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Bayesian and Maximum Likelihood Solutions:
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Mechakra Hadd&Chadli Asssia antTiah Naceur
Faculty of Medicine, Badji Mokhtar University, Anipa, Algeria

’Lanos, Badji Mokhtar University, Annaba, Algeria

*Department of Mathematic, Epst Annaba, Algeria

Abstract: Problem statement: Wald showed that the minimax solution is the Baessolution
with respect to the law a priori the worst. We toy establish a similar result by comparing the
Bayesian solution and the solution of maximum iikebd when the parameter space is a compact
metrizable groupApproach: we take as a priori law Haar measure because digceethe problem

by invariance. We construct a sequence of costtiume for which we obtain a sequence of
solutions Bayesian which converges to the solutibthe maximum likelihoodResults: We show
that both solutions are asymptotically equ@bnclusion/Recommendation: The generalization
when the parameter space is a local compact group.
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INTRODUCTION maximum of likelihood 6is the value off which
- maximizes L 0,w) at the sight ofu. It is easy to point
Problem position: The fundamental problem of out that this definition is wholly intuitive. A ral of

statistical decision theory can be summarized agecisiond, is called a minimax, if it minimizes (among
follows: Given the triplet @, D, C). Where: 0 all 8) the risk maximum that is:

parameter space. D space of decision rules. C &a cos

function andwd Q a random element on which the law sup

of distribution B depends on a parame@1®. 0 (R®,5,))=
What rule of decisio® (w) 00 D a statistician must

choose?). The space cited above is called space of

observations, we shall provide it with tbealgebra a. The In the frame Bayesia®), define it he am considered

risk function associated t with the rdlés defined by: to be an unpredictable variable and a law of distfon
is W allocated. This law is called the a priori lawrule

R(0,5)= E(CE & ®)) of decision 8z is called the rule of Bayes, if it
minimizes the risk of Bayes, is to say:

infl (sup)(R@ & )
o) 6

R (6,5) represents the average cost wins inf inf
estimated byd (w). The issue is then to choose an ds) = (r(u,9) = 5 (E,(R® D))
optimal statistical decision rule in the sense th#®,0)
is uniformly minimum. Unknown define g it am and ) ) )
depend of to short-circuit this difficulty, we ordthe =~ Where mathematical expectation (B (8,9)) is
different rules of decision according to d ‘other calculated in comparison with the lguwThe expression
principles such as: The principle of minimax, oeth I (1,9) is called the risk of Bayes. For a more detailed
principle of Bayes, or else we consider only rutdds description of these rules, the reader can seegéBer
decision based on intuitive methods such as thd980) or (Fergusson, 1969). The three methods
principle of the maximum of likelihood. We shall estimation which we have just represented does not
assume the family gp, 600 dominated by a likelihood give necessarily the same valuators for unknown
Q on @, a). We shall denote by LO) specific gravity paramete8. Even in an asymptotic frame, see (Cam,
pg all over the report in Q. The estimator of the1953) for instance for a comparison of performances
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asymptotic performances of the methods of Bayes anestablished using the theorem of the measurement
of the methods of the maximum of likelihood. A Wald section of K. Kuratowski and Ryll-Nardzewski.
(1950) however showed that if the rule of minimax o _
decision exists, it is also a rule of Bayesian sieciin ~ Preliminaries: We recall here some preliminary notion
comparison with the most disadvantageous law. Enat SUch as theory of statistical decision theory, logieal
to say a rule of Bayes in comparison with the lafvicl groups, Haar measure, which will be used in thet nex
would maximize (among all law) the risk of BayeteT chapters. These ngtlons are elementary, most of the
. : proofs are omitted; they are given in order to the

purpose of the present study is to establish altresupresentation clear.
similar to that of A Wald between valuator of Bayes
and valuator of the maximum of likelihood. We shall Recalls of the theory of measure:
try to find a frame ®, D, C) for which valuator of Definition 2.1.1: Let (@Q, o) and @, 1) are two
Bayes and valuator of the maximum of likelihood aremeasurable spaces.gJPO0® is a family of likelihood
equal or asymptotically equal. Before undertakihng t of transition on Q, o) defined on @, 1) If (1) 0600,
building of this frame, let us notice two importanings. A-pg (A) a likelihood on @, o) (2)DADa0 — pg (A)

We reduce the problem by invariance. ThisisT - measurable
simplification is motivated by the following o ) )
considerations: In case of equality of Bayes estima Proposition 2.1.2: If (Pe), 606 is a family of
and estimate of the maximum of likelihood. We cap s likelihood of transition onQ, o) parametrized ong
that a priori lawy of the parameted has not influence. 'TI')h For any positive functiorf to (2x®, oxT) (R ,BR)
In that casgu can be interpreted as a priori law “not € mapping:
informative. (Jeffreys, 1998) justifies the lack of

information in p by ownership of invariance See 8- Lf(m )R, (dw)
(Florens, 1978).
It is possible to obtain Bayesian resolutionsdaost Is defined and is measurable.

