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ABSTRACT 

In this study we consider four dimensional N = 1 supersymmetric gauge Yang-Mills theory whose complex 

scalar manifold is Kahler and deforms with respect to a real parameter. The deformation of the geometry is 

governed by Kahler-Ricci flow equation. This setup implies that some couplings such as shifting quantities, 

momentum maps and the scalar potential turn out to be evolved with respect to the flow parameter. We also 

discuss deformation of vacuum structures of the theory in the context of Morse theory. 
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1. INTRODUCTION 

The standard model of particle physics based on non-

Abelian gauge theory with gauge group 

SU(3)×SU(2)×U(1) has gained several remarkable 

success which can be seen from verified experiments in 

the energy scale below 1000 GeV including the recent 

discovery of Higgs particle. Despite its success, it leaves 

many important problems. For example, the first 

problem is that the standard model neglects the gravity 

which is described by the general relativity. Secondly, it 

cannot explain the mass hierarchy. Also, it severe from 

quadratic divergences. Thus, the standard model has to 

be extended. 

One of the good candidate for the extensions of the 

standard model is supersymmetry. In order to get a 

reasonable supersymmetric extension of the standard 

model, this extention theory must inherit the chiral 

structure of the standard model. Thus, the only possible 

extention is N = 1 supersymmetry because extended 

supersymmetries (N ≥ 2) cannot accommodate the chiral 

structure, for a review see, for example, (Louis et al., 

1998). 

Although N = 1 supersymmetry has some 

phenomenological aspects, our interest is to study closely 

to the mathematical context. For example, we have 

previous serial papers studying solitonic solutions of four 

dimensional N = 1 local supersymmetry (supergravity) 

on Kahler manifolds satisying Kahler-Ricci flow 

equation (Cao, 1985). Our results show that in the of 

both domain walls (Gunara and Zen, 2009a; Gunara et al., 

2011) and black holes (Gunara, 2012) in general deform 

with respect to a flow parameter related to Kahler-Ricci 

equation. Moreover, this flow could change the nature of 

stability of domain walls and geometry of black holes. 

We extend the studies in this study to rigid non-

Abelian supersymmetric theories, namely 

supersymmetric Yang-Mills theories in four dimensions 

defined on Kahler-Ricci soliton. This follows that some 

couplings such as shifting quantities, momentum maps 

and the scalar potential deformed with respect to the 

flow parameter, see Lemma 1. Moreover, vacuum 

structures which can be viewed as solutions of field 

equations of motions indeed evolve with respect to the 

parameter. 

To see the latter, we simply consider a case where at 

the level of equations of motions all fermions vanishes 

and the scalars are frozen everywhere such that the 

gauge fields are trivial. In this case, the ground states can 

be thought of as supersymmetric critical points of the 



Bobby Eka Gunara /Journal of Mathematics and Statistics 8 (4): 441-445, 2012 

 

442 Science Publications

 
JMSS 

scalar potential. Taking the assumption that the ground 

states to be nondegenerate, we find that Morse index of a 

ground state is affected by Kahler-Ricci flow. In other 

words, the flow possibly changes the properties of 

supersymmetric vacua, see Theorem 2. This fact gives us 

an example of deformed Morse theory. 

The application of this study has two major 

directions. The first case is the dynamics of monopoles 

or solitonic solutions of N = 1 supersymmetric gauge 

theories with respect to Kahler-Ricci flow. We would 

like to see how the flow changes the stability of 

solutions. For example, this aspect has been observed in 

the case of domain walls in chiral N = 1 supergravity 

(Gunara and Zen, 2009b). The second case is the 

evolutions of real and complex vacuum submanifolds of 

Kahler manifolds with respect to Kahler-Ricci flow. This 

aspect is related to the study of evolutions of minimal 

submanifold under Ricci flow, see for example (Tsatis 

2010). 

2. BRIEF REVIEW: KAHLER-RICCI 

SOLITON 

The devoted to assemble some facts about Kahler-

Ricci flow equation which is useful for our analysis in 

this study. This flow equation was firstly introduced in 

(Cao, 1985).  

