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ABSTRACT 

Discrete deterministic age-structured, stage-structured and difference delay equation population models are 

analysed and compared with respect to stability and nonstationary behaviour. All three models show that 

species with iteroparous life histories tend to be more stable than species with semelparous life histories 

which allow us to conclude that this must be a fairly general ecological principle. Considering iteroparity, 

the precocious case appears to be more stable than the delayed case. The nonstationary dynamics shows a 

great deal of resemblance too, but when the number of age classes are even there is a mismatch between the 

dynamical outcomes of the age- and stage-structured case whenever the survival probabilities are large or 

moderate. Regarding semelparous species the analysis of the age-structured and the difference delay 

equation model clearly suggest that precocious semelparous species are more stable than delayed 

semelparous species and, moreover, that the transfer from stability to instability goes through a Hopf 

bifurcation. This is in great contrast to the outcome of the stage-structured model. In this case we find that 

the delayed case is more stable than the precocious and in unstable parameter regions there are orbits of 

period 2
k
, k > 1, which we do not find when the life history is precocious.  
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1. INTRODUCTION 

In order to reveal the dynamic properties of a species 
there is a variety of different population models 
available. Such models may be continuous or discrete, 
deterministic or stochastic. Considering continuous 
models we refer to the seminal paper by Gurtin and 
MacCamy (1974); Webb (1985); Huang (1990) and 
Cushing (1987) and references therein. Models that 
incorporate stochasticity may be obtained in Neubert 
(1997); Dennis et al. (1997) and Myers et al. (2001). 
Among the discrete deterministic alternatives, especially 
three model strategies have proved to be powerful tools, 
namely (A) Age-structured population models, see for 
example Leslie (1945); Guckenheimer et al. (1977); 
Levin and Goodyear (1980); Silva and Hallam (1993) 
and Mjolhus et al. (2005), also cf. the review paper by 
Wikan (2012b), (B) Difference delay equation models 
(Clark, 1976; Botsford, 1986; 1992; Higgins et al., 1997) 
and (C) Stage-structured models (Cushing, 1987; 
Neubert and Caswell, 2000; Gourley and Kuang, 2004; 
Kon et al., 2004). 

Regarding (A) such models are usually formulated in 
terms of vectors and matrices. Indeed, at time t we split 
the population xt into n distinct nonoverlapping age 
classes, xt = (x1,t,…,xn,t)

T
 where the total population x is 

given by x = x1 +...+ xn. The relation between the 
population vector x at two consecutive time steps may be 
expressed as Equation 1: 
 

t 1 t
x  A x+ =  (1) 

 
where, the transition matrix A (which often is referred to 
as a Leslie matrix) is on the form Equation 2: 
 

1 2 n

1

2

n 1

f f f

p 0 0

0 p 0A

0 p 0−

 
 
 
 =
 
 
  
 

L

L

L

M O

L

 (2) 

 
where fi is the average fecundity of a member of the i

th
 

age class at time t. pi may be interpreted as the (year to 
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year) survival probability of age class i. In models such 

like (1) there is an implicit assumption that sexual 

maturity is linked to age or that other properties than age 

are irrelevant. Another possibility is that if such relevant 

properties exist they must be highly correlated with age. 

The dynamics of a variety of ecological populations has 

been modelled by (1). Linear age-structured models 

(constant fecundities and constant survivals) have for 

example been applied to trout (Beland, 1974), rabbits 

(Darwin and Williams, 1964), beetles (Lefkovitch, 1965) 

and great tits (Pennycuick, 1969). In case of nonlinear 

models we refer to Cooke and Leon (1976); Longstaff 

(1977); Levin and Goodyear (1980); Hastings (1984) and 

Desharnais and Liu (1987). Other examples may be 

obtained in Cushing (1987) and Caswell (2001). Theoretical 

studies which focus on nonstationary and chaotic dynamics 

may be obtained in Guckenheimer et al. (1977); Silva and 

Hallam (1993); Wikan and Mjolhus (1995; 1996). Wikan 

(1997); Davydova et al. (2003) and Mjolhus et al. (2005) 

the dynamics of semelparous species is revealed. Ergodic 

results obtained by Cushing (1988; 1989) and Crowe (1994) 

provide a basic setting for considering stability and 

bifurcation in matrix models like (1). 

Difference delay equation models (B) are models on 

the form xt+1 = g (xt, xt−T) where x is the size of the 

population and T the time from birth to maturity. In this 

study we will focus on the model Equation 3: 

 

xt+1 = pxt + fxt-T     (3) 

 

which expresses that the size of the population at time t + 

1 equals the part of the adult population which survives 

from the previous year plus the part which augments 

the adult population from births T years earlier. Just 

like (1), (3) has also been applied on several concrete 

species, see for example the Baleen whale model by 

Clark (1976). In case of other species we refer to 

Botsford (1986; 1992); Tuljapurkar et al. (1994) and 

Higgins et al. (1997). In many respects we may classify 

(3) as an aggregated version of (1) where detailed 

information of the dynamics within age classes is 

neglected. The model prerequisites birth pulse fertilities 

triggered at a specific age. 
In stage-structured models (C) we do not divide the 

population into nonoverlapping age classes, instead we 

split the population into stages, for example one sexual 

immature stage and one sexual mature stage. The 

motivation for such models is that there may be other 

factors which are more important with respect to 

maturity than age. For many species body size is more 

vital than age. Indeed, following Caswell (2001), size-

dependent demography is probably the rule rather than 

the exception. Examples of species that must reach a 

certain size before they are able to reproduce may be 

found among plants (Werner, 1975; Klinkhamer et al., 

1987a; 1987b), crabs (Campbell and Eaglis, 1983), fish 

(Alm, 1959), see also Caswell (2001) and several 

references therein. Temperature is also an important 

factor that may trigger reproduction, especially in 

insect populations, cf. Wagner et al. (1984) and 

Bellows (1986). In this study we shall focus on the two-

stage model Equation 4: 

 

1,t 1 1 1,t 2,t

2, t 1 1 1,t 2 2,t

x (1 p)x fx

x px x

+

+

= µ − +

= µ + µ
 (4) 

 
where, µ1 and µ2 are the fractions of the immature 
population x1 and the mature population x2 respectively 
which survive from time t to t + 1. x = x1 + x2 is the total 
population. Moreover, p is the fraction of the immature 
population which survives to become adult and f is the 
fecundity. We may also express (4) on matrix form as 
Equation 5: 
 

t 1 t
x  A x+ =  (5) 

 

where, x = (x1,x2 )
T
 and: 

 

1

1 2

(1 p) f
A

p

µ − 
=  

µ µ 
 

 

Model (4) (or (5)) is identical to the general stage-
structured model presented by Neubert and Caswell 
(2000), see also the cod model by Wikan and Eide 
(2004). Another approach may be obtained in insect 
models where the population is divided into three stages, 
larvae, puppae and grown up insects, see the celebrated 
study by Cushing et al. (1996); Costantino et al. (1997) 
and Dennis et al. (1997). 