functions more general than those encountered en th
model of statistical decision of WALD, where thesto proof: If f = X where Ada, BOT:
function is expressed as the sum of two positiva tie
first one relating to the observation performed #mel

second one in taken a final decision. We can censid 0~ IQXA*B(QS)PB (dw):IA Xa ©)(co)=

total cost C @, z, w, t) of final decision z when the Xs(6)P; (A)
parameter is wortB, after observation of realizatian
up to time t See (Lanery, 1984). In our case, thtecad Is measurable. The measurability is verified fo t

system is not dynamics, that is the observatidixél  characteristic functions and is generalized acogrdd
in lasted and | the information disponible is exysed  classical technique.
by the tribua.. We have a cost function:

Theorem 2.1.3: Let (Ry), 6000 a family of likelihood of

C:(6,0,0)JOxDxQ - COHW)IR transition on Q, a) defined on @, 1) andp a likelihood

on @, 1). Il there exist a unique likelihodd on x®,
Description of results: In first party: we remind of all axt) such as for any function h positive measurable
preliminary notions which we need such as; théssital  (Qx©, ax1) in (R, BR) have:
decision theory; topological groups; measure offHaa

In second party: we compare the Bayesian solution ” h(@8)[] (dwe)=
and the solution of the maximum of likelihood when &0
the space parameters are a metrizable compact.group IQ[IQh(me)ped”)hd(w)

We construct in anticipation a sequence of bounded

cost functions. We prove the existence BayesiaProof: Thanks to, the propositionl. 1, the second

solutions and solutions of the maximum of themember is well defined. We defimeby:

likelihood under of regularity. We show finally tha

these two types of solutions are asymptotically OpDaxT,1(Y) =

identical. The sequence of cost functions is cotd

using Uryshon Lemma. The measurability of solutions J'O[J'qu(e,w)peokupd(co)

(Bayesian and of the maximum of likelihood) is We prove easily that a likelihood on @x0, axTt).
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To show the Unicity and the equality given in (Q, o) a measurable space (space of observations).
theorem, we begin with the characteristic functiand  (®, T) a measurable space (space of parameters).

is generalized according to classical technique. (D, D) a measurable space (space of possible
decisions).
Remark 2.1.4: This theorem can be extended in cpse (Pg), 800G a family of likelihood of transition on
is a positive measure;finie on Qx0, axT). (Q, a) defined on @, 1). ps (.) governs the observation
Definition 2.1.5: Let two measurable spaces, (@) and in Q when,8 is the value of the parameter.
(®, 1) and (R), 800 a family of likelihood of transition C a function measurable:
on @, o) defined on @, 1). We call statistical structure
(or model) the system: C:(8,5,0)0OxDxQ -~ COELW)IR"
{Q a,(pe) DG} where C @,3,w) represents the expense of decision

d,when the parameter isand when they observed A
We say that the statistical structur®,{jo, (Ps), rule of decision (or strategy) a mapping of @, a) in

00@} is dominated: (D, D) measurable; it consists in decididdw) having
If there is a positive measure;f inite Q in @, o)  noticedw. We shall denote by ®,w,8(w)) the expense
such as: of decision &(w) when we noticedw and when a
paramete® is and byA the set of rules of decision. To
0e00,R, << Q solve a problem of statistical decision consists in

choosing a rule of decision in according to some
According the theorem of Radon-Nikodym, there iscriteria acknowledged to be reasonable. We have the
a mapping § of (Q, o) in (R, BR ) measurable such as: fisk the function defined by:

DA D, py(A) = [, F,(0)Q(d(w)) R(,)=[ COw3w)p d
fo is called probability density of,An comparison As a criterion of choice, we define a preferred
with Q; relation onA. Letd and®d 0 A:&' is preferred to:

We call likelihood function the mapping:
(3<3") = [R(8,8)<R(©,5),0600]

L:(38)0Q%x0 — L(w6) =f,(ey OR*
&' is equivalent té:

Remark 2.1.6: 1. The dominating measure is not ' '
unique. If: (6~98") = [R(B,0)<R(6,0),0600O]
0600,p, << Q O’ is strictly preferred:

where, Q is a positive step;f inite on Q, «) 0<OH[R(83) <R(6,3), 060G}

and if Q << S where v is a measurable positiv¢ and[BUO,RE A )< RO O
inite on @, o)
Then: Definition 2.2.3: 8 O A is called a permissible
rulemaking if there is nod¥0 A such that <9&.
06006,p, << v Otherwise, there is nd O A such that we have:
We can always and it is often convenient for R(6,5)< R®,5)1600 anc
theoretical calculations to choose as the domigatin POO,RE,5)< RES)

measure of a probability R 6000 (Barra, 1971).

