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ABSTRACT 

The formal convergence diagnosis of the Markov Chain Monte Carlo (MCMC) is made using univariate 

and multivariate criteria. In 1998, a multivariate extension of the univariate criterion of multiple sequences 

was proposed. However, due to some problems of that multivariate criterion, an alternative form of 

calculation was proposed in addition to the two new alternatives for multivariate convergence criteria. In 

this study, two models were used, one related to time series with two interventions and ARMA (2, 2) error 

and another related to a trivariate normal distribution, considering three different cases for the covariance 

matrix. In both the cases, the Gibbs sampler and the proposed criteria to monitor the convergence were 

used. Results revealed the proposed criteria to be adequate, besides being easy to implement.  
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1. INTRODUCTION 

 Nowadays, Bayesian inference is a matter of 
extreme interest, despite having been developed long 
before frequentist statistics. In some cases, Bayesian 
inference requires Markov Chain Monte Carlo (MCMC) 
methods. The Gibbs sampler is one of the major classes 
of stochastic simulation schemes proposed, which is 
being used in many situations (Gamerman and Lopes, 
2006). The quality of the simulation methods re-lies on 
good-quality uniform random number generators, an 
issue recently discussed by Luizi et al. (2010). However, 
a great difficulty is the empirical diagnosis of 
convergence to the stationary distribution. Several 
techniques in the literature help in identifying and 
monitoring convergence (Heidelberger and Welch, 1986; 
Geweke, 1992; Raftery and Lewis, 1992; Cowles and 
Carlin, 1996; Brooks and Roberts, 1998; Brooks and 
Giudici, 2000). 
 Besides Bayesian analysis being increasingly used, 

the results are often questioned because researchers do 

not use or do not clearly address the implemented criteria 

to check for convergence. Moreover, in cases of 

complicated models, Bayesian inference requires a great 

computational effort. This effort can be minimized by 

monitoring the chain convergence, thus avoiding 

iterations beyond the necessity. 
 In the literature, there are univariate and multivariate 
criteria for monitoring the convergence of MCMC output 
to the stationary distribution, where the Gelman and 
Rubin (1992) criterion is a univariate representative. This 
criterion uses parallel chains from different starting 
points, i.e., different arbitrary initial values and the idea 
that the trajectories of the chains should be the same after 
convergence has been formalized. This criterion is based 
on the use of analysis of variance techniques, seeking to 
verify whether the dispersion within the chains is greater 
than that between the chains. By analogy, this process 
has been extended to the multivariate form by Brooks 
and Gelman (1998). 
 When dealing with many parameters, the 

convergence of the distribution will only occur when all 
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the parameters converge. This is a practical problem 

because it turns out to be impractical for a large number 

of parameters. The multivariate criterion is based on a 

single value for assessing the convergence of the MCMC 

output for all the parameters. 

 The possible issues of the multivariate criteria and 

the cases where they are impossible to compute have 

been pointed out in Brooks and Gelman (1998). 

Therefore, this study presents an alternative way for 

obtaining the Brooks and Gelman criterion, as well as 

two new alternatives of multivariate convergence criteria 

and evaluates the performance of the three methods for 

convergence under two models. 

 The study is outlined as follows: Section 2 presents 

the original convergence criterion (Brooks and Gelman, 

1998), along with the research problem and motivation 

(2.1), an alternative computation (2.2) and two proposed 

criteria (2.3). In Section 3 the methodology and 

application of the criteria to the two models are 

presented and in Section 4, they have been compared. 

Lastly, Section 5 presents the conclusions. 

1.1. Convergence Criterion of Brooks and 

Gelman 

 The original criterion of Brooks and Gelman (1998) 

is an extension of the criterion of Gelman and Rubin 
(1992). According to Gelman and Rubin (1992), in many 
cases, the convergence of chains to the stationary 
distribution can be easily determined using multiple 
independent chains, in parallel, but cannot be diagnosed 
using the simulation result coming from any single 

chain. They proposed a method using multiple 
replications of chains to determine if the stationary state 
was reached in the second half of each sample (chain). 
The method assumes that m chains have been simulated 
in parallel, each from a different starting point. After a 
starting point belonging to the parameter space of the 

posterior distribution has been obtained, the chains are 
run for 2n iterations, of which the first n are discarded to 
avoid the period of heating (burn-in) and the influence of 
initial values. The m chains yield m possible statistics. If 
those statistics are quite similar, it is an indication that 
convergence has been reached or is close. These authors 

have also suggested comparing these statistics with those 
obtained from the union of the chains, i.e., union of the nm 
values. The convergence indicator Gelman and Rubin 
(1992) is named Potential Scale Reduction Factor (PSRF). 
 For the multivariate case, Brooks and Gelman 