The purpose of this paper is to compare and discuss 
stability properties and dynamical outcomes of models 
(1), (3) and (4) and in doing so we shall assume that 
density dependence is included in the recruitment terms 
and not in the survivals. Hence, in (1) we let fi = F 
exp(−x), i = 1,…,n and pi = P where the use of capital letters 
indicates density independent terms. In the difference delay 
equation model (3) we use the same approach and in the 
stage-structured model (4), f = F exp(−x) and µ1, µ2 and p 
are regarded as constants. Thus we consider. 
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Age structure Equation 6: 

 

t 1 t
x  A x where

Fexp( x) Fexp( x)

P 0 0

A 0

0 P 0

+ =

− − 
 
 
 =
 
 
 
 

L

L

O M

M O

L

 (6) 

 

Difference delay Equation 7: 

 

t 1 t t T

xt Tx Px Fe x+ −

− −= +   (7) 

 

Stage structure Equation 8: 

 
tx

1,t 1 1 1.t 2, t

2, t 1 1 1,r 2 2,t

x (1 p)x Fe x

x px x

−

+

+

= µ − +

= µ + µ
 (8) 

 

1.1. Analysis 

 We start with the age-structured model (6). 

Assuming all age classes fertile (species with such 

properties are often referred to as iteroparous species) the 

nontrivial fixed point of (6) may be expressed as 

Equation 9: 

 
n 1

* * * * * *

1 2 n

1 P P
(x ,x ,...,x ) x , x ,..., x

K K K

− 
=  
 

 (9) 

 

where, K = 
n 1 i

i 0
P

−

=∑  and x* = In (Fk). 

The eigenvalue equation may be cast in the form 

Equation 10: 

 
* n 1

n i n 1 i

i 0

(1 x )
P 0

K

−
− −

=

−
λ − λ =∑  (10) 

 

and provided that all eigenvalues of (10) are located 

within the unit circle, (9) is a stable fixed point. Now, 

using the same method as in Wikan and Mjolhus (1996), 

x
*
 < 2 is sufficient in order to guarantee a stable 

equilibrium (9). Indeed, we may write (10) as g(λ) + h(λ) 

= 0 where g(λ) = λ
n
 and the first observation is that g(λ) 

= 0 has n roots located inside the unit circle. On the 

boundary Equation 11: 

( )
*

n 1

*
n 1 *

(1 x )
h

K

(1 x )
P 1 x 1

K

−

−

−
λ ≤ λ

−
+ + ≤ − <L

 (11) 

 

whenever x
*
 < 2. Consequently, on the boundary |h(λ)| < 

1 = |g(λ)| and from Rouche’s theorem we conclude that 

g(λ) + h(λ) = 0 has n roots inside the unit circle which 

means that (9) is stable. 

Regarding the nonstationary dynamics it depends on 

the values of both n and P as we now shall demonstrate. 

Keeping P fixed, an increase of F leads to an increase of 

the total equilibrium population (cf. (9)) and when n = 2 

it follows from (9), (10) and the Jury criteria (Murray, 

2003) that the value of x
*
 at instability threshold is 

Equation 12: 

 
*

F

*

H

x x 2 / (1 P) 0 P 1 / 2

x x (1 2P) / P 1 / 2 P 1

= = − < <

= = + < ≤
 (12)  

 
where, the indices F and H refer to a flip or Hopf 

bifurcation at threshold respectively. Note that P → 0 

implies x
*
 → 2 (see (12)). Hence we may interpret our 

previous result x
*
 = 2 as the stability threshold when the 

survivals approach zero. For other values of P, x
*
 at 

instability becomes larger and according to (12) 

* *
x x (P 1 / 2) 4

max
= = =  at threshold. 

Assuming 0 < P < 1/2 it was proved in Wikan and 

Mjolhus (1996) that the flip bifurcation at threshold x
*
 = 

xF (12) is of supercritical nature. Hence, in case of x
*
 > 

xF, |x
*
 − xF| small there are stable orbits of period 2. If we 

continue to increase x
*
 (or F) we observe periodic orbits 

of 2
k
, k = 2,3,… (the flip bifurcation sequence) and 

eventually the dynamics becomes chaotic. The Hopf 

bifurcation at x
*
 = xH (12) in the 1/2 <p< 1 interval is 

also supercritical. Thus, whenever x
*
 > xH, |x

*
 − xH| small 

we find nonperiodic orbits restricted to an invariant 

curve. Moreover, these orbits coexist with a stable large 

amplitude 3-cycle which is born through a saddle node 

bifurcation at a critical value xS < xH so the ultimate fate 

of an orbit depends on the initial condition. For higher 

values of x
*
 the invariant curve disappears (as it is hit by 

the branches of the unstable 3-cycle created at x
*
 = xS) 

and only stable periodic orbits of period 3 · 2
k
 are 

detected. Also here the dynamics becomes chaotic 

provided x
*
 large enough. 

In the case n = 3 (all age classes fertile) we find from 

the Jury criteria xF = 2(1 + P
2
) (1− P + P

2
)

−1
 and xH = 
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P
−2

(1 + P + 2P
2
) and an easy argument shows that xF < 

xH for all 0 <P< 1. Hence, the flip bifurcation governs 

the nonstationary dynamics for any P, 0<P<1 and the 

dynamics is qualitatively similar to the n = 2 case 0 <P< 

1/2. Since xF’(P) = 2(1 – P
2
)(1 − P + P

2
)

−2
 > 0 we may also 

conclude (in contrast to the n = 2 case) that x
*
 is an 

increasing function of P at bifurcation threshold. In Fig. 1 

we plot the value of the equilibrium population at 

instability threshold as function of P in the n = 2 and n = 

3 cases respectively. 

Due to the complexity of the Jury criteria the analysis 

when n = 4 is more delicate. The value of x
*
 at instability is 

Equation 13: 

 
*

F c

*

H c

x x 2 / (1 P) 0 P P

x x P P 1

= = − < <

= < <
  (13) 

where, xH = 1 + a1(1 + P
2
 + P

2
 + P

3
). a1 is defined as the 

real solution of the Equation 14: 

 
3 2 4 3

1

2 2 4 2 2

1 1

P (1 P )(1 P )a

P (1 P P )a P(1 P )a 1 0

− + −

+ − + + − =
 (14) 

 

and Pc ≈ 0.61. Consequently, the n = 4 case is similar to 

the n = 2 case except for the fact that the flip bifurcation 

determines the dynamics in a larger P interval. 

Next, assume n arbitrary and P small. Then (9) 

implies x
*
 ≈ ln (F(1 + P)) and the general eigenvalue 

equation (10) may be written as Equation 15: 

 
* * * i 1n 1

2

i
i 1

(1 x ) (1 x ) (1 x ) P
P

1 P 1 P 1 P

+−

=

− − −
λ − λ − =

+ + + λ
∑  (15) 

 

 
 
Fig. 1. The values of the equilibrium population x at instability threshold in the n = 2 and n = 3 cases. The monotonic increasing 

curve corresponds to n = 3 

 

 
 

Fig. 2. The values of the equilibrium population x at instability threshold when n = 8 and n = 9. The “kinked” curve corresponds to n = 8 
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 Now, the left hand side of (15), g2 (λ) is nothing but 

the left hand side of (10) (n = 2) and from (12) it follows 

that the only modulus 1 solution of g2(λ) = 0 is λ = −1 

(and x
*
 → 2 when P → 0). This means that for λ close to 

−1 the dominant term on the right hand side of (15) will 

be of order P smaller than the left hand side which again 

implies that it will deviate O(P) from the solution of 

g2(λ) = 0. Hence, we conclude that there will be no Hopf 

bifurcation in case of P small (and also P “moderate” as 

suggested by our n = 2, 3 and 4 analysis). The flip 

bifurcation threshold is found by letting λ = −1 in (10). 