Statistical decision theory: This section reminds Definition 2.2.4: A decision ruled,[] A is uniformly
certain notions of the theory of decision alreadyoPtimalif:
mentioned in the previous chapter. We repeat itethe
with more details. We have: 060A,8<9,
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ieR@®.9,)< R@O)IS0A IBOO (x,y)OGxG - xyO G

It does not exist in general optimal decision rule ~ The mapping:
since the risk function R8(d) depends on a parameter

unknown®, but there are rules of decision-eligible. To (x,y)0GxG - x'0G
choose between them we are led to:
1)Is to think conservatively = minimax solution. \\: Is continuous. A given group with a topology
compatible with its structure of the group is cdlle
R topological group.
D6DA,p(6)zsungﬁ) polog group
Remarks 2.3.2: (1) For any] G, the translation to the
3, is called a minimax solution if: left x— ax (respectively the translation to the right:xxa)
is continuous. It is a homeomorphism of d on telfits
p(5,) < p(3),0501A. For any a, kil G, the mapping:

That is to say: X — axb(especialyx- axa

Is a homeomorphism of d onto itself.

sup@ B, ) ¥inf (supRE B)) The mapping:

p0e & 600

X — x*

2)Either to give a preconceived idea of the sotutkor
example, the point estimate of the paraméiewe Is bijective and is equal the inverse mappings &
choose the value df that gives the highest probability homeomorphism of G onto itself.

of the system studied. This procedure provides a

maximum likelihood estimator.

3)Is to assume that the parameter spaceve have a
probability p, that weight between the possible values
of the parameter. This is the Bayesian decisionrthe

In this case, we consider the Bayes risk defined as

Proposition 2.3.4: Let d a topological group. (i) For
any open subset (respectively closed) A of G and fo
any XJG: groupse XA, Ax and A are open
(respectively closed). (i) For any open subsetfB50
and for any subset A of G: groups 8A, A8 are open
(resp.closed). (iii) If V a neighborhood of e inaBd A
f(u,5)=IeR(9,5}1(09)= any non empty subset of G, then GO and AV are

L,[IQC(&w.é'>(co))|oe (ko) (D) neighborhood of A.

it Remark 2.35: If a0 G and V a neighborhood of e
3 is called bayesian solution if(p,ESB)':3 (r@3). thenaVand Va are neighborhood of a.

Such situations are common in statistics. For mor@efinition 2.3.6: Let G be a group and E a set. An
details, see (Fougereaud and Fuchs, 1967) and (Ulmgperation (either operation to the left or actioh)G on

and Bernier, 1973) E is a mapping:

Topological groups: Just like that pointed out in the (s,X)0Gx E— sxJ E

introduction, command us led to study a priori law

meeting ownership of invariance; hence the impagan such as: 1) If e is the neutral element of G, then

to remind of some notions on the topological groups,aye:

and of the measure of Haar. It is the aim of thesent

section. Let G a denotes a multiplicative groupt (no e.x= xOxOE
necessarily commutative) and K its neutral element.

Definition 2.3.1: We say that a topology on G is S, &} G we have:

compatible with the structure of group if both éalling

mappings: a) the mapping: s.(t.x)= (st).xOxJ E
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We say that d operate on E. If uis a measure defined on E, we shall denote by
O (s) u measure picture of by(s)
Definition 2.3.7: Let G be a topological group and E a

topological space. We shall say that G operatingyefinjtion 2.4.3: If p a measure defined on E. We say

cont!nuously in E if the mapping (s, % s. X is thatp is invariant to the right by G if:
continuous.

Lemma 2.3.7: If G is a topological group operating @(s))=n.0s G

continuously in a topological space E then. for any ] ]
sJG, the mapping: If G is a local level compact group operating on t

itself by translation to the left and to the right:
XUE - s.xO E
y(s)x=s.xand (s)x x.$
Is a homeomorphism.
Then we can define G on the notions of invariant

Remarks 2.3.8: An operation to the right of a group G measure left and right.
in a set E is a mapping:

Definition 2.4.4: Let G be a locally compact group

(s.xO)Gx E- x.41 E Haar measure we call the left (respectively righitls a
positive non-zerog- fine G invariant on the left (right
Such as: resptivement.
The existence and Unicity of such a measure is
x.e=x0x0E given by the following theorem. The proof of thesult

is given in (Halmos, 1974)
X.(st)= (x.s).t0 s, 00 G XJ E
Theorem 2.4.5: On any locally compact group, there is
All definitions and ownership enunciated more @ Haar measure on the left (respectively right) and
high remain valid in case of an operation to thtri near constant factor, that none exists.

operating continuously to left on a local level guaot. ~ Measurg. and one on G such that(G) = 1. It is called
We shall denote by(y (s) the homeomorphism of E in & normalized Haar measure

E (s), defined by:
® y Multivoc mappings definitions and notations. We

y(s)x=s.x0d1 GJ xJ E use multivocs mappings to establish certain redtlts
seems to us make a small paragraph. For more sletail
If uis a measure defined on E, we shall denote bjhe reader can consult (Berge, 1966).
(y(s) vl the measure image pfbyy (s) We have: Let X and Y two set and for any X we match a
subsetd (x) of the Y .We say that correspondence:

(Y(SHM)(A) = (s A)DA.
xOX - @x)OY

where, A a measurable set of E. ] ] ]
Is multivocal mapping of X in Y:
Definition 2.4.1: Let ameasureon E. We say thais

invariant by G if: X" =x OXsucha® (x)} @
N . U .
y(su=up,0s0G Is called set of definition ofpY =XDx(p(x) is

Remark 2.4.2: If G is a topological group operating called set of values @b. If ® (x) is composed of only
continuously to the right on E. We shall denoted(y) ~ one element, we say thétis a valued mapping of X in
the homeomorphism of E in E, defined by: Y. Upper reverse®™:

&(s)x=x.s* OBOY:@(B) ={x OX/ ¢x) OB}
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Inferior reversed’: H2: © is the parameter space, we assume Ghig a
group (written  multiplicatively) compact and
OBOY:@ (B)={x OX/ ¢x) nB £ ¢ metrizable. We denote by e its unit element, bydhe
distance of translation invariant and bythe tribu of
Theorem 2.5.1: We have: Borel on®.
Let (., be a sequence of positive real numbers
(U U such that:
(] (i AiJzi o (A)
(e,), decreasingto!
The proof is immediate. To end this party, we 2., <€,
quote a theorem of Kuratowski and Ryll-Nardzewski, g, < (diamete® 0 1)
which will be used. Before let us give a the follogy
definition.

