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Mixed Formulation for a Signorini Problem
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Abstract: Problem statement: This study deals with the study of a Signorini Peob (SP) of
unilateral contact between two a linear or nondmelastic bodiesApproach: We present two
variational formulations noted ;P P,, of the considered problem, wherg Hepends on the
displacement field and,Rliepends on the stress field. In the linear casdemassumptions, then the
considered problem was equivalent to a mixed variat formulation problem, where the unknowns
are the displacement field and the normal condtsiness on the contact arégesults: Problems P
and B were formally equivalent to the Signorini Problé&P) and usindions-Stampachia Theorem,
we shown the existence and uniqueness rasaticlusion: The Signorini problem (PS) has a unique
variational solution.
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INTRODUCTION continuous and composed of three complementarg part
i, T5 andr.. The bodyQ'is fixed on the setr; of

The modeling of contact problems between two =~ .. . .
9 P ositive measure. The), boundary is submitted to a

deformable bodies depends mainly the mechanicd!
pror:jgrties ?f materiaf Conswefg% as bOUﬂda;}density of forces notedd’ and the body forces are
conditions of contact. Among the different types o ’ . i . .
problems considered includegproblems of bilgfenal 0denoted byf’. In the initial conflgqratlonz, both bodies
unilateral contact without friction for elastic hodrhe ~have @ common contact portibh=r;=T,. The
accumulation of experimental data shows thenormal unit outward vector orQ' is denotedn'
limitations of the classical laws of friction bathterms  Mathematical relations in a mechanical problem ban
of mathematical mechanics. Variational formulationsdivided into two kinds: one of them consists of enai-
and results of existence and uniqueness have bedémdependent relations and the other material-degend
obtained in (Drabla, 1999) and in (Djadial., 1998) in  relations, or constitutive laws, the material-inglegent
the case of a frictionless contact problem betwaen relations include the strain-displacement relatitme
elastic body and a rigid foundation and (Hild andequation of equilibrium and boundary conditionseTh
Laborde, 2002; Amassad and Sofonea, 1998), for gquation of equilibrium takes the form Eq. 1:
frictionless contact problem between two deformable

b_odigs u_sing the. quadratic finite glements metl@mt dive’ +f =0 in Q'

aim in this study is to study the existence andjusness

of a variational solution for a frictionless corithetween , )
two elastic bodies based on a mixed formulatiois th Where, o' represents the stress tensor field. The

(1

problem known as problem of Signiorin. specified boundary conditions take the form Eon@ 2
Problem statement: Let us consider two elastic bodies, U’ =0 onT; (2)
occupying two bounded domaif®, Q% of IRY, N = 2,

3. The boundary’'=0Q'is assumed piecewise o'n’=g" onT, 3
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The elastic constitutive law of the material is HS(V/)

- m’Hv’

OV OV(EQ') (10)

assumed to be Eq. 4: W)
o =FEU)) inQ (4) Here and belowm’ denotes a strictly positive
generic constant which may depend@hr;,F .
In which F' is the given linear or nonlinear ~ OnV we consider the inner product given by Eq. 11
function. The conditions on the boundary p&rf
. - ) " N )
constrained by frictionless unilateral contact dtads  (vw) —<s(\})g(v\})>#+<g(v)s(vv?)>ﬂg (11)

incorporate the Signorini conditions Eq. 5:
(@) o =c’zo and let||,, be the associated norm. It follows from (10)
n""n""n i
() [u]<0,0,<0, o,[y]=0  onr, (5) that ||||Hl and ||, are equivalent norms.
(c) ot=0?=0 Therefore V is a real Hilbert space. Thus applying
the Riesz representation theorem to claim thatether
In the study of the problem (1)-(5), we assumé tha€xists a unique membér= ¢*, $?)0V such that Eq. 12:
the elasticity operator:
0 0 _ 1 / [ L 24 0 (
(qf,x/)v(m _jg,f VdQ +jr,2g.\/n d,0vOVvVQ'). (12)

F: S-S
o Finally, we denote in the sequel byylthe set of
Satisfies Eq. 6-8: admissible displacement fields defined by Eq. 13:
@ Om>0: (F€)-F(e)e,-e)zmle,-e] Ue={v=0~v)0v, ]|, <0}. (13)
(b) OL>0: |F‘(sl)-F‘(az)|sL|al-az| (6)
© F(@©0)=0 ~ Also, let >,y denotes the set of admissible stress
fields given by Eq.14:
f'oILyQ)™ (7) t=(t,1,)09;
SIVEL AV (14)
g’ O™ (8) T2 (e e(v)),, 2(ev), OvOu,

=1

Using the notatiorH" =ILAQ)™" and from (6) we
obtain that for all 'O, with the function
x' > F (x') belongs to#{" and hence we may consider | emma 1: If (u,0) are sufficiently regular functions
F as an operator defined off* with the range om{".  satisfying (1)-(5), then Eq. 15-17:

Moreover,F :H' - #" is a strictly monotone, Lipschitz

Using (1)-(5) we have the following result.

and continuoui operator. TherefdFe is invertible and |, U, o02,,, (15)
his inverse(F') is also, a strictly monotone, Lipschitz
and continuous operator. 2
o ,elu’)—e(u 2(e,v—uw, v U,,
! 4 ! » Ly 16

(=1

Variational formulations: Let us introduce the
following spaces Eq. 9: ,
Z<T’ —o‘,s(u‘»w >0,00X,,. a7)
v(Q) ={v/ OHY(Q)" v =0 on T3}, r= 1. o -

V =V(QY) xV(Q) Proof of lemma 1: The regularity WU,qfollows from
(2) and (5). Using Green'’s formula in (1), (2),,(82),
. , o .. we have (16).

Since meas(, > 0 from Korn's inequality it Choosing now v = 2u and v = 0 in (16), we deduce
follows Eq. 10: Eq. 18:
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(18)

=(o)
Fom (16), it finds:
)y

/=1

(o 2(v)), 2(0.9)

Thus using (14) we deduce th#l} ¢ Using now
(14) and (18) we find (17).

The Lemmal and (4) permit us to consider the

following two variational problems.

Problem P;: Find a displacement fields = (u*,?),
whereu’ :Q" —» R" such that Eq. 19:

uduy,,,

i<p‘(5(“")) ’S(V‘)—S(U‘»M 2(pv-u), 0v0 U,

=1

(19)

Problem P,: Find a stress fields = (¢*,0?) , where
o':Q" - S, suchthat Eq. 20:

o2,

3 <r"’ —0‘",(F")_l(c’f)>ﬂl >0, 0002, (20)

2

(=1

We note that problems;Pand B are formally
equivalent to the mechanical problem (1)-(5).
Let u=(u,0*) be a solution of the variational

problem R and ¢ = (¢',0?) is defined by (4), then,

): 216-220, 2012

where, A=(Aj,), £=1,2 denotes the fourth-order

isotropy material for linear elasticity satisfyinidpe
usual symmetry and ellipticity conditions in ela#gi:

f

The set of admissible normal stressed’¢can be
defined as:

|

For anyu,vOV and for anyuOM , we define:

_Al

paiy

,DleR“*“.

Alqu =A|

jigp

A IJPCIS'J 8PCI zm

ROH(C): (), 20,

DWDH%(Q), andy>0 p.p o,

uv:iéHAa u)e(v)),, d,

up) = [u(u'n' +uin?)dr,

s

22: jf'v’dQ +jg‘ vin'dr’ |.

=1\ &

Using (18) and Green's formula, we have the
following result:

Lemma 2: For ¢’ =A'gu’), /=12, if u=(u,?) is a
solution to the problem (1)-(5), then Eq. 21-24:

using the arguments of (Hild and Laborde, 2002), it

follows that(u,o)is a solution of the variational
problem (1)-(5). Similarly, let o = (¢',0%) be a
solution of the variational problem, Bnd u = (u",u*)is
given by ¢’ =F'(e(u’)), then (u,c) is a solution of the
variational problem (1)-(5).

Mixed variational formulation: In the linear case, we
establish a new variational formulation of the peof
(1)-(5), where the unknowns are the displacemésitk f
u=(,#?) and the functionh which is the normal
component of the stress tensor fieldIgn The linear
elastic constitutive law is given by Hooke's law fo
homogeneous and isotropy materials:

o' =A’g(u’) = Atr(g(u’))id + 2ie (U )
218

0p =02(=-A) onT, 1)
AOM (22)
a(u,v)+ b va)=L(v), OvOV (23)
b(v.u-1)<0, OpOM (24)

Proof of lemma 2: The appurtenance af to H, allows
easily deducing that O H*(",). On another hand,

taking into consideration the fact that, <0 onl 3, we
deduce that > 0 onTl 3, whereaoM.
Sincea’ =A’g(u’), ¢=1,2, we have:

+ b( V,—Gn) = &|.1<61,8(V1)>dQl
+ J. <02,8(V2)>d92 - Ion[v.n]drs

Q? M3
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Using Green’s formula, we obtain: Existence and uniqueness:
Theorem 1: Under the hypotheses (6)-(8), there exists
a( u,v) . t( v,_Gn) - a unigue solutionV of P;.
2 Bt s Proof of theorem 1: Let w = (&', «f) OV, it is easy to
Oy, ! L [ Lo~ l ’ ’
Zl _[f vidQ +;<0 n.vn >H%(r/)xH%(r«) prove that the application:
=1 ot =
—I o,[v.n]dr,

7, aw,Vv) :< Al(a((ul)),s(vl)>j{1 +<A2(s(u) 2)), (C,(v2)>%2

Remarking that, [v.n] = 0 onlz andv’ =0onI; ,

Is a continuous linear form on V (faw fixe),
we have:

consequenti\Riesz-Frechet theorem permit us to define
the operator A: \L. V, such that:
a(uV)+ i vio, ) = [fvdQ'+ [ o) (vinY)dr;