Thus Equation 16: 

 
k 2i

* i 0

F n 1 i i

i 0

2 P
x x

( 1) P

=
−

=

= =
−

∑
∑

 (16) 

 

where, k = (n − 1)/2 in case of n odd and k = (n − 2)/2 in 

case of n even. 

Considering large P values it follows from (16) that 

limP→1xF = n + 1, n odd, while limP→1xF → ∞, when n is 

even. Consequently, if n is even there will be no period 

doubling bifurcation when P → 1. Moreover, when (n, P) 

= (2,1), x
*
 = xH = 3 (cf. (12)). If (n, P) = (4,1) the 

solution of (14) is a1 = 1 which implies xH = 5 and if (n, 

P) = (3,1), then from (16) xF = 4. Thus P = 1 seems to 

imply that x
*
 = n + 1 at instability threshold. A formal 

proof may be obtained in Wikan (2012a). 
Based upon our findings above as well as lots of 

numerical experiments we conclude that (16) is the 

instability threshold for any P, 0<P≤ 1, provided n is 

odd. Moreover, keeping n fixed, xF = xF (P) (see (16)) is 

a monotonic increasing function of P, hence increasing 

the survival probabilities acts stabilizing. When n is 

even, (16) is the threshold whenever 0<P<Pc, but in the 

interval Pc<P<1 the transfer from stability to instability 

occurs as (9) undergoes a Hopf bifurcation. Pc becomes 

larger as n is increased. 

Provided n ≥ 8, x
*
 is a monotonic increasing function 

of P at bifurcation also in the even number of age class 

cases. When P→1 the size of x
*
 at threshold is a 

monotonic increasing function of n. Therefore, an 

enlargement of n acts stabilizing. In Fig. 2 we show the 

equilibrium population at bifurcation threshold as 

function of P when n = 8 and n = 9. The different shapes 

of the stability curves for n = 2 and n large may be 

interpreted as a truncation effect. Indeed, following 

Wikan and Mjolhus (1996); see also Levin and Goodyear 

(1980), suppose that n is large. Then the contribution of 

new individuals from females in higher age classes is 

small provided P is small. Hence, in this case, x
*
(P) 

should be similar when n is large and n is small. 

Consequently, if we truncate a model with a large 

number of age classes, the effect on stability will be 

more or less negligible. However, if P is large, the 

contribution of new individuals from the higher age 

classes is large too. Therefore, it is natural to conclude 

that truncation will have a great impact on stability in 

this case. That is why the stability curves look different, 

thus the qualitative effect of truncation after a few age 

classes is that it causes decreasing stability beyond a 

certain value of P. 

In the analysis presented above we assumed that each 

age class was fertile. Alternatively, we may consider 

biologically relevant n-age class models where 

individuals in the first n-i age classes do not reproduce. 

Such cases may be studied through the map Equation 17: 

 

1 n i

n 1 2 n 1

x ,..., x (Fexp( x)x

Fexp( x)x ,Px Px ,...,Px )−

→ − +

+ −L
 (17) 

 

where, i = (n + 1)/2, n ≥ 3, n odd and i = n/2 ± 1, n ≥ 4, n 

even. The total equilibrium population becomes 

Equation 18: 

 
n 1

* k

k i 1

x ln F P
−

= −

 
=  

 
∑  (18) 

 

and the associated eigenvalue equation may be cast in 

the form Equation 19: 

 

*
i 1 n

n * k 1 n k * x k 1 n k

1 1
k 1 k i

x P (x Fe ) P 0
−

− − − − −

= =

λ + λ + − λ =∑ ∑  (19) 

 

and (as before) x1
*
 = x

*
 (1 + P ++L  P

n−1
)

 −1
. 

As already shown, if n = 3 and all age classes are 

fertile the (flip) bifurcation threshold was found to 

be * 2 2

F1
x 2(1 P ) / (1 P P )= + − + . A similar analysis of (17) 

where (n,i) = (3,2) yields 
* 2 2

F2
x 2P(1 P P ) / (1 P)(1 P P )= + + + − +  and since 

* * 2

F1 F2
x x 2 / (1 P)(1 P P ) 0− = + − + > it is natural to suggest 

that delayed recruitment acts destabilizing. Note 

however, that both stability thresholds are “flip 

thresholds”, thus the dynamics in unstable parameter 

regions are periodic orbits of period 2
k
 in both cases. 

If n is even it follows from (19) that λ = −1 gives 

birth to the threshold Equation 20: 
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( )( )
( )( )

l n 12k 1 k

k 1 k 0*

F n 1 n-ik k k

k 0 k 0

2 P P
x

( 1) P P

−−

= =

−

= =

=
−

∑ ∑
∑ ∑

 (20) 

 

where, l = (n − i)/2 when i is even and l = (n − i − 1)/2 

when i is odd. Since *
lim x

P 1 F
→∞

→
we may exclude 

the flip if P becomes large. When (n,i) = (4,3) we may 

actually exclude the flip in case of P small as well. 

Indeed, by use of (19) and dividing by λ + 1 we arrive at 

Equation 21: 

 
4 4

3 2

3 2

1 P 2P P 1

Z(1 P) Z(1 P)

P(P P P 1)
0

Z(1 P)

+ − −
λ + λ +

+ +

+ + −
λ + =

+

 (21) 

 

where, Z = 1 − P + P
2
 − P

3
 (cf. Wikan and Mjolhus 

(1996)). Here we notice that whenever P is small the 

dominant solution of (21) must be close to ( 1 5) / 2− +  

which exceeds unity. Consequently, there exists a 

threshold xH
*
 < xF

*
 (where xF

*
 is given through (20)) 

where (21) has complex roots located on the boundary of 

the unit circle. 

When n exceeds 4 it is difficult to give a thorough 

picture of the dynamics in unstable parameter regions 

due to the complexity of the Jury criteria but some 

information is still possible to obtain. If λ = −1 and n is 

even it follows from (19), (20) that Equation 22a and b: 

 

* 2
x   i  odd

1 P
=

−
 (22a) 

 

n i
*

n i 1

2P(1 P )
x     i even

(1 P)(1 P )

−

− +

−
=

− −
 (22b) 

 

Obviously, none of the expressions (22a, b) may be 

instability thresholds in case of P → 1. Moreover, 

assuming i odd limP→0 x
*
 = 2. Thus, according to our 

findings from the P → 0, (n, i) = (4,3) analysis, (22a) 

may not be the instability threshold in case of small P 

values either. Hence, a natural conjecture to propose is 

that whenever n is even and i is odd the dynamics in 

unstable parameter regions is governed by a Hopf 

bifurcation at a threshold lower than (22a). 

On the other hand, assuming both n and i even, then 

from (22b) limP→0 x
*
 = 0. This fact together with the 

numerical findings from the (n,i) = (4,2) case which 

shows that (22b) is the instability threshold as long as P 

< 0.73 clearly suggests that the period doubling 

bifurcation governs the nonstationary dynamics provided 

P is not too close to unity. 

