CONCLUSION 

In this study, we have used RNS to estimate the 
Weibull parameters for the claim severity of fire 
accidents that cost more than 20 million baht. Table 5 
shows RNS has the smallest chi-squared value (i.e., chi-
squared value = 2.4696). Therefore RNS givesa more 
accurate estimation of parameters than do MLE, MOM, 
LSM or WLSM. 
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