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Abstract: Problem statement: The modeling of claims is an important task otiaces. Our problem

is in modelling the actual motor insurance claiatadset. In this study, we show that the actuabmo
insurance claim can be fitted by a finite mixtanedel. Approach: Firstly, we analyse the actual data
set and then we choose the finite mixture Lognordiatributions as our model. The estimated
parameters of the model are obtained from the Eddrahm. Then, we use the K-S and A-D test for
showing how well the finite mixture Lognormal dibtitions fit the actual data set. We also mention
the bootstrap technique in estimating the parametResults. From the tests, we found that the finite
mixture lognormal distributions fit the actual daget with significant level 0.10Conclusion: The
finite mixture Lognormal distributions can be fitéo motor insurance claims and this fitting istéet
when the number of components (k) are increase.

Key words: Bootstrap, claim size distribution, EM algorithninife mixture models, lognormal
distribution, loss distribution

INTRODUCTION is illustrated in Hewitt and Lefkowitz (1979). Iing
1960s and 1970s, finite mixture models appeardtdn

Introduction and motivation: Many problems in statistical literature and they proved to be usédul
actuarial science involve the building of a mathécah ~ modeling discrete unobserved heterogeneity in the
model that can be used to forecast or predict ammg  population. Since there are many different modeslém
costs. So modeling is an important procedure fopossibilities, a finite mixture model should workiv
actuaries so that they can estimate the degree of The Expectations-Maximization (EM) algorithm is
uncertainty as to when a claim will be made and howprovided to fit the model that introduces unobserve
much will be paid. In particular, the modeling ddimns  indicators with the goal of maximizing the complete
and outstanding claims lead to the pricing of iasge  likelihood function. The EM algorithm is also amalble
premiums and an estimation of claim reserving,for parameter estimation of mixture models. For enor
respectively. The most useful approach to uncestain detail, McLachlan and Peel (2000); Aitkin and Rubin
representation is through probability, so we will (1985); Hogget al. (2004) and Hogg and Klugman (1984).
concentrate on probability models. The bootstrap process is a tool for fitting andsit

Losses depend on two random variables, i.e., thAot complicated to implement. Usually, the bootstra
number of losses and the amount of loss which willrocess involves resampling with replacements from
occur in a specified period. The number of lossksrt  the residual more than the data themselves. Wey appl
number) is referred to as the frequency of losairftl the bootstrap technique to recalculate the estuonate
frequency) and the probability distribution is edlithe  parameters for model fitting. For more detail, Bfiand
frequency distribution. The amount of loss (claimey  Tibshirani (1993).
is referred to as the severity of loss (claim sigeand The purpose of this study is find a statisticaldelo
its probability distribution is called the severity for the claim severity. Many authors investigatenso
distribution. Loss distribution and its modelingear special distributions of the severity claims andglgp
described in detail in the book of Klugmaral. (2008) them to calculate the insurance premium. Recently,
and paper of Janczuraa and Weron (2010). The sgveriMohamedet al. (2010) investigated a model of severity
distribution is solely considered for this study. claims which has Pareto distribution and they uséal

The mixture of distributions is sometime called calculate insurance premiums under the retentioit.li
compounding, which is extremely important as it canMoreover, Brazauskas al. (2009) suggest the Method
provide a superior fit. A successful use of thhtdque  of Trimmed Moments (MTM) in the case of loss
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distribution of Lognormal and Paerto and analyzea The model: Assume that XO Lognormal (1,0),
data set concerning hurricane damage in the Unitegpbreviatesx ~ LN (u,0), with density:
States. But in our work, we work in the opposite

direction, i.e., we shall find a model that isdtto the 2
iri 1 (Inx —p)
empirical data. f, (x)= exp | - _
We considers the data from a set of motor xov 21 20 (1)

insurance claims from the top three non-life insee | ,OR, 6>0, x> 0
public companies in Thailand. A mixture model iefd

to the data and the estimated parameters for theeimo
are calculated by the EM algorithm. We also use th
bootstrap technique to fit the data and show that t
bootstrap sample for observation can be applicable
the estimated parameters.