If λ = −1 and n odd we arrive at the expressions 

Equation 23a and b: 

 
n i 2 n

* k 1

n n i 1
k 1

2(1 P )
x P i odd

(1 P )(1 P )

− +
−

− +
=

−  
=  + −  

∑  (23a) 

 

n
* k 1

n
k 1

2P
x P  i even

1 P

−

=

 
=  +  

∑  (23b) 

 

Considering (23a) we find that P → 0 implies x
*
 → 2 

and P → 1 implies x
*
 = n(n − i + 2)/(n − i + 1). Therefore 

whenever i > 1 the latter expression is larger than n + 1. 

This means that both in case of P small and P large (23a) 

is larger (or equal) than the instability threshold when 

there is no delay in reproduction (i.e., i = 1). This is not 

in agreement with our previous results (delayed recruitment 

acts destabilizing) so it is natural to conclude that (23a) is 

not the instability threshold for any value of P. 

Consequently, there exists a complex modulus 1 solution of 

the eigenvalue equation (19) which gives birth to a Hopf 

bifurcation threshold xH
*
 which is smaller than (23a). 

Regarding (23b), P → 0 implies x
*
 → 0 and P → 1 

implies x
*
 → n, Moreover, we know from our (n,i) = 

(3,2) analysis that (23b) is the bifurcation threshold for 

any value of P. Therefore, it is tempting to conclude that 

(23b) is the instability threshold and additionally that an 

increase of the number of age classes acts stabilizing, 

especially when P becomes large. 

The final age-structured case to discuss is the one where 

fertility is restricted to the last age class only. (Species 

which reproduce at the end of life is often referred to as 

semelparous species.) Therefore, consider the map 

Equation 24: 

 

1 n n 1 2 n 1
(x ,..., x ) (Fexp( x)x ,Px ,Px ,...,Px )−→ −  (24) 

 

At equilibrium x
*
 = ln(FP

n−1
). The eigenvalue equation 

becomes Equation 25: 

 
* n 1

n i n 1 i

i 0

x
P 1 0

K

−
− −

=

λ + λ − =∑  (25) 

 

and when n is even and λ = −1 the left hand side of the 

equation may be expressed as Equation 26: 
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* n
i 1 i

i 0

x
( 1) P

K

+

=

−∑  (26) 

 

Now, (26) is clearly negative. Moreover, when λ → 

−∞ the left hand side of (25) → +∞. Hence, (25) has a 

root λ̂  < −1 from which we conclude that the nontrivial 

fixed point of (24) is always unstable. When n is odd it 

was proved by Wikan and Mjolhus (1996) that the 

nontrivial fixed point is unstable in case of small 

equilibrium populations x
*
. Whenever x

*
 is large, that is 

x
*
 > 2K

i 1n 1( ( P) )
i 0

−− −∑ =  we may use the same kind of 

consideration (Mjolhus et al., 2005) in order to conclude 

that (25) has a root 1λ < −%  too. In case of intermediate 

values of x
*
 the argument presented above does not work 

but extensively numerical simulations indeed suggest that 

the fixed point of (24) is unstable also here. However, if 

different survival probabilities Pi are assumed in (24), then 

there may exist small parameter windows where the 

nontrivial fixed point is stable. This is documented in 

Mjolhus et al. (2005) in case of n = 3. 

Actually, the only dynamics which we find from map 

(24) is SYC (Single Year Class) dynamics, cf. Davydova 

et al. (2003) and Mjolhus et al. (2005), i.e., dynamics 

where only one age class is populated at each time. 

When n = 2 and x
*
 = ln(FP) is small (24) possesses a 

stable 2-cycle where the points in the cycle are (P
−1 

ln 

(FP),0), (0,ln(PF)). When x
*
 increases, stable cycles of 

period 4, 8,… are introduced and beyond the 

accumulation point for the flip bifurcation sequence we 

observe chaotic dynamics. Note that all cycles as well as 

the dynamics in the chaotic regime are on SYC form. For 

arbitrary values of n and x
*
 = ln(FP

n−1
) small we find the 

stable n-cycle Equation 27: 

 

*

n 1

i 1
* *

n 1

1
x ,0,...,0

P

P
0,0,..., x ,0,...,0 , (0,0,..., x )

P

−

−

−

 
 
 

 
 
 

L

L

 (27) 

 

and through an enlargement of x
*
 we find the same 

qualitative picture as in the n = 2 case. 

Next, we turn to the difference delay equation (7). 

The nontrivial equilibrium is given as Equation 28: 

 

* F
x ln

1 P

 =  − 
 (28) 

where, F > 1 − P and 0 ≤ P < 1 is necessary in order to 

ensure a biologically acceptable equilibrium. The 

linearization of (7) may be expressed as Equation 29: 

 
T 1 T *

P (1 P)(1 x ) 0
+λ − λ − − − =  (29) 

 

and x
*
 is stable provided all the eigenvalues λ are located 

inside the unit circle.  

Independent of the values of T we may use Rouche´s 

theorem to show (in a similar way as in the age-

structured case) that x
*
 < 2 ensures that (28) is a stable 

equilibrium. Thus, rewrite (29) as g(λ) + h(λ) = 0 where 

g(λ) = λ
T+1

 and h(λ) = −Pλ
T
 − (1 − P)(1 − x

*
). Further, 

observe that g and h are analytic functions on and inside 

the unit circle and that the equation g(λ) = 0 has all its roots 

located inside the unit circle. On the boundary we have: 

 

( )

( )

T * *

*

h P (1 P)(1 x ) P (1 P)(1 x )

          P (1 P) 1 x 1  g

λ = − λ − − − ≤ + − −

= + − − < = λ
 

 

as long as x
*
<2. Consequently, g(λ) + h(λ) = 0 has the 

same numbers of roots inside the unit circle as g(λ) = 0, 

namely T + 1 roots and (28) is stable. 

Let us now focus on the nonstationary dynamics. 

First, assume T = 0 (no delay). Then, x
*
 is stable as long 

as x
*
 < 2/ (1-P) (note that P → 0 ⇒  x

*
 → 2) or 

alternatively F < (1 − P) exp (2/ (1 − P)) and λ = −1 at 

bifurcation threshold. Moreover, by use of the notation 

f(x) = Px + Fe
−x

x we find at bifurcation that the 

nondegeneracy condition becomes Equation 30a: 

 
22 2

 
1 P

2

f f f
, 2 2e 0

F x Fx

−
−∂ ∂ ∂

+ = − ≠
∂ ∂ ∂∂

 (30a) 

 

and that the stability coefficient a may be expressed as 

Equation 30b: 

 
2

2 3

2 3

1 f 1 f 1
a P(2P 1) 0

2 3 3x x

 ∂ ∂
= + = − + > 

∂ ∂ 
 (30b) 

 

Hence, according to Theorem 3.5.1 in Guckenheimer 

and Holmes (1990) we conclude that the flip bifurcation 

is supercritical which means that when x
*
 fails to be 

stable, a stable period 2 orbit is created. If we continue to 

increase F (or x
*
) stable orbits of period 2

k
, k = 2,3,… 

are established. Eventually, in case of large x
*
 values the 

dynamics becomes chaotic. 