A complex Kahler manifold M endowed with metric 

g(τ) is said to be Kaehler-Ricci soliton if it satisfies 

Equation 1: 

 

i  j

i   j

g
2R

∂
= −

∂τ
 (1)  

 

where, i, j = 1,…., dim M, τ is a real parameter and 
i   j

R  

denote the 2-rank Ricci tensor of M. The simplest solu-

tion of (1) is when the initial geometry at τ = 0 is Eins-

tein, namely Equation 2: 

 

( ) ( )
i  j i  j

R 0  g 0= Λ  (2) 

 

where, Λ is a real constant and nonzero. Then, we have 

Equation 3: 

 

( ) ( ) ( )
i  j i  j

g 1 2  g 0τ = − Λτ  (3) 

 

whose Kahler potential has the form Equation 4: 

( ) ( ) ( )K 1 2  K 0τ = − Λτ  (4) 

 

with ( ) ( )K  K z, z;τ ≡ τ . As we have seen above, for the 

simplest example, there exists singularity at τ = 1/2Λ 

where the flow shrinks to zero. This indicates that the 

singularity could be occurs in general cases, see for ex-

ample (Topping, 2006; Cao and Zhu, 2006).  

Another interesting solution of (1) is when the initial 

geometry satisfies Equation 5: 

 

( ) ( ) ( ) ( )
i   j i  j i j j i

2R 0 2 g 0 Y 0 Y 0− = − Λ +∇ +∇  (5) 

 

where, Y
i
(0) is a vector field generating a diffeomor-

phism which can be expressed in terms of a real function 

( )P z, z  on M as Equation 6: 

 

( )i i  j

j
Y g P z, z= ∂  (6) 

 

Such a solution is called gradient Kahler-Ricci soli-

tion (Cao, 1996; 1997). In general, (5) can be split into 

three cases as follows. For Λ > 0 the soliton is shrinking, 

whereas for Λ < 0 the soliton is expanding. In the case of 

Λ = 0 we have a steady gradient Kahler-Ricci soliton. 

3. 4D N = 1 SUPERSYMMETRIC YANG-

MILLS THEORY ON KAHLER-RICCI 

SOLITON 

We focus on the properties of the deformed N = 1 

supersymmetric gauge theory in four dimensions on 

Kahler-Ricci soliton. The spectrum of the theory consists 

of vector fields AΛ
µ  and spin-1/2 gauginos λΛ

 with µ = 0, 

…,3, Λ = 1,…,nv, coupled to complex scalar fields z
i
 and 

spin-1/2 fermions x
i
 with i = 1,…,nc. The complex sca-

lars ( )i iz , z  span a Kahler geometry M of dimension nc. 

The construction of the N = 1 supersymmetric gauge 

theory on Kahler-Ricci soliton follows closely (Gunara, 

2012; Gunara and Zen, 2009a; 2009c). First, we consider 

the chiral Lagrangian in (D’Auria and Ferrara, 2001), say 

( )0L  at τ = 0, where the metric of the scalar manifold is 

static. Then, replacing all geometric quantities such as 

the metric ( )
i  j

g 0  by the soliton ( )
i  j

g τ , the bosonic parts 

of the on-shell N = 1 chiral Lagrangian can be written 

down as Equation 7: 
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( )

( )

i j

i  j

    

= g D z D z

R I V

µ

µ

Λ Σµν Λ Σµν

ΛΣ µν ΛΣ µν

− τ

+ + − τ%

L

F F F F

 (7) 

 

where the function V(τ) is the scalar potential of the 

theory which has the form Equation 8: 
 

( ) ( ) ( ) ( )i  j 1|

i j

1
V = g W W R P P

8

− ΛΣ
Λ Στ τ ∂ ∂ + τ τ  (8) 

 

Here, ( )ii  j j
g K= ∂ ∂ τ  is Kahler metric, whereas RΛΣ and 

IΛΣ are respectively the real and imaginer parts of 

holomorphic gauge kinetic functions FΛΣ. The covariant 

derivative iD zµ  is given by i i iD z = z k AΛ
µ µ Λ µ∂ +  where ikΛ  

is a holomorphic Killing vector generating isometries of 

M satisfying Equation 9: 
 

i i i

  k ,k f  kΓ
Λ Σ ΛΣ Γ  =   (9) 

 

 The field strength   

Λ
µνF  is defined as Equation 10: 

 

    = A A f A AΛ Λ Λ Λ Σ Γ
µν µ ν ν µ ΣΓ µ ν∂ − ∂ +F  (10) 

 

while its dual field is   

1
=

2

Λµν µνρσ Λ
ρσε%F F . 