Estimation for the model: Let X = (x,..., X,) be an
?ndependent observation. Consider the amoungaid
for the f" contract. We fit the Lognormal distribution in
Eq. 1 to the data set by MLE.

The likelihood functionL =7 f,, (x,) then:
MATERIALSAND METHODS . =
InL=1Inf] f,(x)
We present the statistical modeling for a finite =

mixture of Lognormal distributions, the EM algorith = z": Inf, (x,)
is explained and the bootstrap technique is =
demonstrated. ; Y

= Z In |: }/2_ ex{_(mxéozll) ]}
Statistical modeling: The skewed right distribution = Xiovent
such as Gamma, Lognormal, Weibull and Pareto _ ¥ (] Inx —ll 2rr—i| B 2}
distribution have often been used by actuariesitto f ,le { (Ino+nx,) 2 n 202( nx —H)

claim sizes; see Klugmaeat al. (2008). In insurance
companies, there are 2 types of claim data recgrdin ; N - ;
ie., Pndividual and group dya?[a. We model the il"[ﬂ?lg| We estimate and & for p ando respectively by
claim data. Some assumptions and symbols ar&:o andm:o_
specified as below. oM do
We obtain maximum likelihood estimates for the

Assumption 1 (Policy independence): Consider n parametept and the parameteras follows:
different policies (contracts). Let; ¥enote the response
for policy i. Then X,..., X, are independent. N Zinﬂln X,

p===—

n

Assumption 2 (Time independence): Consider n
disjointed time intervals. Let Xdenote the response in

and:
time interval i. Then X..., X, are independent.
. . . . n I o ~ 2 ]
Ass_u_mpn_on 3 (Homogene|_ty). Con3|d¢r any two 5 _ Z.:l( nx - fi) . respectively
policies in the same tariff cell, having the same n
exposure. Let Xdenote the response for policy i. Then
X, and X% have the same probability distribution. Finite mixture models: We consider the second-order

and more than second-order finite mixture model. We
Assumption 4: Severity losses are non-catastrophe@im to find the mixing weights according to the ren
losses. of Lognormal distributions and estimated paramebgrs

the MLE via EM algorithm.
Assumption 5: A recorded claim is equal to an actual

claim (observation). The model:

Single parametric distribution: On the basis of the et X ~ LN (X| p0,)++ T LN (X\ Hk,ck) (2)

analyst’'s knowledge, experience and statistical, tes

the Lognormal distribution is our selection for

modeling and fitting to the data set. The Maximum

Likelihood Estimation (MLE) is provided for

estimation of the parameters. fx ()= nfi (x) ++odi (x)
50
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1
T,
0y

2
ox (Inx-y,) .
262

Inx —p, )?
+rk1ex;{—( 5 5") }
Oy Oy

where, 0g; <1 for j=1, .., k and 1;+...T1c = 1. The
likelihood function can be written as follows:

_ 2
Xp[_(lnx Lzll) J+
20;

_ 2
+rk1exp[—(|nx Lzlk) ]
o, 20,
and the log-likelihood function is in form:

L

Estimation for the model: EM algorithm is a powerful
algorithm for data arising from mixtures. Assumatth

1
e
z 1

il

XN 2n

n

INL=3"In

i=1

1

L-Zﬁ Vo

the data set of motor insurance claim is produced

according to model Eq. 2.
Let  z=(z, i=L..m F 1.k be the latent

(unobservable) variables that determine the compuisne

from which the observation originates. The valugs z

are indicators defined as:

The complete likelihood takes quite a simple form:

1
0,

, Observation;x comes from thetdbution f
elsewhere

The complete log-likelihood function is Eq. 3:

Int; ~Inx; =Inc, —%In (2n)

=~

3)

InL,(v]|x)=

2.2

n
=l

N

—Z%Z(InxI —M,) 2
]

Set \u:(e,r),
0= (ul,...,pk,cl,...,ck).

T:(’Cl,...,’tk_l) and

51

For each k components, there are 3k-1 unknown
parameters that will be estimated by EM algorithie
use a computer for the calculation of the pararsetad
visualization as a way to see its modeling. Theppro
number of components to be included in the mixture
model will be considered.

