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Abstract: Problem statement: In this study, we characterize a subcategory of fuzzy orders which 
were compatible with the usual addition and the multiplication by scalar on the real line R. Results 
and Conclusion: All possible forms of fuzzy orders of this subcategory are given.  
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INTRODUCTION 

 
 The theory of fuzzy order relations which is a 
generalization of the concept of crisp order relations 
first was introduced by Zadeh (1971) and then many 
researchers have been working on this new field and 
developed it (see for example, (Beg, 2004; Bouchon-
Meunier, 1995; Billot, 1992; Bodenhofer, 2003; 
Bodenhofer et al., 2007; Dubois and Prade, 1980; Gerla 
and Crisconio, 2001; Kaufmann and Zadeh, 1973; 
Kundu, 2000; Ovchinnikov, 1991; Stouti, 2003; Stouti 
and Zedam, 2010; Venugopalan, 1992; Zimmermann, 
2001). In this study, we are interesting to study fuzzy 
orders on real line ℝ. 
 This study is organized as follows. We recall some 
well know definitions and we give some examples of 
fuzzy orders on real line ℝ. Next, we shall give a 
theorem which will provide us the general form of 
fuzzy orders which are compatible with the usual 
addition and multiplication on the real line ℝ (see 
Theorem 3.6). We finish by a theorem shows that the 
converse of Theorem 3.6 is not necessarily true. 
 
Preliminary definitions: Let X be a universe of 
discourse. A fuzzy subset A of X defined by Zadeh 
(1965) is characterized by a membership function A: 
X→[0,1], where A(x) is interpreted as the degree of 
membership of the element x in the fuzzy subset A for 
each x∈X. 
 
Definition 2.1 (Zadeh, 1971): Let X be a nonempty 
set. A fuzzy relation r on X is a function r: X×X → [0, 
1]. For every x, y ∈ X, the value r(x, y) is called the 

grade of membership of (x, y) in r and means how far x 
and y are related under r.  
 A crisp binary relation r is a particular fuzzy 
relation where the real interval [0,1] of scalars is 
replaced by the set {0,1} of integers, that is r (x, y) = 0 
or r (x, y) = 1. For more details we refer to (Bouchon-
Meunier, 1995; Kaufmann and Zadeh, 1973; 
Zimmermann, 2001). 
 Zadeh (1971), gave the following definition of 
fuzzy order. 
 
Definition 2.2 (Zadeh, 1971): Let X be a nonempty 
set. A fuzzy order on X is a fuzzy relation r in X 
satisfying the following three properties: 
 
• For all x∈X, r (x, x) = 1 (fuzzy reflexivity) 
• For all x, y ∈ X, x ≠ y and r(y, x) > 0 implies r(y, 

x) = 0, (fuzzy antisymmetry) 
• For all ,Xz,x ∈  [ ]

y X
r(x,z) sup min{r(x,y), r(y,z)} ,

∈
≥  

(fuzzy transitivity) 
 
 A nonempty set X with a fuzzy order r defined on it 
is called fuzzy ordered set (foset, for short) and we 
denote it by (X,r). If Y is a subset of a foset (X,r), then 
the fuzzy order r is a fuzzy order on Y and is called the 
induced fuzzy order. 
 A fuzzy order r is linear (or total) on X if for every 
x, y ∈ X we have r(x, y)>0 or r(y, x) > 0. A fuzzy 
ordered set (X, r) in which r is total is called a r-fuzzy 
chain. Conversely, if for any x, y ∈ X, r(x, y) > 0 if and 
only if x = y then (X, r) is called r-fuzzy antichain. 
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 Let (X, r) be a fuzzy ordered set and A be a 
subset of X: 
 
• An element u ∈ X is a r-upper bound of A if r(x,u) 

> 0 for all x ∈ A. If u is r-upper bound of A and u 
∈ A then u is called the greatest element of A. The 
r-lower bound and the least element are defined 
analogously 

• An element m ∈ A is called a maximal element of 
A if r(m, x) > 0 for some x ∈ A then m = x. 
Minimal elements are defined similarly 

• An element s ∈ X is the r-supremum of A if s is r-
upper bound of A and for all r-upper bound u of A, 
we have r(s, u) > 0. When s exists, we shall write s 
= supr(A). Similarly, l ∈ X is the r-infimum of A if 
l is a r-lower bound of A and for all r-lower bound 
k of A, we have r(k, l) > 0. When l exists we shall 
write l = infr(A) 

 
 Next, we shall give some examples of fuzzy partial 
and linear (or total) orders. 
 