Arild Wikan /Journal of Mathematics and Statistics 8 (4): 446-460, 2012 

 

453 Science Publications

 
JMSS 

Next, consider T = 1 (small delay). The eigenvalue 

equation (29) may be written as Equation 31: 

 
2 *

P (1 P)(1 x ) 0λ − λ − − − =   (31) 

 

and from the Jury criteria it is straightforward to show 

that x
*
 < (2 − P)/ (1-P) guarantees a stable equilibrium. 

At instability threshold x
*
 = (2-P)/(1-P) and the modulus 

1 solution of (31) may be written as Equation 32: 

 

2
P 4 P P b

i i
2 2 2 2

−
λ = ± = ±  (32) 

 

Hence (in contrast to the T = 0 case) x
*
 undergoes a Hopf 

bifurcation at instability. 

In order to determine the nature of the bifurcation, 

first observe that Equation 33: 

 
2 P

1 P
d 1

e 0
dt 2

−

−λ = >  (33) 

 

at bifurcation from which we conclude that the 

eigenvalues leave the unit circle through an increase of 

F. Further, by defining yt = xt and zt = xt+1 we may 

rewrite (7) (T = 1) as a first order system Equation 34: 

 

y

y 0 1 y

z Fe P z
−

    
→    

    
 (34) 

 

with corresponding fixed point Equation 35: 

 

* * F F
(y ,z ) ln ,ln

1 P 1 P

    =     − −    
 (35) 

 

Now, following the procedure outlined in Wikan 

(1997) we find after a long and tedious calculation that 

the stability coefficient a in the normal form of (34) may 

be expressed as Equation 36: 

 
2 2 2 2

2 2 2

P (P P 3) 1 P 1 P 1
a (1 2P)

8 16 1616b b b

− −
= − − − −  (36) 

 

 Clearly, a < 0 if 0 < P ≤ 1/2. If 1/2 < P < 1 we may 

write (36a) as Equation 37: 

 

4 3 2

2

1
a (P 3P ) ( 5P 8P) 4

16b
 = − + − + −   (37) 

The term P
4
-3P

3
 is always negative. The max value 

of −5P
2
 + 8P is 16/5 and since 16/5 < 4, a < 0 in this 

case too. 

Consequently, when (35) fails to be stable due to an 

increase of F, the dynamics is a quasiperiodic orbit 

restricted to an invariant curve which surrounds (35). 

This is displayed in Fig. 3. If we continue to increase F 

the invariant curve becomes kinked which signals that 

we are on the onset to chaos as shown in Fig. 4. 

Turning to the T = 2 case we find from (29) and the 

Jury criteria that the fixed point is stable as long as 

Equation 38: 

 
2

* 2 3P P 4
x

2(1 P)

− + +
<

−
 (38) 

 

Instability is introduced by increasing F such that (37) 

becomes equality and just as in the T = 1 case the 

eigenvalues at bifurcation threshold are complex 

conjugated and may be expressed as Equation 39: 

 

2 2 21
P 4 P 16 (P 4 P ) i

4

 λ = + + ± − + + 
 

 (39) 

 

 Further, the maximum stable population size in the T 

= 2, T = 1 and T = 0 cases clearly satisfies Equation 40: 

 
2

2 3P P 4 2 P 2

2(1 P) 1 P 1 P

− + + −
< <

− − −
 (40) 

 

which suggests that delayed maturity acts destabilizing. 

Now, assuming T arbitrary (T > 0) our findings above 

imply that it is natural to suppose that λ = exp(iθ) at 

bifurcation threshold. Then from (29) Equation 41: 

 
i * i(T 1)

1 Pe (1 P)(1 x )e
− θ − + θ= + − −   (41) 

 

and by separating into real and imaginary parts we arrive 

at Equation 42a and b: 
 

*
1 Pcos (1 P)(1 x )cos(T 1)= θ + − − + θ  (42a) 
 

*
0 Psin (1 P)(1 x )sin(T 1)= − θ − − − + θ  (42b) 
 
Squaring and adding now yields Equation 43: 

 
* 2

*

1 P (1 P)(1 x )
cosT

2P(1 x )

+ − − −
θ =

−
 (43) 
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Fig. 3. An invariant curve (together with some initial transitions) generated by (34). Parameter values (F, P) = (14,0.5) 

 

 
 

Fig. 4. The invariant curve has been kinked and has started to break up. Parameter values (F, P) = (80,0.5) 
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Fig. 5. The maximum stable equilibrium population. From top to bottom the curves correspond to T = 3, 4 and 5 

 

 
 
Fig. 6. The equilibrium population at bifurcation threshold as function of p. Upper curve corresponds to µ2 = 0.9, middle curve µ2 = 

0.5 and bottom curve µ2 = 0.1 

 

 Thus, for given values of T and P, θ = θ(x
*
) may be 

obtained from Equation 44: 

 
* 2

*

1 1 P (1 P)(1 x )
arccos

T 2P(1 x )

 + − − − 
θ =  

−  
 (44) 

 

and Equation 45: 

 
*

Psin (1 P)(1 x )sin(T 1)θ = − − − + θ  (45) 

 

From (43), (44) we may compute the value of x
*
 at 

bifurcation threshold. In Fig. 5 we show the maximum 

stable equilibrium in the T = 3, 4 and 5 cases 

respectively. From top to bottom the curves correspond 

to T = 3, 4 and 5 and the stable region is located below 

the curves. Clearly, an increase of T acts destabilizing 

here too, just as we found in the T = 0, 1 and 2 cases. 

Also, cf. (37), (39) and Fig. 5, that x
*
 (T fixed) is an 

increasing function of P at instability threshold, hence 

increased adult survival acts in a stabilizing fashion. 

Since all instability thresholds (T ≥ 1) are Hopf 

bifurcation thresholds it means that when F is increased 

to a level where x
*
 fails to be stable, quasiperiodic orbits 

are established. This does not exclude the possibility of 

exact or approximate periodic orbits as we penetrate 

deeper into the unstable parameter region. Indeed, such 

orbits may be created through frequency locking, see 

Wikan and Mjolhus (1996). In the model at hand we 

have not detected much periodicity. One exception is when 
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T = 1 and P → 1. Then arg λ ≈ π/3 (see (32)) and we 

observe six periodical dynamics. Through further increase 

of F the dynamics becomes chaotic. A final comment is that 

if T is increased beyond 1 (T≥2) it follows from (43) that θ 

becomes smaller. Thus as T grows, possible periodic 

dynamics will have longer and longer periods. 

Finally, let us turn to the stage-structured model (8). 

Assuming µ1p > (1 − µ2) [1 − µ1(1 − p)] which ensures 

that the origin is an unstable fixed point we find that the 

nontrivial fixed point of (8) may be expressed as (cf. 