E-step: replacing z in Eq. 3 by its expected
valueE[z | =T, vields the expected complete log-
likelihood:
E[InL(0]x71) ]

Do Int,-Inx —Inog,
= T| 1 1 4

;; ) _Eln (27'[)_?("1 Xi _!J,J) 2 ( )

]

Note that T is the marginal probability that an
observation xcomes from the% component. By Baye's
theorem, the marginal probability; 5 given by:

T, =P(z=1] x=xw)
B ijj(xi;ej) B rjfj(xi;q)
= Z;TJ f, (Xi; 6 ) S (x,)

M-step: we maximize Eq. 4 to estimate. Firstly,
we solve the first order conditions:

dE [InLC(G \ x,r) ]

o, =0
P InT, ~Inx ~Ing, —=In(2m)
ai Tij 1 =0
Tj i=1 j=1 _?(ln X, _uj) 2
]
a n
52 [Te (Ine) ++T, (%) ] = 0

This has the same form as the MLE for the
multinomial distribution, so:

DD LI S
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Secondly, We solve the equation L 1 | " ;
| -1+ = - =
oE [InL,(8 | x.1) | _ 2T o (mx-w)
2 = 0 for estimated parameters of
j l n 2 n
=2, Tu (Inx -1 = T
ej:(uj,c,-),j:LZ,...,k. Considerelz(pl,cl)_ Gf; : 1) ,Zl: 1
We will estimated; by solving: o = Zi":l'l'il (Inx, —p,) 2
1= n
ZiZl Til
OE | InL_(6 | Xx,T
|: C( ‘ ) ] = 0 . .
oy Similarly, one can show that:
and: n
u = 2Ty Inx
] n
9E [InL (0] x1) | o pIRY
do,
and:
0B [InL(8]x1) ]
Note that the relation " (In _ ) 2
oy, . = i i UM% W
and Eq. 4 imply: J I
1 i=1 2,..., k.
InT, =Inx, —Ing, —=In(2m)
n k ] 1 ] 2 . )
3T, -0 In summary, we obtain that:
ERER - (Inx, -p)
Z\INX; ~H;
| 1 T. = 1 i ni = —ZIn:lTlJ In %i
; 5 Inrl—lnxi—lncl—iln(Zn) J na"’ ) YL T
Z Tllai 1 =0
i=1 “’1 _?‘f(lnxi —ul) 2 and
n n 2
T, (Inx — =0 T (Inx -,
; ,1( i Lll) O.j = i= (n i ul) ,jzl, 2,“_, k
n n Z'— T
i=1 1
Z Ta |nXi—Z-ﬁlp1 =0
= 7 Note that the expected complete log-likelihood
" = 2iaTa Inx, function is given by:
1 n
Zileil
. Int; =Inx; —Ino;, —lln (2m)
n 2
oE [InL,(8 | x.1) | E[InL(0]x1) [=X 2T,
a = O i=l j=1 —i("]x -u ) 2
0, 2620 )
InTj—Inxi—Inoj—lln(ZTt) , ,
Z”:Zk:T a 2 - o For a given set of parametaps i.e., 6, = (1, o)),
Z4 1 g, —(Inx _ ) 2 j=1.2,..., kand = (13,..., Tx.y), the E-step consists of
A H calculating T, andt; for M-step. Giverr;, the M-step
1 consists of maximizing the expected complete log-
. Int, =Inx, =Ino, —=In(2m) likelihood function. The E-step and M-step are etpd
) Tﬂi 2 =0 in an alternating fashion until the expected coneple
= 00, _i(m X 1) 2 log-likelihood fails to increase. At this point, we
207 conduct a final M-step in which the set of pararsie
n 11 is estimated. Otherwise, we return to the E-stepHe
> T, { -—+—= (Inx ) ? } = 0 next iteration. In the final step after thé" riteration,
= 0 O the EM algorithm is produced as below:
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E-step: Given our current estimation of the parametersappropriate residual definition for the determioatiof
Y™ after the i iteration. Thus the E-step results in the each problem. We have already considered some forms
function: of residual definitions, such as the unscaled Pears
residual and the unscaled Anscombe residual. Basgeth
o Int, = Inx, ~Ino, _%ln(h) forms of' residual are not sui}able fqr our datgndre
Q (w ‘ \u(m)) =3y T (5) we consider the residual forifn, that is, we define the