Ql

r3

2
+J‘sz2sz+ J‘an(vz'n z)dl-22 (Aw,v):;<A’(s(w’)),s(v’)>ﬂ', Oo,vOV
Q? r3

_ L { _ Using (6) and Korn inequality, we deduce that the

Using o' =g onI;; ¢ =1,2, we find: operator A is a strictly monotone and Lipschitz \n
Also U,gis a closed, convex and nonempty subset of V.

a(uV) + t(v,—cn) - ijV]dQlJr jgl(vl_nl)drzl According to theLionerIampachia theorem, we

o el obtain the existence and uniqueness of the elenéwt

+J‘f2V2sz+ jgz(vzn Z)drj such that Eq. 20-29:
Q? rs

udU,, (Auv-4=(¢,vw ¢ OV Y,
Then equality (23).
It now follows fromo, [v.n] = 0 onT3, [un] <0 Then:
andpM, then (24).
‘This Lemma permit us to obtain the following ugu,,, <A‘ (s(u‘)),s(\/)—s(d)>
variation problem. = !

Problem P,,,; Find U1V and » 0 M such that Eq. 25-26:

a(u)+ B va)=L(v), OvOV (25) Theorem 2: Under the hypotheses (6)-(8), there exists
a unique solutiowH; of P..
b(v,p—2)<0, OuOM (26) The proof of Theorem 1 and Theorem 2 are carried

out in several steps, based dnons-Sampachia
Remark 1: According to the precedent lemma, it is theorem arguments similar to those used in (Lians a
easy to remark that,Fs a mixed formulation of the Magenes, 1968).
considered problem. If u is a solution of problem P Lemma 3: Let u be the solution of the problem P
0 pl 4 — ; :
then (ugy), where o° = A'g(u’), £=1,2, is a solution  sptained in theoreml and letbe the solution of the
of problem R, problem B obtained in Theorem 2, then

/! 1
Remark 2: Another classical formulation of problem o =FEu).

P, is a given by, (Hild and Laborde, 2002), Find alsu
that Eq. 27: Theorem 3: Under the hypotheses (6)-(8), léiv and

let c0H;, then we have:
uOU,, a(u,v— ukl L(v- u),0\ U, 27)
* If uis a solution of Pobtained in theorem 1 ard
It is easy to verify that the problem (27) has a @ solution of P obtained in theorem 2, then
unique solution, via the Stampachia theorem. o' =F(e(u))=12
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e If uis a solution of Pobtained in theorem1 ara
= (0%, 6% with ¢’ =F'(e(u'));/ =1,2, theno is a
solution of B

* uis a solution of Pwith A= -o,,
¢ (u,A) is a solution of R

+ If ois a solution of Pobtained in theorem2, then proof of theorem 5: The implication (i)= (ii) is

there exists a unique solution u 2,(f) O V of P,
such thato’ =F'(e(u"));/ =1,2

obvious using the Lemma 2.
Concerning the inverse implication (ip (i). Let
0=(0,u,) denotes the solution of;Pobtained in

Proof of theorem 3: The proof of Theorem 3, is a result Theorem 1 and leé = (5,,6,) be the function given by:

of the lemma 2, theorem 1, theorem 2 and lemma 3.

6' =A'g(d’), (=1,2

Theorem 4: Under the hypotheses (6)-(8), there exists

a unique solution (A)0VxM of Py,

Proof of theorem 4: Let U1V be the solution of P
obtained in Theoremland led = (¢, ¢° be the

functions given byo’ =F (e(u’));/ = 1,2, according to
lemma 2, we haves, =o;0OM and (ug,) is a solution

of P,. The uniqueness is easly obtained. LetXy and
(up, A,) denote two solutions of,P

Then:
a(u, v+ K vi,)=L(v)=a(u,,v)+ b vi,), OvOV,
By subtracting, we have Eq. 28:
a(u -u,,\Y) +H vi,-1,)=0 (28)
Putting v = y-u,l1V in (27), we get Eq. 29:
a(u-,u-u)+ fy- yi,-2,)=0 (29)
and since a(.,.) is positive, using (26) we conelud

O<a(u -,y -u) =4y -yk,-1;)=
(b(uyry-2,)+b(uyny-2,))<0

Consequently:
a(u -4 -u) =By -yr-2)=0
Which implies that = u, and from (28), we have:
b(v.A,=%,)=0 : OvO V.
From where, it results;= A,.

Theorem 5: For o' =A’g(u);¢=1,2, let {1V and
AOM, the following hypotheses are equivalent:

According to Lemma 2 we ha({@G,)is a

solution of B, which parmit us to conclude that u.
From the fact that [ has a unique solution, we
conclude that u is a solution of, Rvith A = -o,,.
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