Neubert and Caswell (2000)) Equation 46: 

 

* * * *2 1

1 2

2 1 2 1

1 p
(x ,x ) x , x

1 p 1 p

 − µ µ
=   − µ + µ − µ + µ 

 (46) 

 

where the total equilibrium population is Equation 47: 

 

* 1

2 1

pf
x ln

(1 ) 1 (1 p)

 µ 
=  

− µ − µ −    
 (47) 

 

Now, denote the Jacobian of (8) as J. Then the following 

inequalities (Neubert and Caswell (2000)) (I) 1 − tr J + |J| 

> 0, (II) 1+ tr J + |J| > 0, (III) 1 − |J| > 0 must be satisfied 

in order for (45) to be a stable fixed point. (I) may be 

written as Equation 48a: 

 
*

2 1
(1 ) 1 (1 p) x 0− µ − µ − >    (48a) 

 

and is always satisfied. (II) may be expressed as 

Equation 48b: 

 

* * 1 2 1 2 1

F

2 2 1 1

2( p)(1 p)
x x

(1 )(1 p) 1 (1 p)

µ + µ − µ − µ + µ
= <

− µ + µ − µ − µ −  
 (48b) 

 

Regarding (III), whenever µ2 > µ1p Equation 48c: 

 
*

x *

1 2 1 2 1 2
2 ( p) ( p)e x 0

−− µ + µ − µ + µ −µ >   (48c) 

 

which is obviously satisfied. If µ2 < µ1p we may write 

condition (III) as Equation 48d: 

 

* * 1 2 1 2 1

H

2 1 2 1

2 ( p) (1 p)
x x

(1 )( p ) 1 (1 p)

− µ + µ − µ − µ + µ  = <
−µ µ − µ − µ −  

 (48d) 

 

and since: 

* * 2 1

F H

2 1

1 2 1 1 2 1

2 1 1 2

1 p
x x

(1 ) 1 (1 p)

2( p) 2 ( p)
0

1 p p

− µ + µ
− =

− µ − µ −  

 µ + µ − µ − µ + µ − µ 
− < 

+ µ − µ µ −µ  

 

 

we conclude that the stability threshold is found when the 

inequality sign in (48b) becomes an equality. Thus the 

period doubling bifurcation governs the dynamics as we 

penetrate into the unstable parameter region. 

In Fig. 6 we show the total equilibrium population x
*
 

at bifurcation threshold (48b) as a function of the 

fraction p of the immature population which survives to 

become adult for different values of the adult survival µ2. 

What Fig. 6 clearly demonstrates is that an enlargement 

of µ2 leads to an increase of x
*
 at instability threshold. 

Hence, increased adult survival which means that 

individuals live through several years as adults which 

again leads to repeated reproduction (iteroparous 

species) possess better stability properties than species 

which reproduces only once, (µ2 → 0) (semelparous 

species). Moreover, in the iteroparous case (large µ2 

values) we find that x
*
 is an increasing function of p at 

instability. Hence, species with precocious iteroparous 

life histories (p→1, µ2 → 1) are more stable than species 

with delayed iteroparous life histories (0<p<1, µ2 → 1). 

Regarding semelparous species an opposite tendency 

seems to be the case. The delayed case  

(0 < p < 1, µ2 → 0) appears to be more stable than the 

precocious case (p→1, µ2 → 0). These findings confirm 

the results obtained by Neubert and Caswell (2000). 

Turning to the nonstationary dynamics we find in 

case of small µ2 values (both in the precocious and 

delayed cases) orbits of period 2
k
 as well as chaotic 

dynamics. There are no qualitative differences between 

the dynamics in precocious and delayed cases. 

Considering large µ2 values (iteroparity), the delayed 

case exhibits the same dynamics as we found in the 

semelparous cases. On the other hand, when p → 1 and 

µ2 large (precocious iteroparity) the dynamics is not so 

rich. We have observed period 2 orbits but not orbits of 

period 2
k
, k > 1, nor chaotic dynamics. This reflects the 

fact that x
*
 at instability threshold is larger here than in 

the delayed case, see Fig. 6. 
Without repeating results from the detailed analysis 

of (6), (7) and (8) we find it natural to suggest that 

species who possess iteroparous life histories tend to be 

more stable than species with semelparous life histories. 

In the stage-structured model by Neubert and Caswell 

(2000) focus was also on submodels where µ1 and p 
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respectively (see (5)) were density dependent and based 

upon the analysis of these submodels as well as on (8) 

they conjectured that it is a fairly general ecological 

principle that iteroparous species are more stable than 

species with semelparous life histories. By including the 

results of the analysis of (6) and (7) we feel that this 

conjecture has become significantly more robust. 

Let us now focus on iteroparity in somewhat more 

detail. Assuming all age classes fertile, our analysis of 

the age-structured model (6) shows that there will always 

be a stable fixed point provided the total equilibrium 

population x
*
 < 2. Moreover, the nonstationary dynamics 

depends on both the number of age classes n and the year 

to year survival probability P. When n is sufficiently 

large, x
*
(P) at instability is an increasing function of P. 

Small survival probabilities imply that the transfer from 

stability to instability goes through a flip bifurcation 

independent of the number of age classes. The same is 

true when P is large provided n is odd. However, when n 

is even the transfer from stability to instability goes 

through a Hopf bifurcation. In all cases, an enlargement 

of n acts stabilizing if P is large enough. 

If we shall compare the findings above with the 
outcomes of the stage-structured model (8) it must be 
with the case µ2 → 1 (large adult survival) and p → 1 (a 

large fraction of the immature population survives to 
become adults). Since large µ2 values combined with 
large p values acts stabilizing (Fig. 6) the results here are 
in excellent agreement with the results of the age-
structured model with respect to stability. Considering 
the nonstationary dynamics there is a fairly good 

agreement between the findings of (8) and the outcomes 
of (6) when there are an odd number of age classes. In 
both models the period doubling bifurcation governs the 
dynamics, but the difference is that while the stage-
structured model exhibits period 2 orbits only beyond 
threshold (47b) the dynamics of the age-structured model 

is richer in the sense that there are stable orbits of period 
2

k
, k > 1 and chaotic dynamics as well. Therefore, from 

the discussion above, we find it fair to say that models 
(6) and (8) show much of the same qualitative picture 
when they are applied on species with precocious 
iteroparous life histories. However, when there are an 

even number of age classes in (6) there is a certain 
mismatch. The nonstationary dynamics in the age-
structured case is now determined by a Hopf bifurcation 
which means that beyond instability threshold the 
dynamics is restricted to an invariant curve which 
surrounds the unstable fixed point. The parameter region 

where we have this discrepancy between (6) and (8) 
becomes smaller as n (n even) becomes larger. The worst 

case is n = 2. Then 1/2 < P < 1 results in a Hopf 
bifurcation (see (12)). 

Next, assume that individuals of a species may live 

through several age classes before maturity and then 

survive to reproduce for many years, i.e., we are 

considering species with delayed iteroparous life 

histories. By comparing the analysis of this case (see 

(17)) with the analysis of the precocious iteroparous case 

(6) we conclude that the precocious case seems to be 

more stable than the delayed case. As we have shown, 

when (n, i) = (3, 3) the stable parameter region is larger 

than in the case (n, i) = (3, 2). The dynamics beyond the 

instability thresholds are qualitatively similar. Still 

considering the delayed case (17), whenever n≥4 the 

Hopf bifurcation gives birth to the dynamics in unstable 

parameter regions in large P intervals. Hence, the size of 

the stable parameter regions as well as the dynamics in 

unstable regions are different in (17) and (6). Now, 

turning to the stage-structured model (8), delayed 

iteroparity is characterized by µ2 → 1 and 0 < p < 1. As 

Fig. 6 demonstrates the value of x
*
 at instability in this 

case is smaller than in the precocious iteroparous case 

(µ2 → 1, p→1). Based upon this, Neubert and Caswell 

(2000) proposed that species with precocious iteroparous 

life histories tend to be more stable than species with 

delayed iteroparous life histories. Our analysis of (6), 

(17) and (8) both confirm and strengthen their 

conclusion. It appears to be a general ecological 

principle that delayed iteroparous species possess poorer 

stability properties than precocious iteroparous species. 