(1998) proposed to replace the scalar estimators by p × p 

covariance matrices B and W (between and within 

chains, respectively) of the vector of parameter θ, whose 

elements are θji, where (p)

jiθ  is the p-th element of the 

vector of the parameters of the chain j at iteration i. 

 For large dimension, one should estimate the 

covariance matrix of the a posteriori chains of the 

parameters by: 
 

� n 1 1 B
V W 1

n m n

−  = + + 
 

 

 
Where: 
 

m n
T

j jji ji

j 1 j 1

1
W ( )( )

m(n 1) = =

= θ − θ θ − θ
− ∑∑  

 
And: 
 

m
T

j. j.

j 1

B 1
( ..) ( ..)

n m 1 =

= θ − θ θ − θ
− ∑  

 
are p-dimensional matrices estimated from chains of the 

p parameters. Thus, researchers could monitor the 

convergence by using the covariance matrices �V and W.  

 The distance between �V and W is summarized as a 

scalar measure that should be close to 1 when the 

convergence is achieved. One way to do this is by 

seeking the maximum of the characteristic root lambda 

of the product W
−1

V, which is also the maximum of the 

PSRF of any linear projection of θ.  

 The maximum is given by differentiating the ratio of 

quadratic forms with respect to the vector a, by setting it 

to zero, i.e., 0
a

∂λ
=

∂
 and adopting the restriction given by 

a
T
 Wa = 1.  

Then: 
 

T T

T 2

iT

2V W 2W V

( W )

2
[V W ] (V W) 0

W

∂λ αα α − αα α
=

∂α α α

= α − λ α = − λ α =
α α

 

 
 The homogeneous system of equations has a 

nontrivial solution if and only if, |V−λW| = 0.  

 The solution can be obtained by taking the 

eigenvalues of W
−1

V, but in some cases, it is not 

straightforward to obtain the inverse of W and the 

eigenvalues of the matrix W
−1

V, because this new matrix 

is non-symmetric. 

 The convergence indicator Brooks and Gelman 

(1998)-named Multivariate Potential Scale Reduction 

Factor (MPSRF)-is based on following quadratic 

forms’ maximization Equation 1: 
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  (1) 

 

 Under equality of the average of the chains, λ1 → 0. 

Is it the maximum eigenvalue of W
−1

B. �
p

R 1→  when n 

is large enough, where p is the number of parameters. 

 According to Brooks and Gelman (1998) if both W 

and B are both singular we cannot calculate the MPSRF. 

This can occur if two or more parameters are correlated or 

one parameter is obtained by linear combinations of the 

other. If only W is singular, then this problem can be 

circumvented as the iterations go on. Another problem that 

can arise is the time elapsed to perform the inversion of 

W, because it could be large in many circumstances. The 

methods proposed in this study come to solve such issues. 

1.2. Alternative Computation for Maximizing 

Quadratic Forms 

 The maximization of quadratic forms is widely used 

for circumstances in which we want to get a value that 

represents a direction of the greater variability of the 

system. In maximizing quadratic forms, a homogeneous 

system of equations given by (V−λiI) ai = 0 occurs. 

Maximizing quadratic forms ratios yields a 

homogeneous system given by (V−λiW) ai = 0 and 

obtaining the characteristic roots and characteristic 

vectors of the second case is not a trivial task. Therefore, 

this study proposes rotating the axis on the Cartesian 

system, seeking for new directions of greater variability, 

thereby reducing the system of the ratio of two quadratic 

forms to a system of one quadratic form. 