The sequence (\= B(e,€,))non IS @ neighborhood

Definition 2.5.2: A Polish space is a metrisable, separablebase of & such that:

space, on which there is a metric which is comfgatilith . ,
the topology for which | the space is complete. B'(ee,) B (eg, ) Bles, .
Theorem 25.3; Let X a Polish space and (U, u) a where, B (eg,) is the closed ball with center e and
measurable space. We consider this multifocal nmappi adiusen.

of U in X such as0u0U, ® (u) is closed and non ) -

empty in X. We assume that; H3: uis the Haar probability or® 1) (Halmos, 1974).

0 (G)={u/ gu) n G# @ Ou H4: (pg) 6 in ® is a family of transition probability
parameter onct, a) set to ®, ). We assume that there

For all G open in X. Then exists mapping S & Propability Q on&, a) such that:

measurable of (U, u) in (X,,B such as: 0600, p, << Q
+ Mo

Bub U.e@)Be(w) We denote by L,8) the probability density gopar

) rapport to Q.
For proof, the reader can consult (Kuratowski and

Ryll-Nardzewski, 1965). H5: We assume that:

Bayesian solutions and maximum likelihood 0w0Q,8 - L(6,0)
solutions when © is compact: In this chapter, we

give a mathematical framework that allows us tedss Is continuous oM.

that the solutions of Bayesian and maximum likeditho

solutions are asymptotically equals. We construct &16: When® is the unknown value of the parameter, it
sequence of cost functions, @8, z, w) bounded, is estimated by d called final decision and belaiogs.
translation invariant, continuous i® and z and We assume that D@ (current condition of regularity).

measurable irw (see Lemma 2.2.1). For this type of H7: We assume the uniqueness of the solution of

cost function,. We obtain a Bayesian seque(®g,.  maximum likelihood ie:
Solutions which converge pointwise to the solutan
maximum likelihood 6 (see Theorem.2.4.1).We ®w) =0: L(6, ) =sup(L(x.n),x10 =0 )

generalize the Theorem 2.4.1. In fact we remove the
restrictive assumption of Unicity of the solutiod 0 Theorem 2.1.1: For any likelihood function L
maximum likelihood. satisfies H5 and under hypotheses H1, H2,.....,H7,
there is a sequence of cost functiong) (G defined
Assumptions, ratings and results: H1: Let be 2, a)a on © x ® x Q with values inR, satisfying the
measurable space (space of observations). following conditions:
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e Bounded and invariant by translation.
* Continuous on® x @
* Measurable on Q

lim 8, :épointwisely
n - o

And

Lemmas:

Lemma 3.2.1: Gives the existence and measurability of

the solution of maximum likelihood.

Lemma 3.2.1: Under the hypotheses H1, H2, H4 and

H5, there exists a mappin§ of (Q, a) in @, 1)
measurable such as:

L(6(0d), ) = L(6, ), Jw0Q,0000
Proof:

Ow0Q,Z, 060suchaslLiz w %
L(6,w), 1600

Because:
Ow0Q,8:- L(6,w)

Is continuous on the compact €et.It remains to
prove that we can choosezg measurable ii.

Consider the following multivoc mapping
:00Q - ) ={6:L(8 0) =M(@} 0O
Where
M(w) =sup(L(x,w),x00

For anywQ,® (w) is non empty and closed &

Let G be an open i®; in a metric space every open set

. . U .
is a countable union of closed = « F. where kis a

closed in®.
To proof that:

¢ G)={e/ )y nG @ Oa
It suffices to proof that:
o (F)={w/ oy nG z@Oa

For any a closed i® because ¢ (G)= U™ (R)
(see theorem2.5.1).

such as:

F aclosed in®, is itself compact:

_ _ _ sup
¢ (F)={l g nFZ@={d  L(00

=MW} { WM [P =M( g}

Where M (o) = supLE w)
60F

Let D = {6; / i ON} a countable dense subsetdn

supL@® w)=supL@®, )
00F iON

Donc:

0 M(0) :supL(e,w):supL(ei W)
0o iON

Is measurable (it is a countable supremum of
measurable functions).
It is the same for:

supL® w)= sup{L g
M () = SUPLE @)= SUP(LE )80 D)
00F
There @ is a countable dense subset in F.
Therefore:

¢ (F)={w/ M) =M(w} [a

Because M and M are two random variables
defined on Q, a) with values in separable metspace

R *. We have the® (G) O a for every open d i® by
the.