The holomorphic superpotential W ≡ W(z) is arbi-

trary. The real momentum maps ( ) ( )P  P z, z;
Λ Λ

τ ≡ τ  has 

the form Equation 11: 
 

( ) ( )i

i
P = i k K

Λ Λ
τ − ∂ τ  (11) 

 
 The Lagrangian (7) is invariant under 

supersymmetric transformation (up to four-fermion 

terms) Equation 12: 
 

( )

( )

i i i

  

i i

= i D z N ,

=  N ,

i
z = , A = h.c

2

µ

µ

Λ Λ − µν Λ

µν

Λ Λ

µ µ

δχ γ ε + τ ε

δλ γ ε + τ ε

δ χ ε δ λ γ ε +

F  (12) 

 

where the shifting quantities N
i
(τ)and N

Λ
(τ) are given by 

Equation 13: 

 

( ) ( )

( ) ( )

i i  j

j

1 |

N g K

N i R PΛ − ΛΣ

Σ

τ = ∂ τ

τ = τ
 (13) 

 Now, we can write down the dynamic equations of 

the shifting quantities (13) and the scalar potential (8). 

Lemma 1 Equation 14: 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

i
i  j

j

1 |

i  j 1 |

i j

N K
g ,

PN
i R ,

PV 1
= 2R W W R P

4

Λ
− ΛΣ Σ

− ΛΣ Σ

Λ

∂ ∂
τ = ∂ τ

∂τ ∂τ
∂∂

τ = τ
∂τ ∂τ

∂∂
τ τ ∂ ∂ + τ τ

∂τ ∂τ

 (14) 

Proof 

One can use (1), (8) and (13) in a straightforward 

way.  

4. DEFORMATION OF VACUUM 

STRUCTURES 

We discuss vacuum structures of the theory which 

can be viewed as the solution of field equations of 

motions derived from the Lagrangian (7). The equations 

of motions can be obtained by varying (7) with respect to 

z
i
 and AΛ

µ . The fermions vanish at the level of equations 

of motions. Then, we have Equation 15: 

 

( )( )
( ) ( )

( ) ( ) ( )

i i  j

    j j

i  j

j

i j j i

i  j i  j

D D z g R I

                g V

D R I g k D z g k D z

µ Λ Σµν Λ Σµν
µ ΛΣ µν ΛΣ µν

Σµν Σµν ν ν
µ ΛΣ ΛΣ Λ Λ

= − τ ∂ + ∂

− τ ∂ τ

+ = − τ − τ

%

%

F F F F

F F

 (15) 

 

 Now, let us consider the solution of (14) as follows. When 

the scalars zi become fixed, namely i i

0
z z=  which follows 

A 0Λ
µ = . Moreover, (14) becomes simply Equation 16: 

 

( )j
V 0∂ τ =  (16) 

 

then we have Equation 17: 

 

( )iW 0, P 0Λ∂ = τ =  (17) 

 
 From supersymmetric variation (12), the condition (17) 

describes N = 1 supersymmetric vacua. In general, the vacuum 

geometry N0 ⊆ M is real and deforms with respect to τ. In 

this study we particularly consider N0 to be discrete. In 

order to characterize the ground states, we have to 

consider the second-order derivative of the scalar 

potential (8) with respect to ( )z, z  called Hessian matrix 
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evaluated at ( ) ( ) ( )( )0 0 0p z , zτ = τ τ , whose nonzero 

component has the form Equation 18: 

 

( ) ( )

( ) ( )

k  l

i 0j

1|

i k ij l j

V p ; = g

1
W W R k k

8

− ΛΣ
Λ Σ

∂ ∂ τ τ

∂ ∂ ∂ ∂ + τ τ
 (18) 

 

where we have used (11). Note that all quantities in (18) 

have been evaluated at p0. In the rest of the study we 

simply consider the case of Kahler-Einstein metric 

satisfying (3). So, equation (17) becomes Equation 19: 

 

( ) ( ) ( )

( ) ( ) ( )

1 k  l

i 0 i kj j l

2 1|

i j

V p ; = g 0 W W

1
                        R k 0 k 0

8

−

− ΛΣ
Λ Σ

∂ ∂ τ σ τ ∂ ∂ ∂ ∂

+ σ τ
 (19) 

 

Where Equation 20: 

 

( ) 1 2σ τ ≡ − Λτ  (20) 

 

and ( )k  l
g 0  is a Kahler-Einstein metric. In (19) it is easy 

to see that when the flow becomes ill-defined at τ = 

1/2Λ, the theory also turns to be singular. Then (19) 

leads to the following statements. 