 Let the ratio of quadratic forms of the Brooks and 

Gelman criterion (1) be the one to be maximized. In the 

Bayesian literature, it is common to find the 

maximization given by obtaining the eigenvalues and 

eigenvectors of W
−1 �V . This study proposes an 

alternative that is described hereafter. For this, the matrix 

W is factored (Cholesky factor) as W = SS
T
. Setting z as 

the linear transformation of the vector a by z = S
T
 a gives 

a = (S
−1

)
T
 z, because, in accordance with the properties 

of the Cholesky factor, SS
−1

 = S
T
 (S

−1
)

T
 = I. If the 

equation ( �V −λiW)ai = 0 is premultiplied by S−1, then 

S
−1

W (S
−1

)
T
 = I. Setting H = S

−1
 �V  (S

−1
)

T
, gives (H 

−λiI)zi = 0; therefore, we achieve the same solution for 

the case of maximizing a quadratic form, except that a = 

(S
−1

)
T
 z must be recovered, because the eigenvectors z 

are changed by non-singular transformation. The 

eigenvalues are invariant to the non-singular 

transformation performed. 

 According to Brooks and Gelman (1998), the 

maximum eigenvalue λ1 is the R
P
 itself, where R

P
 is the 

p-dimensional PSRF, given by (1). Thus, the 

transformation gives the system: 

 
p

i
(H R I)zi 0− =  

 

 From this equation, we can determine R
P
 and avoid 

the problems mentioned by Brooks and Gelman (1998), 

because there is no need to invert W to obtain the 

solution of maximizing the ratio of two quadratic forms. 

The prerequisite is that W must be positive definite for 

the condition of existence of the Cholesky factor to be 

satisfied. 

 Although the Cholesky factor can be used on 

positive semi-definite matrices, it does not handle issues 

of null determinants. Therefore, two new criteria have 

been proposed, which are presented as follows. In the 

next section, it can be noted that the trace criterion is 

efficient to handle null determinant issues. 

1.3. Two Proposed Convergence Criteria 

 The original multivariate criterion (Brooks and 

Gelman, 1998) is theoretically considered efficient if 

there are high correlations between the parameters. The 

extreme case is the circumstance of perfect correlation 

between the parameters. In that case, the multivariate 

criterion would be equivalent to the univariate criterion 

of any of the p parameters, because monitoring the 

correlation of one parameter reflects what happens in the 

other parameters. In the case of low correlations between 

the parameters, or their subgroups, this criterion may fail 

to monitor the convergence, because it considers only the 

direction of greatest variability in p-dimensional 

hyperspace. In the extreme case of no correlation, this 

criterion will only monitor the parameter of greatest 

disturbance (variance) for the system. 
 Such limitations allow further reflection on this 
method. This reflection has allowed two new multivariate 
alternatives. Both consider the variability in all directions of 
hyperspace, which are linear orthogonal transformations 
(rotations) of the parameters axes. 
 The first alternative proposed is based on replacing the 

scalars a
T
 �V a and a

T
Wa from the original criteria by new 
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scalars trace ( �V ) and trace (W), respectively, where W is 

the covariance matrix within the chain given by (1) and 

�V is the estimated total covariance matrix given by (1). 

 Let us consider a simple case where each Markov 

chain is an i.i.d. sample and each chain has one mean 

µj. Consider m as fixed and let the number of 

iterations n → ∞.  

Then: 

 

T
m m m

j j j j

j 1 j 1 j 1

1 1
W I and B

n m 1

1 1
E

m m= = =

→ →
=

  
µ − µ µ − µ =  
  

∑ ∑ ∑
 

 

Thus: 

 

�1 1
W V I 1 E

m

−  → + + 
 

 

 

And: 

 

�trace(V)
1 sin ce E 0

trace (W)
→ =  

 
 The second criterion proposed is the product of non-

zero eigenvalues of the matrix � �
r

1 p

i

i 1

W V, R V / W ,−

=

=∏  

where r is the number of non-zero eigenvalues of (1) and 

equality holds only when W is invertible. Both the 

criteria are univariate measures of variability from the 

process. Thus, the following criteria can be defined: 
 

�
�

�

p

trace

r rp
p

det . i i

i l i l

trace(V)
R

trace(W)

R R
= =

=

= = λ∏ ∏
 

 
 These methods do not necessarily need the Bayesian 
set up. They work for MCMC in general. 

