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ABSTRACT 

Predicting the trend of precipitation is a difficult task in meteorology and environmental sciences. Statistical 

approaches from time series analysis provide an alternative way for precipitation prediction. The ARIMA 

model incorporating seasonal characteristics, which is referred to as seasonal ARIMA model was presented. 

The time series data is the monthly precipitation data in Yantai, China and the period is from 1961 to 2011. The 

model was denoted as SARIMA (1, 0, 1) (0, 1, 1)12 in this study. We first analyzed the stability and correlation of 

the time series. Then we predicted the monthly precipitation for the coming three yesrs. The results showed that 

the model fitted the data well and the stochastic seasonal fluctuation was sucessfuly modeled. Seasonal ARIMA 

model was a proper method for modeling and predicting the time series of monthly percipitation. 
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1. INTRODUCTION 

Autoregressive Integrated Moving Average Model 

(ARIMA), is a widely used time series analysis model in 

statistics. ARIMA model was firstly proposed by Box 

and Jenkins in the early 1970s, which is often termed as 

Box-Jenkins model or B-J model for simplicity (Stoffer 

and Dhumway, 2010). ARIMA is a kind of short-term 

prediction model in time series analysis. Because this 

method is relatively systematic, flexible and can grasp 

more original time series information, it is widely used in 

meteorology, engineering technology, Marine, economic 

statistics and prediction technology, (Kantz and 

Schreiber, 2004; Cryer and Chan, 2008). 

The general ARIMA model is also applicable for 

non-stationary time series that have some clearly 

identifiable trends (Stoffer and Dhumway, 2010). We 

usually denote ARIMA model as ARIMA(p, d, q), where 

P and q are non-negative integers that correspond to the 

order of the autoregressive, integrated and moving 

average parts of the model, respectively. In addition to 

the general ARIMA model, namely non-seasonal 

ARIMA(p, d, q) model, we should also consider some 

periodical time series. The periodicity of periodical time 

series is usually due to seasonal changes (including 

monthly, quarterly and degree of weeks change) or some 

other natural reasons. We can build pure seasona A 

ARIMA(P,D,Q) model (He, 2004) with the time series 

date in different cycle and the same phase, the 

parameters P, D and Q are the relevant seasonal 

autoregressive parameter, seasonal integrated parameter 

and seasonal moving average parameter. 

Considering the data relation, we can build a 

multiplication seasonal SARIMA(p, d, q)(P, D, Q)s 

model, (Wang et al., 2008). The model has been 

successfully applied in many subjects. In practical 

applications, the order of model SARIMA is usually not 

too large (Guo, 2009). If the period of time sereis equals 

to 12, it can be denoted as SARIMA(p, d, q)(P, D, Q)12. 

In the adjustment of the season, this is a very convenient, 

steady model. 
In this study, we will take the monthly precipitation 

time series as an example to build an seasonal ARIMA 
model and then forecast the precipitation in the next few 



Xinghua Chang et al. /Journal of Mathematics and Statistics 8 (4): 500-505, 2012 

 

501 Science Publications

 
JMSS 

years. Specifically, in a seasonal ARIMA model, once 
we have smoothed the data and identified the parameters 
D and d, other parameters P, Q, P and q can be 
preliminarily identified from the ACF and PACF of the 
stationary processing series. Other related technologies 
were also used in the study. 

2. MATERIALS AND METHODS 

2.1. Seasonal ARIMA Model  

The general form of seasonal model SARIMA(p, d, 

q) (P, D, Q)s is given by: 

 

 s D d s

P s t Q t(B ) (B) x (B ) (B)wΦ ϕ ∇ ∇ = Θ θ  (1) 

 

where, {wt}  is the nonstationary time series, {wt} is the 

usual Gaussian white noise process. s is the period of the 

time series. The ordinary autoregressive and moving 

average components are represented by polynomials φ(B) 

and θ (B) of orders p and q. The seasonal autoregressive 

and moving average components are Φp (B
s
) and ΘQ (B

s
), 

where P and Q are their orders. ∇d and D

s
∇  are ordinary 

and seasonal difference components. B is the backshift 

operator. The expressions are shown as follows:  
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In this study, we concentrate on monthly precipitation 

time series. If the seasonal period of the series s = 12. It 

is clear that we may then rewrite Equation (1) as: 

 
12 D d 12

P 12 t Q t(B ) (B) x (B ) (B)wΦ ϕ ∇ ∇ = Θ θ  (2) 

 

2.2. Model Identification 

In the tentative specification phase, namely model 

identification, the goal is to employ computationally simple 

techniques to narrow down the range of parsimonious 

models. The B-J method is only suitable for stationary time 

series data. In such case, we should possibly observe time 

series graph and transform the data appropriately.  