ENE _— (Inx, —p;) 2 form of the residual as follows:

2012

I . g =Inx —fi
M-step: Maximizingy. That is:
where, ¢; is the residual (i = 1,2,..., n) an@ comes
m+l) m
L arg max Q(\I/ ‘ v )) from Eq. 6.
Let s:(sl, €500 € ) and let ¢ :(s*l, 5*2,...,én)

5y

And :
be the resample residual.
( u™, cj(’“*”) = arg max Q(\Il ‘ \v(m)) _ By using the bootstrap technique, we obtain a
.0 resamplee* and the bootstrap data samples Eq. 7:
By taking partial derivative Eq. 5 with respectlio  Inx; =¢ +{,i=1, 2,..., r (7)

and by equating to zero, one gets:
We recalculate the estimated parametgi's,and
(m)_ g T Inx & by MLE based omx ,i=1,2,...,n.

m+: 1 m)
et = Loy - Tl 8
Zi=1Tij

i

M-

5

o

Goodness of fit test: The Goodness of Fit (GOF) test
measures the compatibility of a random sample with
theoretical probability distribution function. Weeuthe

Kolmogorov-Smirnov test (K-S test) and the Anderson

and:

| 2T (0% —py) 2 Darling test (A-D test) for showing how well the
% = Zn (m) distribution fits our data set.
= The K-Stest is used to decide if a sample comes

from a hypothesized continuous distribution. Ib&sed
Bootstrap technique: We are interested in the on the Empirical Cumulative Distribution Function
bootstrap sample for observation and residual. WEECDF) and denoted by:
shall recalculate the estimated parameters of the

Lognormal distribution by using the bootstrap . 1 _
technique and MLE. One of advantage of the R (x):H[Number of observations |
bootstrap technique is that we can calculate asyman
replications of the sample as we want. TheK-S test statistic is defined by:
Observation bootstrap: D—sup\ B()- E() ‘

- X
Define X = (X, Xy %) (6)

The A-Dtest is a general test to compare the fit of
an observed cumulative distribution function to an
The bootstrap data pointx;, X,,..., x, are a expected cumulative distribution function. This ttes
random sample of size n with replacement from thedVeS more weight to the tails than the KeSt.
. . The A-Dtest statistic is defined as:
observation of n objecfs,, x,.... ). Then we

recalculate the estimated parameteis, andé”, by PR el 1
MLE based o’ . 22 (23 [mg(x)-in{ & F(xa)}]

Residual bootstrap: There are many forms of the where, F is the theoretical cumulative distribution of
residual definition and it is important to use anthe distribution being tested.
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RESULTS z(l()j 2009 Motor insurance claim
The finite mixture of Lognormal distributions is

applied to the actual set of claims data and tleadb@p
procedure is analyzed. An analysis and some or

comparisons are shown with respective to statidisis § 3
An application: We fitted the finite mixture of SR
Lognormal distributions to the data set which was 2 |

provided by a non-life insurance company in Thallan
We considered it for both a whole portfolio andivas
types of product coverages. The Kolmogorov-Siminov © 0 200 400 600 800 1000 1200 1400
test and the Anderson-Darling test are statistieats Time

for model fitting.

Fig. 1: Historical data 1,296 observations

Motor insurance data set: We consider the data set of
motor insurance claims for the year 2009; all typés 60
vehicle, i.e. automobiles, lorries and motorcyciee sol
included. The total of each claim amount is paidhmgy
insurer. The data set is classified by product caye
type-i fori=0, 1,..., 5. There are 1,296 obsemadi of
type-5 that meet the mixture Lognormal distribuson
The historical data of sevirity claim and histograin

40

Frequency
o
(=]

severity claim (log scale) are illustrated in Figand 2, 10}
repectively. . _
Table 1-2 show the statistical test value foirfigt 2 0 2 4

the finite mixture Lognormal distributions to thatd
set. For both the K-S and A-D test consideratibwe, t

summaries are as the following cases. Fig. 2: Histogram (log scale)