On the other hand, regarding the nonstationary 

dynamics, the outcomes of (17) and (8) are different. 

Indeed, while the nonstationary dynamics generated by 

(8) is periodic orbits of period 2
k
, k = 1,2,… or chaotic 

dynamics beyond the point of accumulation for the flip 

bifurcation sequence we observe that the dynamics 

generated by (17) is different. In case of n > 4 numerical 

simulations show that the fixed point of (17) (see (18)) 

undergoes a (supercritical) Hopf bifurcation at instability 

threshold in large P intervals. This gives birth to 

quasiperiodic orbits restricted to invariant curves. 

Whenever F is large the dynamics may be chaotic but the 

structure of the chaotic attractor is not the same as the 

structure of the corresponding attractor generated by (8). 

Finally, considering semelparous species, according 

to our analysis of the difference delay equation model (7) 

there always exists a stable equilibrium if x
*
 < 2. 

Moreover, cf. (39) and Fig. 5, an enlargement of the 

delay T acts destabilizing. Consequently, it is natural to 

conclude the precocious semelparous species have better 

stability properties than species with delayed 
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semelparous life histories. The results of the semelparous 

age-structured case (24) are special (SYC dynamics), but 

our treatment of the delayed case (17) supports the 

findings of (7) with respect to the size of the stability 

region as well as the dynamics beyond the instability 

threshold. Also, note that if we allow a small fecundity 

Fn−1 in age class n-1 (see (24)) it was shown in Wikan 

and Mjolhus (1996) the existence of a stable nontrivial 

fixed point (x1
*
 ,…,xn

*
) in case of small equilibrium 

population x
*
. This strengthens the conclusions above 

too. On the other hand, still assuming semelparity, the 

stage-structured model (8) does not support any of the 

results of (6) and (7). Indeed, from Fig. 6 we now 

conclude that species who possess delayed semelparous 

life histories are more stable than species who have 

precocious semelparous life histories and as we have 

shown, cf. (48b), periodic behaviour of period 2
k
, k ≥ 1, 

as well as chaotic dynamics are the only possible 

outcomes beyond (48b). 

It is not obvious why (6), (7) and (8) in some cases 

give similar results and in other cases not. Considering 

species with iteroparous life histories the agreement 

between the outcomes of the age-structured model (6) 

and the stage-structured model (8) appears to be good. 

Regarding semelparous species the agreement is much 

poorer, hence it is natural to search for factors linked to 

delayed recruitment in order to explain the differences. 

Now, in (6) and (7) sexual maturity is triggered at a 

specific age which allow us to think of recruitment as a 

birth pulse. Moreover, as we know from several 

scientific branches, delay effects very often act 

destabilizing and lead to nonstationary phenomena. 

Therefore, we find it plausible to propose that it is the 

combined effect of abrupt delay and birth pulses which 

leads to the dynamics observed in (6) and (7). On the 

other hand, in the stage-structured case (8), it is hard to 

think of recruitment as a pulse and even harder to link it 

to a small time interval (unless µ2 → 0). 

2. CONCLUSION 

Assuming overcompensatory recruitment functions 

we have by use of a variety of different discrete 

nonlinear population models (which rest on different 

prerequisites) been able to suggest some important 

ecological principles with respect to stability and 

dynamic behaviour. On a few occasions, the dynamic 

outcomes of the models do not match. Typically, this 

occurs when we study populations who possess 

semelparous life histories. 

3. REFERENCES 

Alm, G., 1959. Connection between maturity, size and 

age in fishes. Drottningholm Instit. Freshwater Res., 

Report, 40: 5-145. 

Beland, P., 1974. On predicting the yield from brook 

trout populations. Trans. Am. Fish Soc., 103: 353-

355. DOI: 10.1577/1548-8659(1974)103<353: 

OPTYFB>2.0.CO;2 

Bellows, Jr., T.S., 1986. Impact of development variance 

on behaviour of models for insect populations. I 

Models for populations with unrestricted growth. 

Res. Populat. Ecol., 28: 53-62. DOI: 

10.1007/BF02515535 

Botsford, L.W., 1986. Population dynamics of the 

Dungeness crab (Cancer magister). Can. Spec. Publ. 

Fish. Aquat. Sci., 92: 140-153. 

Botsford, L.W., 1992. Further analysis of Clark’s 

delayed recruitment model. Bull. Math. Biol., 54: 

275-293. DOI: 10.1016/S0092-8240(05)80027-8 

Campbell, A. and M.D. Eagles, 1983. Size at maturity 

and fecundity of rock crabs, ‘Cancer irroratus’, from 

the bay of fundy and Southwestern Nova Scotia. 

Fishery Bull., 81: 357-362.  

Caswell, H., 2001. Matrix Population Models: 

Construction, Analysis and Interpretation. 2nd Edn., 

Sinauer Associates, Sunderland, Massachusetts, 

ISBN-10: 0878930965, pp: 722. 

Clark, C.W., 1976. A delayed recruitment model of 

population dynamics with an application to baleen 

whale population. J. Math. Biol., 3: 381-391. DOI: 

10.1007/BF00275067 
Cooke, D. and J.A. Leon, 1976. Stability of population 

growth determined by 2×2 Leslie matrix with 
density dependent elements. Biometrics, 32: 435-
442. DOI: 10.2307/2529512 

Costantino, R.F., R.A. Desharnais, J.M. Cushing and B. 
Dennis, 1997. Chaotic dynamics in an insect 
population. Science, 275: 389-391. DOI: 
10.1126/science.275.5298.389 

Crowe, K.M., 1994. A nonlinear ergodic theorem for 
discrete systems. J. Math. Biol., 32: 179-191. DOI: 
10.1007/BF00163877 

Cushing, J.M., 1987. An Introduction to Structured 
Population Dynamics. 1st Edn., SIAM, Philadelphia, 
ISBN-10: 0898714176, pp: 200. 

Cushing, J.M., 1988. Nonlinear matrix models and 
population dynamics. Nat. Res. Mod., 2: 539-580.  

Cushing, J.M., 1989. A strong ergodic theorem for some 

nonlinear matrix models for the dynamics of 

structured populations. Nat. Res. Mod., 3: 331-357.  



Arild Wikan /Journal of Mathematics and Statistics 8 (4): 446-460, 2012 

 

459 Science Publications

 
JMSS 

Cushing, J.M., B. Dennis and R.F. Costantino, 1996. An 

interdisciplinary approach to understanding 

nonlinear ecological dynamics. Ecol. Model, 92: 

111-119. DOI: 10.1016/0304-3800(95)00170-0 

Darwin, J.H. and R.M. Williams, 1964. The effect of 

time of hunting on the size of a rabbit population. 

New Zealand J. Sci., 7: 341-352. 

Davydova, N.V., O. Diekman and S.A. Van Gils, 2003. 

Year class coexistence or competitive exclusion for 

strict biennials. J. Math. Biol., 46: 95-131. DOI: 

10.1007/s00285-002-0167-5 

Dennis, B., R.A. Desharnais, J.M. Cushing and R.F. 