2. MATERIALS AND METHODS 

 For assessing the convergence criteria of the MCMC 
two models were considered. For this, specific cases were 
simulated for the values of the parameters and the Gibbs 
sampler was used to generate values for the models. 
Samples of the posterior joint distribution and the marginal 
distributions of the parameters were obtained. 

 The first model used was a time series model with 

two interventions and correlated errors. The fitted 

intervention model was an ARMA(2, 2) (Morettin and 

Toloi, 2008). 

 The intervention model with autoregressive moving 

average error of order p and q, denoted by ARMA(p,q), 

is given by: 
 

1 t 1 q t qT

t t

1 t 1 p t p

1 ...
y X , t 1,2,...,n

1 y ... y

− −

− −

+ θ α + + θ α
= β + =

− φ − − φ
 

 
where at is the residue, considered as white noise, which 

is a sequence of random variables i.i.d ∼N(0, τ
−1

), where 

τ is the precision and τ
−1

 = σ
2
 is the variance, 

T

t t ,1 t ,2 t ,wX [ ... ]= ξ ξ ξ is a matrix (n×w) of binary variables 

in which each element is a vector and w is the number of 

interventions and β
T
 = [β1 β2 … βw] is a vector of 

intervention parameters. This model was characterized 

by Diaz (1988). The Bayesian analysis with prior and 

full conditional posterior distributions for each parameter 

was developed by Milani (2000). 

 The parametric values used for the simulation were 

θ1 = −0.3; θ2 = 0.5; β1 = −30; β2 = 20; ϕ1 = 0.5; ϕ2 = 

−0.3 and τ = 1. 

 The second model used was the trivariate normal 

distribution. The Gibbs sampler was used to generate 

Monte Carlo samples for the three variates. Furthermore, 

the property of the multivariate normal distribution, stating 

that all the subsets of X are also multivariate normally 

distributed, was used. By taking up a partition 

q 1 1
p 1

(p q) 1 2

X X
X

X X−

   
= =   
    

 and its corresponding partitions of 

the mean vector and covariance matrix, one can obtain: 
 

q ( p q )

q (p q )

q q11 12p 1 1
p 1

(p q) 1 2 (p q) (p q)21 22

and
−

−
− − −

  µ µ  µ = = 
 µ µ    

∑ ∑
∑ ∑ ∑

 

 

where, X1∼Np (µ1, ∑11), X2∼Np (µ2, ∑22) for q < p and 

q∑11q and (p−q)∑22(p−q) are the covariance matrices of X1 

and X2, respectively. 

 Under such partition, the conditional distribution of 

X1|X2 is given by: 
 

1 2 p c cX | X N ( , )∼ µ Σ  

 

where the vector of means 1

c 1 12 22 2 2
(x )−µ + µ + Σ Σ −µ and 

covariance matrix is given by 1

c 11 12 22 21

−Σ = Σ − Σ Σ Σ (Bock, 

1985). 
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 The trivariate normal model was simulated by using 

the distribution given in (2), by considering three cases 

of correlation between the variates with distinct 

variances (1, 10 and 100). The correlation matrices, ρi 

and the resulting covariance matrices, ∑i, adopted were: 

 

N N

1 0 0 1 0 0

0 1 0 and 0 10 0 ,

0 0 1 0 0 100

   
   ρ = =   
      

∑  

M M

1 0.25 0.52 1 1.58 5.20

0.50 1 0.48 and 1.58 10 15.18 ,

0.52 0.48 1 5.20 15.18 100

   
   ρ = =   
      

∑  

H H

1 0.98 0.98 1 3.10 9.70

0.98 1 0.99 and 3.10 10 31.31

0.98 0.99 1 9.70 31.31 100

   
   ρ = =   
      

∑  

 

where,
1 1

2 2
i i i i i i

V V ,V diag( )Σ = ρ = Σ  and i = N, M and H. 

This distinction allows cases of high, medium and null 

correlation between the conditionals to be simulated, 

coinciding with the extreme case, where the conditionals 

are same as the marginals. 

 The criterion of Brooks and Gelman (1998) was 

adopted to assess both the convergence of the seven 

parameters in the intervention model with ARMA(2,2) 

error and the variates of the trivariate normal mo-del. 