Theorem 2.5.3: It exist a mappiry of (Q, a) in ©, 1)
measurable such as:

OwD Q,8(w) O ¢(w)
OwQ,L(B(w), w) = L(6,), 16060
Lemma 3.22: Is crucial for the proof of
Theorem3.1.1.It gives the construction of the cost

function.

Lemma 3.2.2: Under the hypotheses H1, H2, H4, H5,
H6 and H7, it exists a sequence of cost functions
(C)non. defined on® x ® x Q with values inR , such

302



J. Math. & Stat., 8 (2): 296-310, 2012

thatJ: (i) G, is bounded and invariant by translation.
(i) C, is continuous o® x O (iii) C, is measurable
onQ.

Proof: Thanks to the hypothesis H7 we have:
sup{L(x,w),xDé(w). B(eg, )i< L(é(oo),oo)

This supremum is reached becat@eé(co)B(e,sn)
is a nonempty compact. Let:

Ow0Q,e, )= L(é(oo),oo)— sup{L(x,w),x0}
B(w).B(esg, )

Ow0Q,e, w)>0

There exists a neighborhood JJof e, contained in
B (eg,) such that:

06 08(w).U, ,,
L(8,0) >[L(A ), &) —e,(w) /2]

6(w).U,, can be chosen as the open ball with
center:
8(w) and radiup, (w) where:

p,(w)=sup{r>0:d@® 8 )< r=}
L(8,w) >[L(8() ) e, (w)/ 2]}
inf

=sup{r>0 ‘00 B(é(w),r)} g

{L(é(w),w) - #}}

There exists a mapping,, of © in [0,1]
continuous, with support in ) and is equal to 1 in e.
In other words we have:

Vow:© - [0,1]
Such as:
o o] Life=e
= ¥e®=10it0u,
Where:

U, = B(e.p, @)
303

Consider:

yn,m:e - [0,1]&& - yn,u) 6 ):

p(®) -d(@.€),
)

This mapping suggests the following cost function:

C,:0x0xQ - [0,1]suchasf ,zp )
C,(0,zw)=1-v,, (Z'0)

l.e.

C.(8,zw)= 1 PN(@)-d@.2),
A pN(0)

It is clear that §is continuous ir® and z, bounded
and invariant by translation i.e.:

C,(x8,xzw)=C, 0,zw )1 10
Since we have to evaluate quantities such as:

j C,(0,2,0) LO.wE @)

It is important that ¢(.,., w) be measurable in. To
show that G (.,.,0) is measurable i, is to prove the
measurability ofp, (w) par rapportw, since G (6,z,w)
is written into the form (1.1). Prove then that the
mappingp, of (, a) in (R}, B}, ) defined as follows:

_ inf
‘00B(6(w),r)
L(8,09) >[L(& &), 0 —e, () / 2]}

P, (@) =sup{r>0

is measurable. Let:

X(r, w) L(L(6 )

B in

T 00B®(w),r)
To show that:

w - p,(w)

Is measurable .We must prove that:

OsOR;, ,theseto p, © » sisin
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We note that: Is continuous on the compact 8t Therefore:

n

Dw0Q, Eﬁ[‘o OOsuchas
<s

[ ¥ o(05B)L(B, w)ui(cB)
= [ Vo (X B)L(B, w(d6), Ox @

{w py(0) >s} s

{00 X(s, OILEB(0).0) -, @) /2]
sod

The problem amounts to proving that the two It remains to prove that we can choosedz
following mappings: measurable inw. For this consider the following
multivoc mapping:
w- e, W)=
L(8(69, w) —sup{L(x, ), x 18(w).B(eg, )} @, 00Q - ¢, (w) =
6~ XEw= it (LOw) @ [ o¥o(dOL(8 () =g, (W} IO

i
OB(6(w),s)

are measurable. The proof of the measurability ofVNere :
the first mapping is established.To show that fiixexd:

_ Sup B}
© - X(5,0) 9,@)= 1 o[ oVou (KOO 0u(d8)
is measurable. Let® be a countable dense subset of B We check the conditions of Theorem K. Kuratowsk

(e, s) the set {(é(w)ei /8 D@O)} is dense in and R. Nardwski same way as for the mappidg
(Lemma 3.2.1). We can say that there is a measurabl

8(w)B(e,s)= BP w),s)the following mapping: mapping®, of (Q. a) in ©, 1) such as:

@ (WB(e,s)= BO@P w)- LOWR w) is -
' ' ' OwOQ,06n 0O
measurable. Therefore: @ @0e @)
inf G(0) inf Proof of Theorem 3.1.1:
W - (p = R (L(8, w)) The existence of the following cost functions,f@n is
! 00B(8(w),s) established in the Lemma 3.2.2. It remains to stiat

Lemma 3.2.3 Under the hypotheses H1, H2, ..., H6, im 8. = Bpointwi
. o~ . im 6, = 6pointwisely
there is a measurable mappifg of (Q, a ) in O, 1) X

such as: Recall the definitions ofb, (w) and @ (w):
Je0Q,0d06,C, 6.8, @XWLE ) 0,(0) ={d: [ oV (d'B)L(6, WIH(d6) =
H(d0)< [ ,C, @, dwh (®) sup

o) Yas(X OL(8,0u(d6))
Proof: It is clear that minimizing:
@(w) =0:L(6,w) =sup

Lx, @, x 06 < @ p

Require, by definition of § to maximize: And suppose that there is:

[ oC.(6,d0)LEO.wH (D)

J oYnw(d7O)L(B,w)u(d8) 9, U@, (w)suchasg B(@, of )
8(wB(ee,)=¢
The maximum of this last integral is reached bseau
. For these considerations we have:
DwbQ.d - I@Vn,w(d B)LO.co)(cB) a) On the one hand, we have:
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[ Voul@7O)L(B, w)(dB) =
[9.B(ep, @)y, (G10)LO wh (®)

Because the functiog,,, has support in B (g,

(w)) and we have:

[ BEP, @)N,,, (G18)0 Wt (B )<
L(B(w), ) ~e, @)]] g,B(ep, @)y nw (16 b (@ )

Because :

sup{L(8,0),8 0 B(w).B(eg, )}
=[L(&(W, ) —e, ()]

b) On the other hand we have:

[ BB)(ep, @, @ @)'0)
L(6, 0)p(d6) > L(B(w), w) — €, @) / 2
[8@B(ep, @)V, (OO (D)

Because:
060 (B(wB(ep, @)
L(8.%) >L (8w, w) _%w)
Then:
.[(ém)B(e,pn (w))yn,w((é(w)_le) L(6, w)p(de) >

LA, @ =€ (@] ;e 0 Vool (BO B 1(dE)

That
Lé(m)B(e,pn (w))y”vw((é(‘*’)_le) u(de) =
JYrl (B (@) ., @n(c8)

And also:

j 9.B(ep, (m))yn,w(g:.le)u (de)=
[ Ynol@rO(@® = [ oy, OR(®)

Then we have:
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jé(m)s(e‘pn o Yoo((B(@)79))

(6, 6)1(08) > [L(&(0, ) —€, ()]
[ Yo (®(CO)

And:

[, s, oy Yo (@R L(B.O)(c0) <
(L&, &) —€, (@], Vo (O)1(dB)

Then:

Jyrpien, o Yro @) "O)L(B 0 1(d0) >
[ wB(e.pNE)Y,,, (618 )LO w)i (B)

[ Yeul@®)L6,0u(0)<

L(8(6d, &) ~ €, (@)]] 6, (BIH(0B)
Then:

Jsomien, oy YroB@)“O)L(B cu(d6) >

J-gn B(epn@))yn,m(gale) L(G,(A))u(de)

This contradicts the definition of ,gwe have

necessarily:

0g, 0@, (@) :9,B(ep, €))n 8 ()B(eg, @
Og, D, (@) : W) *g,0 Bet, )
B(ep,)" O B(eg, ).Bleg, 1 B(&, ,

Then:Og, Do, () : (6(w))™ g, 0 B(eg, ).And:

lim A
Og, e, (w): 9,=0W)
n - o

As:
6,(0) 0, ()
We have:
lim 8, (w) = 6(w)
n - o
Therefore:
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lif6=e
0if 60B(e,p, (W))

lim 8, (w) = Bpointewisely oy (6)={

n - o

Remarks 1): The result holds for any sequence of Consider:
function 8, of Q in ® non necessarily measurable such
that: Vo (8)= Po(w) —d@®,e),

) | P, (@)

6,(0) D@, (w)

This mapping suggests the following cost function:
2)We prove tha® is measurable, because it is the
pointwise limit of measurable functions. C,:0x0xQ - [0,]]
(8,2,0) > Cn ©.zw)= 1_yn,w (Z_le )

Asymptotic comparison between 8, and 8 when the
estimator 6 isnot unique: At this party, we generalize le:
the Theorem 3.1.1, in the sense that we are cairgide
more hypotheses H7.

C.(0,z,w)= 1-Pu(@ -d@.€) o

o ) pn(w)
Theorem 3.5.1 for all the likelihood function
L satisfying H5 and under the hypotheses H1... H6, , ) ) ,
there exists: a sequence of cost functions).(G Itis clear _that]_n 0N G is continuous 6 and z.
defined on® x Q with values inR , such thatin G C .bounded, invariant by translation, ie:
i) is bounded and invariant by translation. C,(x8,xz.w)= G 0,z00)160Q
i) is continuous ore x @ N o
iii) is measurable o@ and such that: The measurability of Cin w is deduced from that
' of the two following mappings:
M8 (if it exists) is a maximum likelihood @ - € (@)= M(®) - sup{L(8,») 8]
n - o
. ow)B(ek, )}

estimator.
Proof: The construction of the following cost function @~ InfL(8 o), 8L WB(e. N}
is established using the same technique as before
(Lemmas3.2). We ask: Probleml: We must prove thato- g, is measurable.