Costantino, 1997. Transition in population 

dynamics: Equilibria to periodic cycles to aperiodic 

cycles. J. Anim. Ecol., 6b: 704-729. DOI: 

10.2307/5923 

Desharnais, R.A. and L. Liu, 1987. Stable demographic 

limit cycles in laboratory populations of Tribolium 

Castaneum. J. Anim. Ecol., 56: 885-906. DOI: 

10.2307/4955 

Gourley, S.A. and Y. Kuang, 2004. A stage structured 

predator-prey model and its dependence on 

maturation delay and death rate. J. Math. Biol., 49: 

188-200. DOI: 10.1007/s00285-004-0278-2 

Guckenheimer, J. and P. Holmes, 1990. Nonlinear 

Oscillations, Dynamical Systems and Bifurcations 

of Vector Fields. 3rd Edn., Springer-Verlag, New 

York, ISBN-10: 3540908196, pp: 459. 

Guckenheimer, J., G. Oster and A. Ipaktchi, 1977. The 

dynamics of density dependent population models. 

J. Math. Biol., 4: 101-147. DOI: 

10.1007/BF00275980 

Gurtin, M.E. and R.C. MacCamy, 1974. Non-linear age-

dependent population dynamics. Arch. Rational 

Mech. Anal., 54: 281-300. DOI: 

10.1007/BF00250793 

Hastings, A., 1984. Age dependent predation is not a 

simple process. II. Wolves, Ungulates and a discrete 

time model for predation on juveniles with a 

stabilizing tail. Theor. Pop. Biol., 26: 271-282. DOI: 

10.1016/0040-5809(84)90033-9 

Higgins, K., A. Hastings and L.W. Botsford, 1997. 

Density dependence and age structure: Nonlinear 

dynamics and population behavior. Am. Nat., 149: 

247-269. DOI: 10.1086/285989 

Huang, X.C., 1990. An age-dependent population model 

and its operator. Phys. D: Nonlinear Phenomena, 

41: 356-370. DOI: 10.1016/0167-2789(90)90004-9 

Klinkhamer, P.G.L., T.J. de Jong and E. Meelis, 1987a. 

Delay of flowering in the ‘biennal’ Cirsium vulgare: 

Size effects and devernalization. Oikos, 49: 303-

308. DOI: 10.2307/3565765 

Klinkhamer, P.G.L., T.J. de Jong and E. Meelis, 1987b. 

Life-history variation and the control of flowering in 

short-lived monocarps. Oikos, 49: 309-314. DOI: 

10.2307/3565766 

Kon, R., Y. Saito and Y. Takeuchi, 2004. Permanence of 

single-species stage-structured models. J. Math. 

Biol., 48: 515-528. PMID: 15133621 

Lefkovitch, L.P., 1965. The study of population growth 

in organisms grouped by stages. Biometrics, 21: 1-

18. DOI: 10.2307/2528348 

Leslie, P.H., 1945. On the use of matrices in certain 

population mathematics. Biometrika, 33: 183-212. 

Levin, S.A. and P.H. Goodyear, 1980. Analysis of an 

age-structured fishery model. J. Math. Biol., 9: 245-

274. DOI: 10.1007/BF00276028 

Longstaff, B.C., 1977. The dynamics of collembolan 

populations: A matrix model of single species 

population growth. Can. J. Zool., 55: 314-324. DOI: 

10.1139/z77-043 

Mjolhus, E., A. Wikan and T. Solberg, 2005. On 

synchronization in semelparous populations. J. 

Math. Biol., 50: 1-21. DOI: 10.1007/s00285-004-

0275-5 

Murray, J.D., 2003. Mathematical Biology. 3rd Edn., 

Springer, New York, ISBN-10: 0387952284, pp: 

811. 

Myers, R.A., B.R. MacKenzie, K.G. Bowen and N.J. 

Barrowman, 2001. What is the carrying capacity for 

fish in the ocean? A meta-analysis of population 

dynamics of North Atlantic cod. Can. J. Fish. Aquat. 

Sci., 58: 1464-1476. 

Neubert, M.G. and H. Caswell, 2000. Density-dependent 

vital rates and their population dynamic 

consequences. J. Math. Biol., 41: 103-121. DOI: 

10.1007/s002850070001 

Neubert, M.G., 1997. A simple population model with 

qualitatively uncertain dynamics. J. Theor. Biol., 

189: 399-411. DOI: 10.1006/jtbi.1997.0258 

Pennycuick, L., 1969. A computer model of the Oxford 

great tit population. J. Theor. Biol., 22: 381-400. 

DOI: 10.1016/0022-5193(69)90011-3 

Silva, J.A. and T.G. Hallam, 1993. Effects of delay, 

truncation and density dependence in reproduction 

schedules on stability of nonlinear Leslie matrix 

models. J. Math. Biol., 31: 367-395. DOI: 

10.1007/BF00163922 



Arild Wikan /Journal of Mathematics and Statistics 8 (4): 446-460, 2012 

 

460 Science Publications

 
JMSS 

Tuljapurkar, S., C. Boe and K.W. Wachter, 1994. 

Nonlinear feedback dynamics in fisheries: Analysis 

of the Deriso-Schnute model. Can. J. Fish. Aquat. 

Sci., 51: 1462-1473. DOI: 10.1139/f94-146 

Wagner, T.L., H.I. Wu, P.J.H. Sharpe, R.M. Schoofield 

and R.N. Coulson, 1984. Modeling insect 

development rates: A literature review and 

application of a biophysical model. Annals Entomol. 

Soc. Am., 77: 208-225. 

Webb, G.F., 1985. Theory of Nonlinear Age-Dependent 

Population Dynamics. 1st Edn., Marcel Dekker, 

New York, ISBN-10: 0824772903, pp: 294. 

Werner, P.A., 1975. Predictions of fate from rosette size 

in teasel (Dipsacus fullonum L.). Oecologia, 20: 

197-201. DOI: 10.1007/BF00347472 

Wikan, A. and A. Eide, 2004. An analysis of a nonlinear 

stage-structured cannibalism model with application 

to the northeast Arctic cod stock. Bull. Math. Biol., 

66: 1685-1704. DOI: 10.1016/j.bulm.2004.03.005 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wikan, A. and E. Mjolhus, 1995. Periodicity of 4 in age-

structured population models with density 

dependence. J. Theor. Biol., 173: 109-119. DOI: 

10.1006/jtbi.1995.0048 

Wikan, A. and E. Mjolhus, 1996. Overcompensatory 

recruitment and generation delay in discrete age-

structured population models. J. Math. Biol., 35: 

195-239. DOI: 10.1007/s002850050050 

Wikan, A., 1997. Dynamic consequences of reproductive 

delay in Leslie matrix models with nonlinear 

survival probabilities. Math. Biosci., 146: 37-62. 

DOI: 10.1016/S0025-5564(97)00074-6 

Wikan, A., 2012a. Age or stage structure? Bull. Math. 

Biol., 74: 1354-1378. DOI: 10.1007/s11538-012-

9715-3 

Wikan, A., 2012b. On nonlinear age- and stage-

structured population models. J. Math. Stat., 8: 311-

322. DOI: 10.3844/jmssp.2012.311.322 