Table 1: The Lognormal distribution

Case 1: at a significant level aofi = 0.05. We obtain the

. N N Singl tri K-S test AtBst
estimated parameterg]=8.9672 and6 =1.1804, that di';?isu‘:i%rname ne es

the Lognormal distribution does not fit to type¥Bhile D Value P Value Avalue P Value
the mixture Lognormal distributions are fitted ypé-5  Lognormal 0.0466  p<0.01 3.3770 0.0241

ask components greater than or equal to 20.
Table 2: The finite mixture Lognormal distributions

Case 2: at a significant level oft = 0.10. The mixture K-S test A-D test

Lognormal distributions are fitted to type-5 d&s

| d | . k-components D value P value Zygalue P value
components equa _to 25 an over. .Mo.st Y, kiz 0.0430 0.0215 31900 0.0296
components of the mixture Lognormal distributiome a 20 0.0355 0.0793 2.0373 0.0907
better fit to the type-5 while k are increased. Thegg 3-8222 p>8-i i-flié;g p>g-i

. ; ; : p>0. - p>0.
maximum numbers of cqmponents is 130, since over 1335 0.0264 p>0.1 10348 p>0.1
components are not applicable to k mean clustering. 40 0.0217 p>0.1 0.7989 p>0.1

From Table 2, by the A-D test. We can see tHat A50 0.0247 p>0.1 0.6193 p>0.1
value are reduced when k are increased as thieliz 62 00234 p>0.1 05447 P>0.1
is not 65 0.0247 p>0.1 04594  P>0.1

: . . .76 0.0239 p>0.1 04094  p>0.1

Figure 3-4 show_ probabll|ty denslty function 7g 0.0224 p>0.1 0.3454 p>0.1
(p.d.f.) of Lognormal distribution (k=1, wifih=8.9672 88 0.0216 p>0.1 0.3401 p>0.1
and 6=1.1804) and mixture Lognormal distributions 100 0.0216 p>0.1 0.3029 p>0.1
when k=100, respectively. ) o )

Figure 5-6, solid line, show the distribution Figure 7-8 show the P-P plot of finite mixture
functions (d.f.) of finite mixture Lognormal wherkand Lognormal distributions when k=1 and k=100,
k=100, respectively. The dashed line is ECDF. respectively.
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A bootstrap data sample can be calculated by using

Eq. 6 and 7 for observation and residual respdgtive

Lognormal P-P plot

05 06 07 08
Observed

Finite mixture lognormal -P plot

Pl

P

g
-

==

-

=

-

0.9 1

Observed

The Lognormal distribution was fitted to the da&t,s Fig. 8: k =100

when we recalculated the new estimated paramete
respective to the bootstrap process. We have fthatd
the Lognormal distribution is fitted to type-5 at a

residual bootstrap

0 01 02 03 04 0.5 06 07 08 09 1

|asable 3: Recalculation of the estimated paramétased on data and

significant level ofx=0.01 for both the K-S and A-D test, Boctstap

By K-S test, the Lognormal distribution can beefittto
type-5 at a significant level @=0.10. We can see some

examples of this from Table 3.
From Table 3, we can see that the bootstrap

technique can be applicable to refitting the madehe
data set. Note that the residual bootstrap provigdter
A? values in a shorter time of a computer run than th

observation bootstrap.

K-S test A-D test
and MLE i G* Dvalue Pvalue Malue P value
8.9024 1.1654 0.0427 0.0238 3.2188 0.0287
8.9339 1.1607 0.0377 0.0510 2.7781 1604
Data 8.9433 1.1185 0.0331 p>0.1 3.3329 0.0255
8.9154 1.1102 0.0309 p>0.1 3.6200 0.0170
8.9336 1.1094 0.0289 p>0.1 3.5141 0.0201
8.9182 1.1656 0.0406 0.0350 2.8866 0.0384
8.9384 1.1541 0.0359 0.0714  2.8051 0.0408
Residual 8.9334 1.1313 0.0324 p>0.1 3.0150 0.0347
€ 8.9355 1.1215 0.0307 p>0.1 3.2072 0.0290
8.9249 1.1095 0.0295 p>0.1 3.5309 0.0196
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