First, we should construct a time plot of the data and 

inspect the graph for any anomalies (Cryer and Chan, 

2008). If the variance grows with time, it will be 

necessary stabilize the variance. The next step is to 

identify preliminary values of autoregressive order P, the 

order of differencing d, the moving average order q and 

their corresponding seasonal parameters P, D and Q. 

Here, the Autocorrelation Function (ACF) and the Partial 

Autocorrelation Function (PACF) are the most important 

elements (Stoffer and Dhumway, 2010). The ACF 

measures the amount of linear dependence between 

observations in a time series that are separated by a lag q. 

The PACF helps to determine how many autoregressive 

terms p is necessary. The parameter d is the order of 

difference frequency from non-stationary time series to 

stationary series. Furthermore, a time series plot and 

ACF of data will typically suggest whether any 

differencing is needed. If differencing is called for, the 

time plot will show some kind of linear trend. 

When preliminary values of D and d have been fixed, 

the next step is to check the ACF and PACF of D d

12 t
x∇ ∇  

to determine the values of P, Q, P and q. We can further 

choose parameters using Akaike’s Information Criterion 

(AIC) to determine the values of parameters (Stoffer and 

Dhumway, 2010). 

2.3. Parameters Estimation 

Once the model is tentatively established, the 

parameters and the corresponding standard errors can be 

estimated using statistical techniques, such as Maximum 

Likelihood (ML), least square estimation method and 

Yule-Walker. 

2.4. Diagnostic Checking 

Generally, this step includes the analysis of the 
residuals as well as model comparisons. If the model fits 
well, the standardized residuals should behave as an 
independent and identically distributed sequence with 
mean zero and variance one (Cryer and Chan, 2008). 
A standardized residuals plot or a Q-Q plot can help in 
identifying the normality (Stoffer and Dhumway, 
2010). The model should pass the parametric test and 
diagnostic check.  

2.5. Fitting and Prediction 

 Once a model has been identified and all the 

parameters have been estimated, we can predict future 

values of a time series with this model. 
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Fig. 1. Time sereis of monthly precipitation data for Yantai station 
 
Table 1. Basic statistics for Yantai monthly precipitation data 

(in mm) 
No of observation Mean St Dev Median Min Max 

612 15.292 10.419 13.119 0 69.427 

2.6. Data 

In this study, the time series is the monthly 

percipitation data from Yantai, a coastal city in China. 

The annual mean temperature in Yantai is 12°C and the 

annual precipitation is 620 mm. The data processing tool 

is the free statistical software R. Time series plot is 

shown in Fig. 1. The descriptive statistics for our data 

are summarized in Table 1.  

3. RESULTS 

The ACF and PACF of the original data {xt}, t = 

1,2,…,612,  are shown in Fig. 2. The ACF and Fig. 1 

show a seasonal fluctuation occur every 12 month, 

resulting in s = 12 (Wang, 2008; Momani and Naill, 2009). 

Concentrating on the ACF of original data, we note a slow 

decreasing trend in the ACF peaks at seasonal lags, h = 1s, 

2s, 3s, 4s, where s = 12. It indicates a nonstationary 

behavior and suggests a seasonal difference. 

Figure 3 shows the ACF and PACF of the de-

seasonalized precipitation data. The ACF decreases to 

zero exponentially indicating a stationary behavior 

(Stoffer and Dhumway, 2010; Han et al., 2008). Then the 

SARIMA (p, 0, q)(P, 1, Q)12 model could be fitted to the 

de-seasonalized data. From ACF of the stationary series, 

we can see the ACF peak at h =1s; while for PACF, it 

peaks at h =1s, 2s,…,6s. This phenomenon means that 

the ACF is cutting off after lag 1s and the PACF is 

tailing off in the seasonal lags. So we can build two 

models: (i) an SAR model of order Q = 1, or (ii) an 

SARMA of orders P = 1,2,…,6 and Q = 1. The 

characteristic of graph turns out model (i) is much better. 

Inspecting the ACF and PACF at lags h = 1, 2,…,11, it 

appears that either: (a) ACF and PACF are both tailing 

off; (b) PACF cuts off at lag 1, ACF tails off; (c) ACF 

cuts off at lag 1, PACF tails off.  

The result indicates that we should consider the 

following models and choose a better model based on 

AIC, AICc and BIC criteria. The optional models and 

the correlation values are shown in Table 2. 

Obviously, model SARIMA (1,0,1) (0,1,1)12 has the 

smallest value of AIC, AICc and BIC and then we 

temporarily have a model SARIMA (1,0,1) (0,1,1)12. 