Theorem 2  

 Let the scalar potential (8) be Morse function and τ 

≠ 1/2Λ, so that the determinant of (19) is nonzero. 

Suppose that p0(τ) = q0 is an isolated ground state 

(nondegenerate) of Morse index λ for τ < 1/2Λ with Λ > 

0. Then, there exists real local coordinates Xr(τ) around 

q0 with r = 1,…,2nc such that Equation 21: 

 

( ) ( ) ( ) ( ) ( )
( )

c

2 2 2

0 1 1

2

2n

V V p ; X ... X X

            ... X

λ λ+τ = τ − τ − − τ + τ

+ + τ
 (21) 

 

 Taking the assumption the real and the imaginary 

parts of the following quantities Equation 22: 

 

( )( ) ( ) ( )( )0 i 0i j j
V p ; V p ;τ τ ≡ σ τ ∂ ∂ τ τ  (22) 

 

are positive for all τ and i, j. Let ( )0 0
ˆp qτ =  be another 

isolated ground state for τ > 1/2Λ. Then, Kahler-Ricci 

soliton changes the index λ to 2nc-λ such that near 
0

q̂  we 

have  ( ) ( )r rX Xτ ≠ τ  and Equation 23: 

( ) ( )  ( )  ( )  ( )
 ( )c

2 2 2

1 10

2

2n

V V p ; X ... X X

            ... X

λ λ+τ = τ + τ + + τ − τ

− − τ
 (23) 

 

for τ > 1/2Λ. 

Proof 

 First of all, we define the Hessian matrix of the sca-

lar potential (8) of the theory as Equation 24: 

 

( ) ( )
i  ji  j1

V 0

ji i  j

V V
H p

V V

−
 
 ≡ σ τ
 
 

 (24) 

 

where, p0 is an isolated critical point near which the sca-

lar potential (8) can be expanded as Equation 25: 

 

( ) ( ) ( )
2n 2

p q

0 0p q
p,q 1

V
V V p ; p ; x x

x x=

∂
τ = τ + τ δ δ

∂ ∂∑  (25) 

 

where we have defined real coordinates c
i ni iz x i x
+≡ +  

such that i i i

0
x x xδ ≡ − . 

Since we only consider nondegenerate case, the ma-

trix (24) does not have zero eigenvalues and is non sin-

gular because 1/ 2τ ≠ Λ . Let us now rewrite (25) as  

Equation 26: 

 

( ) ( ) ( )
( )

( )
2n

p q

0 pq 0

p,q 1

V V p ; V p ; x x
=

ε σ
τ = τ + τ δ δ

σ τ
∑  (26) 

 

Where Equation 27: 

 

( )
  1  for  1 / 2

1  for  1 / 2

τ < Λ
ε σ ≡ 

− τ > Λ
 (27) 

 

and then, one can define new coordinates Equation 28: 

 

( )  ( )
 ( )
 ( )

2n
1/ 2 pq 0r p

rrr 0
rrp r 1 0

V p ;
Y V p ; x x

V p ;= +

 τ
τ ≡ τ δ + δ 

 τ 
∑  (28) 

 

for 1 ≤ r ≤ 2nc. Thus, we can rewrite (25) in the simplest 

bilinear form (21) and (22) with identification Equation 

29: 

 

( )
( )

 ( )
r

r

r

X   for  1 / 2
Y

X   for  1 / 2

 τ τ < Λ
τ ≡ 

τ τ > Λ
 (29) 
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 Some comments are in order. The extension of 

Theorem 2 for degenerate vacua is in a straightfor-

ward way. It is worth mentioning that Theorem 2 is 

the evidence of deformed Morse theory related to de-

formation of (vacuum) submanifolds of Kahler geo-

metry. Since the flow (1) could change the index of a 

ground state, so in general it could indeed affect the 

geometrical nature of the submanifolds. The latter 

aspects will be considered elsewhere. 
 

5. CONCLUSION 

So far, we have constructed four dimensional N = 1 

supersymmetric Yang-Mills theory on Kahler-Ricci 

soliton. As we have seen, this setup implies that some 

couplings, namely the shifting quantities, the momentum 

maps and the scalar potential evolved with respect to the 

flow parameter, that is equation (13) in Lemma 1.  

Moreover, we also have showed that the 

nondegenerate vacua of the theory is evolved with 

respect to the flow parameter. It is also possible that their 

Morse index changes caused by Kahler-Ricci flow, see 

Theorema 2. 
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