The criterion was performed iteratively along with the 

Gibbs sampler. At 20 iterations, the criterion was 

calculated for the first time and then every two iterations, 

always considering a burn-in of 50%. For the times 

series model, 3,671 iterations were performed when 

considering m = 2 chains in parallel. For 3, 5 and 7 

chains, 5,000 iterations were calculated and performed in 

parallel. For the trivariate normal model, 5,000 iterations 

were calculated for 2, 3, 5 and 7 chains in parallel. 

Additionally, the two new criteria proposed and 

described earlier were implemented. 

3. RESULTS 

3.1. Intervention Model with Error ARMA (2, 2) 

 The number of non-zero eigenvalues of the H matrix 
is r = min(m−1; p), where m is the number of chains and 
p is the number of parameters. Hence, the number of 
non-zero eigenvalues is directly related to the number of 
chains used. Therefore, the cases with 2, 3, 5 and 7 
chains in parallel were studied. In the subsequent section, 
only the evaluation of the performance of the 

convergence criteria is addressed and the estimation of 
the model parameters (2) will not be mentioned. 

 The trace criterion presented somewhat smoother 

behavior and lower values than the others (m = 2). From 

Fig. 1, it can be observed that the determinant criterion 

agrees with the original Brooks and Gelman, indicating 

convergence at R = 1.2 with 396 and 458 iterations, but 

has a small fluctuation around R = 1.05 with 1,760 and 

1,770 iterations, respectively. The trace criterion, as 

reviewed, characterizes the convergence at R = 1.2 with 

384 iterations. The univariate criterion of Gelman and 

Rubin was obtained and the value of convergence was 

reached at 380 iterations. It can be noted that the trace 

criterion detected the convergence as fast as the 

univariate criterion. 

 The results of 7 chains are presented in Fig. 2. When 

considering more chains, there is greater precision in the 

estimation of the covariance matrix and thereby reducing 

the fluctuations. 

 For 3 chains, convergence at R = 1.2 with 486 

iterations for the trace criterion, 526 iterations for the 

determinant criterion and 524 iterations for the original 

criterion of Brooks and Gelman was achieved. When 

only 5 chains were used in parallel, the convergence was 

detected with 352, 370 and 364 iterations, respectively. 

For 7 chains, the convergence was detected with 422, 

880 and 850 iterations, respectively (Fig. 2). It can be 

observed that the trace criterion always characterized the 

convergence before the others. Another interesting point 

is that the iterations that characterized the convergence 

did not vary much as the number of chains increased for 

the trace criterion. The results for the determinant 

criterion were very close to the original Brooks and 

Gelman criterion in all circumstances. 

 The increase in the number of chains increased the 

number of eigenvalues. By evaluating the results of these 

eigenvalues, we can see that there is always an 

eigenvalue representing over 70% of the variation of the 

system due to the parameters of the intervention model 

being very much correlated.  

3.2. Trivariate Normal distribution 

 By using a trivariate normal model and considering 

no correlation, there is, as commented earlier, only 

Monte Carlo simulation. Therefore, the process is 

expected to suffer only the influence of the arbitrary 

initial value. For this situation, there are results 

considering 2, 3, 5 and 7 chains in parallel. Figure 3 

presents the criteria for 7 chains. 
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Fig. 1. Graphical representations of multivariate criteria whereas 2 chains, emphasizes the scale of factor R 
 

 
 

Fig. 2. Graphical representation of multivariate criteria for 7 chains in parallel for the intervention 
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Fig. 3. Graphical representation of multivariate criteria for 7 chains in the situation of lack of correlation 

 

 
 
Fig. 4. Graphical representation of multivariate criteria for 7 chains in parallel for the trivariate normal model under medium 

correlation 
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Fig. 5. Graphical representations of multivariate criteria considering 2 chains for the case of high 
 
 The characterization of convergence used 2 chains 

for R = 1.2, when it occurred with 28 iterations for the 

original criterion of Brooks and Gelman, with 26 

iterations for the determinant criterion and with less than 

20 iterations to the trace criterion. When 7 chains were 

used, the convergence was characterized at very close 

values: 30, 30 and less than 20 iterations, respectively. In 

all cases, the convergence was achieved with fewer 

iterations using the trace criterion. It appears that the 

other two methods overestimated the convergence time 

because, as already reported, the chains genuinely 

originated from a Monte Carlo process and were serially 

uncorrelated. Except for the initial value, the sample was 

already in equilibrium from the second iteration. 