We start by showing that:
P(w) ={6:L(8 o) =M( @}whereM(c)
= sup{x,w}, x 06} ® - M(w) =sup{L(8,w),800}

e, (W)= M(w) — sup{L(B,w),0 Dew)BE, )}>00w0Q .
h ()= M(w) - supll.B.c).800()BE, ) is measurable. Let D =8f{ | O N } be a

Z. (o) :"r:i”lp{l_( 86, 80¢wB (e, L-1/ m))} countable dense subsetdn
r>0: inf L(6,0) w - M(e =UPLE @)
pn(w) =su 60> (w)B(e,r) /\Sn i
>M(0) —e, () / 2

Is then measurable. We now show that:
There exists &, of © in [0,1] continuous, to stand
(& support) in B (@, (w) and is equal to 1 in e. In w - sup{L(8,w),80ew)B(eg, )}
other word we have:
Is measurable.
Ynw:© ~[0,1] We have firstly, for fixed and n fixed:
306
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SUp{L(8,%).80(w)B(eg, )}= Z, (@)(3.5.1)

The proof of (3.5.1) is in the appendix.
Secondly:

P:(6,0)00xQ - d@,pw)IR

Is measurable. The proof of the measurabilityof
is in the appendix. Then:

Om>1,B, =y (0g,1- 1/ m])=
{(80):d(B,@w) <€ ,(1-1/m)}0tDa

Modify L in B

L(6, w)if (8 ) OB,

[ (80 {

Om>1,L, is measurable 0@ x Q.Let:
AP =0 -@wB*(e,e,(1-1/m))
A¢ is open in@AS n D is dense inA® .Therefore:

|w - Z,(w)=inf(supL® w))=

m>160A%
inf(supL (®,w))= inf (supLP w))
m>160A% n D m>160D
is measurable of2. So:
© - €, (©)= M(®)-Z, ()
Is measurable 0. Thus the probleml is solved.
Problem2: Show that: With r fixed:
w- inf{L(08 &), 60¢ WB(e, 1}

Is measurable. Let B:

B=y™(0,i)={(8 0):
d®,0w))<rtdt0a

Modify L on B:

L(6,w) ={L(B wif (8 ¢) OB +oo

L is measurable o®xQ .
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And:

w - inf{L(§ &), B0¢W)B(e, N} =
inf{L(9 &, 60 WB(e,r) n D}
=inf{L( § «), 60D}

is also measurable. We have constructed a sequénce
cost functions, which satisfies the conditions bé t

theorem. To end show that for this type of cost

functions, ''m 5 . (if is a maximum

n - o
likelihood estimator. Suppose that, there jig,, (w)
such that:

it exists)

g,B(ep, @)n e)B(eg, Fo
For these considerations we have:

[9.B(ep, @)V, (G0)0 wh (B ) ME)-
& @) oVa (BIH(B)

And Of0 @ (w):

[ (€0, ©@)NVn (FOILO, W (BIM(w) -
&, @)/ 2][ oVno OM(B)> [M(@) - €, @)]
[ 0¥ (O)u(d0)

This gives:

Of D@, [ o (€9, @)W o (FO)L(B,0)u1(cB) >
[9.Be, @)V, (G8)6 0l (®)

This contradicts the definition of,dg, O @, (w)) We
obviously have:

0g, 0, (@) :9,B(ep, w))n 6 ()B(eg, } 0
= 0g, 0¢,(@): 0(®) 9,0 B(eg,).B(ep,, ) O
B(eg,)-B(eg, )0 B(eg, , )

We know that there i3, of (Q, a) in @, 1)
measurable such tha (w) O¢,(w) From the foregoing

M8, ) (if it exists) € D), as " O (@) is still a
0 n 00

measurable mapping fromQ( a) in @, 1). So
M8, ) (if it exists) is a maximum likelihood

n- o

estimator.

—
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CONCLUSION d(x,A)zg, =>x0OF
. . . supf(x))=f(x,) - f(x), m - o
Our study deals with the maximum likelihood Gm
estimator as a limit Bayesian estimators. We think
conceptually it is not one of the first times, Isaal  Sincef is continuous:
result concerning a sequence of cost. Usually tst ¢
is an intrinsic data of the decision problem and inf (supf(x))= inf(f(x,,)) =f(x)
within a Bayesian framework focuses attention on m>1 " Gm m>1
the dependence of the optimal solution to the law a
priori. For us this law is fixed and what is thesto Becausef{ (xm))mis decreasing. But:
function that varies.
. f(x) <(supf(x),xOF

Appendix: Lemma (Proof of (3.5.1)) Le® be a F
compact metric space, A be a compact subset ¢fbe
a continuous mapping & in R, n, m® N and €,), a (Dand (2} Inf(Supf(x)y supf(x

sequence of real numbers. Let: 2) If F = @, there exists necessarily m such @at

F={0:d(6,A) > ¢} = @, Indeed: (Gm),is a decreasing sequence of
G, ={8:d(6,A)} >¢(1 -1/ m)} compact. If Gmis not empty, then nG, =g
G, =(©:d®,A)2¢, (1-1/m) (compactness property).
Then:
But for:

supf(x)= inf(sup f(x))= inf(sup)f(x),
xOF m>1 x0Gm m>1 y0Gm

X, 0Gm,0m> 1

Proof:
We have:

inf(sup)f(x))= Inf (sup)f(x))because @, O G, 0 € d(x,A) =€, (1-1/m)0m- 1
if F # @than Therefore:
F=nG,=nG,

m m d(x,A), = xOF

We have: A):
Which is nonsense. Therefore:

Om>1, sup f(x)= supf(x)
X m xOF ~
- (1) F=0Gn=0Cn=0
=0m> l,infl[supf(x)J = supf (X
™ Gn F
And:
Since:
sup f(x)=inf (sup f(x))= inf (sup f(X)F -
supf (x))= (%, ), X,0Gn - 1 om i Gm

Gm

Proof of mesurability of:
We can suppose that the sequengg.(xonverges y ob

tox: W: (0,w)00xQ > d,P w)IR
d(x,,,A)=¢,(1-1/m)
d(x,,,A) - d(x,A), m - Consider k() the family of compacts fob, equipped
with the Hausdorff topology,which a sub-baseyis g'.
Then: where g and g’ are defined by:
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def
gopen:a {KOK@®)/Kn G,Gopeni® }

def
g'open:e {KOK@©)/KOG',G'openi®

Let A and B be two nonempty closedén
i

Defines a distance in I9) called the Hausdorff
distance. The topology induced bys as defined above

® is a metric space sees (Christensen, 1974). Straiw t
the mapping defined below is measurable:

supd(x,B),
xOA

supd(y,

o(A,B) :max{ yOB

@ 0lQ - @w) ={6:L(8 ) =M()} (K( 9
Ok /K nF 2@ OL(OQp F #p @

(See the proof of Lemma3.2.1:

PHK/K OF} L @ ¢ [F)} A
A°={a Q) nF"iq}z:{w(O()) F .23

Becauser® =

n

U . .
F where Fis closed i® =:
n

A°Oa,becausep o h B @ )P & |
SA=¢YK/K OF} &

Therefore® is measurable. We now show that the
following mapping:

d:(K,8)0k(©)x0 - d(K,8)0R

Is continuous (uniformly). Define on ©x® the
following distance:

d'((k,8),(k'8))= d@ 8 )+3 (k,k)
|d® k)-d(k'8 )% |d@ ky g "kt
[d®",k)-d(k'9)|

|d®.k)-d@ k)< de B )

Let X, Ok, x, 0k
thatd(®',x, )= d@",k)andd@ "3 ¥ @ 'k).
Let x,0ksuchthat(k,% F d(x ,x )we have:

such

d®'k)-d@"k)=d@ "% )}~ db %)
309

<d(6',%)-d@"x,)
<d(x,x,) = d(x,,K)
< supd(x,K)< 8 (k,k)

It is the sum af

d©',k)-d@" k)< (k,k?)
=|d@",k)- d@ k)5 (k.k"

There fore:

[d®.k)- d(k'8 )& d@ B o (k.k'F
d'((k,8),(k'87)

This proves the uniform continuity for:
(K,8) —» d(K,8)
So the following mapping:

W:(0,w)00xQ - ((6,pw))
00 xk(®) - D(6,¢(w) IR

Is measurable, because it

measurable mappings.

is composed of two

REFERENCES
Barra, J.R., 1971. Notions Fondamentales De
Statistique mathématique: Maitrise De

Mathematiques et Applications Fondamentales. 1st
Edn., Dunod, Paris, pp: 558.

Berge, C., 1966. Espaces Topologiques, Fonctions
Multivoques. 2nd Edn., Dunod, Paris, pp : 283.
Berger, J.O., 1980. Statistical Decision Theory,

Foundations, Concepts and Methods. Spring-
Verlag, New York, ISBN-10: 3540904719 pp: 425.
Christensen, J.P.R., 1974. Topology and Borel
Structure: Descriptive Topology and Set Theory
with Applications to Functional Analysis and
Measure Theory, Issue 10. 1st Edn., Elisver, North
Holland, ISBN-10: 0444106081, pp: 133.
Fergusson, T.S., 1969. Mathematical Statistics: A
Decision Theoretic Approach. 1st Edn., Academic
Press, New-York, pp: 396.
Florens, J.P., 1978. Measures a priori et invagatans
une experience Bayesian, Pub. 1.S.U.P., 13: 29-55.
Fougereaud, C. and A. Fuchs, 1967. Statistique. 1st
Edn., Dunod, Paris.



J. Math. & Stat., 8 (2): 296-310, 2012

Halmos, P.R., 1974. Measure Theory. 1st Edn., NarosKuratowski, K. and C. Ryll-Nardewski, 1965, A
Publishing House, New Delhi, ISBN-10: general theorem on selectors. Bull. Acad. Sci.
0387900888 pp: 304. Polon., 13: 397-403.

Jeffreys, H., 1998. Theory of Probabily. 3Edn., @gf Wald, A, 1971. A Statical Decision Function. 2nd
University Press, Oxford, ISBN-10: 0198503687  Edn., Chelsea Pub., New-York, ISBN-10:

pp: 459. 0828402434, 179.

Lanery, E., 1984. Solutions Bayesiennes San$Jlmo, J. and J. Bernier, 1973. Presses Universiaie
Désintégration. 1st Edn., Universite Paris, France,. 1st Edn., Presses Universitaires de France
Dauphine, Paris. Paris, pp: 330.

Cam, L.L.M., 1953. On some Asymptotic Properties of
Maximum Likelihood Estimates and Related
Estimators. 1st Edn., University of California
Press, Berkeley, pp: 53.

310