As a rule of thumb in SARIMA modeling, we need to 

minimize the sum squared of residuals (RSS) and the 

number of model parameters. We had considered this 

message when calculating the related values (Stoffer 

and Dhumway, 2010). 
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(a) 

 
 (b) 
 

Fig. 2. (a) Autocorrelation (ACF) and (b) Partial Autocorrelation (PACF) for original time series of monthly precipitation data 
 

 
(a) 

 
(b) 

 

Fig. 3. (a) Autocorrelation (ACF) and (b) Partial Autocorrelation (PACF) for first order seasonal differencing and de-seasonal 

original precipitation data 
 

The model parameters are estimated using Maximum 
Likelihood Estimation. The related parameters are shown in 
Table 3, where s.e stands for the standard deviation. It can 
be observed the parameters of model SARIMA(1, 0, 1)(0, 1, 
1)12 are all significant. Then we plug the related parameter 
into the Equation 2 and 3 the fitted model in this case is: 
 

1 12

12 t 1 t
(B) x (B ) (B)wϕ ∇ = Θ θ  (3) 

 

The diagnostics for the model SARIMA(1, 0, 1)(0, 1, 

1)12 is displayed in Fig. 4 and 5. The standardized 

residual shows no obvious patterns, although there are a 

few suspicious values and unusual values (Kantz and 

Schreiber, 2004). The model fits well although a small 

amount of autocorrelation still remains. Moreover, we 

use the Ljung-Box test to examine the independence of 

the residuals. The p-values of Q-statistic for the first 12 

lags of the model are shown in Fig. 5.  

Finally, predictions based on the fitted model for the 

next three years are shown in Fig. 5. The model SARIMA 

(1, 0, 1) (0, 1, 1)12 could be written as Equation 4:  

 
12

1 12 t 1 1 t
(1 B) x (1 B )(1 B)w− ϕ ∇ = + Θ + θ  (4) 
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Fig. 4. Diagnostic for the SARIMA (1, 0, 1) (0,1,1)12 model 

 

 
 

Fig. 5. Predicted and real values of monthly precipitation 
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Table 2. Optional models and the related standards values 
Models AIC AICc BIC 

SARIMA (0,0,1) (0,1,1)12 5.114070 5.117445 4.135720 

SARIMA (1,0,1) (0,1,1)12 5.098611 5.102041 4.127479 

SARIMA (0,0,0) (0,1,1)12 5.123903 5.127235 4.138337 

SARIMA (1,0,1) (0,1,1)12 5.112628 5.116003 4.134278 

 

Table 3. Estimates of the model parameters 
 Model parameter 
 ----------------------------- 

Model φ1 θ1 Φ1 RSS K 

SARIMA (1,0,1) (0,1,1)12 0.9709 -0.9219 -0.8223 36398.08 4 

s.c. 0.0245 0.0376 0.0257 

 

Or: 

 
12 12

1 t 1 1 t
(1 B)(1 B )x (1 B )(1 B)w− ϕ − = + Θ + θ  

 

The equation can be multiplied and written in the 

following form that is used in forecasting, the values of the 

correlation coefficient as shown in Table 3, Equation 5: 

 

t 1 t 1 t 12 1 t 13

t 1 t 1 1 t 12 1 1 t 13

x x x - x

w w w w

− − −

− − −

= ϕ + ϕ

+ + θ + θ + Θ θ
 (5) 

 

Finally, The comparison between the real values and 

the fitted value is shown in Fig. 5. The vertical dotted 

line separates the data from the predictions. 

4. DISSCUSSION 

Because of many stochastic environmental factors, 

such as temperature, geographic location and climate, 

the model state of precipitation is a complicated 

dynamical system. The time series model in study 

does not model the extreme values well. Further 

extensions of study may be undertaken by considering 

an intervention time series analysis such as 

Autoregressive conditional heteroskedasticity model 

to model the pheneonemon of extremums. 

5. CONCLUSION 

In this study, an ARIMA model that incorporates the 

seasonality of time series was presented. Using the time 

series of monthly precipitation in Yantai, we build a 

seasonal SARIMA (1, 0, 1) (0, 1, 1)12. It was found that 

the model fitted the data well and the stochastic seasonal 

fluctuation was sucessfuly modeled except some extreme 

values. The predictions based on this model indicate that 

the percipitation in the next three years will decrease. 

The decreasing trend is consistent with that obtained in 

our previous study (Gao and Hou, 2012). This changing 

trend reminds us to make proper strategies of water 

resource management in response to water shortage.   
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