 Similar to the time series model, one can notice that 
there are few differences when using a different number 
of chains. However, only for the trace criterion, such 
possible differences were not apparent, because this 
criterion showed the best results for the lack of a 
correlation situation. This can also be explained by the 
fact that the model has only three parameters and hence, 
there is no gain in increasing the number of chains from 3. 
Now, with regard to the intermediate correlation, a similar 
behavior of the criteria for 7 chains was observed, as 
shown in Fig. 4. The characterization of convergence 
when 2 chains were used for R = 1.2 occurred with 54 
iterations for the original criterion of Brooks and Gelman, 

with 40 iterations for the determinant criterion and with 40 
iterations for the trace criterion. 
 The characterization of convergence when 7 chains 

were used showed little difference between the previous 

values, i.e., 40, 32 and less than 20 iterations, 

respectively. 

 It must be noted that high correlation between the 
variables allows a single variable to explain the other 
two, i.e., the sampling process becomes slow due to the 
dependence of the full conditional, which exhibit the 
same behavior (Gamerman and Lopes, 2006). Therefore, 

it has an eigenvalue that explains virtually 100% of the 
variation. From Fig. 5 and 6, one can observe, as 
expected, the equality of the criteria even with the 
increase in the number of chains. The characterization of 
convergence when 2 chains were used for R = 1.2 
occurred at 1,544 iterations for the original criterion of 

Brooks and Gelman, at 1,544 iterations for the 
determinant criterion and at 1,538 iterations for the trace 
criterion. Furthermore, the characterization of 
convergence when 7 chains were used showed the values 
of 1, 760, 1, 762 and 1,754 iterations, respectively. 
 It is clear that in the presence of high correlation, the 

process mixes slowly, requiring more iterations. One 

way to accelerate the convergence would be 

reparametrization, but in some circumstances, this is not 

desired, requiring greater attention. 
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Fig. 6. Graphical representations of multivariate criteria considering 7 chains for the case of high correlation 

 

4. DISCUSSION 

 Multivariate methods are essential even in 

circumstances with few parameters, taking into account 

the variation and correlation in hyperspace. The criterion 

of Brooks and Gelman (1998) presented results 

consistent with the convergence of simulated models, but 

as a generalization of the criterion of Gelman and Rubin, 

it also has the feature of only monitoring of convergence 

rather than with the quality of the sample. The proposed 

alternative for computing such criterion was easily 

implemented and found to be numerically robust during 

the simulation. Two alternative criteria were proposed to 

cover the whole range of parameters in the chains. The 

trace criterion was easily implemented and showed 

consistent results and in some cases, was more consistent 

than the other competitors. 

 In some circumstances, such as when one is 

interested in linear combinations of the parameters, the 

matrix of covariances within chain (W) will present 

linearly dependent columns. Its determinant is zero and 

hence it does not allow the use of the determinant 

criterion. The algorithms built in software such as the 

SAS and R allow obtaining the Cholesky factor of 

positive semi-definite matrices. In some cases, due to 

numerical problems, these algorithms result in negative 

eigenvalues, not allowing the computation of the 

criterion (Brooks and Gelman, 1998). As the trace 

criterion did not present any problem of this type of 

situation, it is considered more robust. Moreover, the case 

of lack of correlation allowed the conclusion that this 

criterion provides a more precise time of convergence, 

measured in the number of iterations. Thus, the two 

competing criteria tend to overestimate the number of 

iterations needed for convergence to equilibrium. 

5. CONCLUSION 

 The alternative for the calculation of the criterion of 

Brooks and Gelman (1998) was feasible to be applied 

and was found to be numerically robust. 

 Two new criteria for monitoring the convergence of 

multiple Monte Carlo chains were successfully proposed. 

 The multivariate criterion, based on the ratio of 

traces of covariance matrices �V and W, gave rise to 

suitable and more accurate results and was found to be 

easy to implement and achieve. 

 In further studies, other univariate criteria 

Heidelberger and Welch (1986); Geweke (1992) and 

Raftery and Lewis (1992), can be generalized to their 

multivariate versions. 
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