• Let X = {a, b, c, d, e, f, g}. Then the fuzzy subset r 

defined on X×X by the following Table 1 is a 
fuzzy order on X 

• Let X = ℝ and λ>0 Then, the fuzzy relation rλ 
defined for all x, y ∈ X by: 

 

y x

1 , if x y;

r (x,y) min(1, ), if x y

0, if x y;

−
λ λ

=


= <
 >

 

 
is a linear fuzzy order on ℝ.  

 
• Let X = ℝ. Then, the fuzzy relation r defined for all 

x, y ∈ X by: 
 

x
y

y

x

1 , if x y;

0 , if x y;

1 , if 0 x y;r(x, y)

1 , if x y 0;

1 , if x 0 and y 0

=
 >
 − ≤ <= 
 − < ≤
 < >

 

 
 is a linear fuzzy order on ℝ. 
 
Table 1: Fuzzy order on X   
r (.,.) a b c d e 
a 1 0 0 0.65 0.40 
b 0 1 0 0.35 0.45 
c 0 0 1 0.00 0.70 
d 0 0 0 1.00 0.00 
e 0 0 0 0.00 1.00 

Characterization of a subcategory of fuzzy orders 
which are compatible with the structures of the 
real line ℝ: We shall give a characterization (or the 
possible forms) of a subcategory of fuzzy orders 
which are compatible with the usual addition and the 
multiplication by scalar on the real line ℝ (Theorem 
3.7). First, we need the following definitions.  
 
Definition 3.1:  
 
• We say that r is compatible with the addition if for 

all ∈)y,x(,)y,x( 2211 ℝ2, we have r(x1, y2) > 0 and 

0)y,x(r 22 >  0)yy,xx(r 2121 >++⇒   

• The fuzzy order r is said to be compatible with the 
multiplication by scalar if for all (x,y) ∈ℝ2 and 

0λ > , we have 0)y,x(r > ⇒ 0)y,x(r >λλ  

 
 Next we shall define a subcategory of fuzzy orders 
which are compatible with the addition and the 
multiplication by scalar on the real line. More precisely, 
we consider the following. 
 
 Definition 3.2: Let ℙ the set of all fuzzy orders defined 
on ℝ satisfying the two following conditions: 
  
• For all ∈)y,x(,)y,x( 2211 ℝ2, we have 

{ })y,x(r,)y,x(rmin)yy,xx(r 22112121 ≥++  

• For all ∈),( yx  ℝ2 and ,0>λ  we have 

).y,x(r)y,x(r ≥λλ  
 

Proposition 3.3: Let r be an element of ℙ. Then, r is 
compatible with the addition and the multiplication by 
scalar on the real line ℝ.  
 
Proof: Let r be a fuzzy order such that r∈ ℙ.  
 Let (x1, y1), (x2, y2) ℝ

2 such that r(x1, y1) > 0 and 
r(x2, y2) > 0. Since r∈ ℙ it then follows that: 
 

{ }1 2 1 2 1 1 2 2r(x x , y y ) min r(x , y ) , r(x , y )+ + ≥  

 
Hence: 
  

1 2 1 2r(x x , y y ) 0+ + >  

 
 Thus, r is compatible with the addition. 
 Let (x, y) ∈ ℝ2 and λ > 0 such that r(x, y) > 0. Since 
r∈ ℙ it holds that r(λx, λy) ≥ r(x, y) > 0. 
 
Hence: 
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r( x, y) 0λ λ >  
 
 Thus, r is compatible with the multiplication by 
scalars. 
 The following example shows that the set of all fuzzy 
orders which are compatible with the addition and the 
multiplication by scalar on ℝ is not equal to ℙ.  
 Let us consider the fuzzy order r defined on ℝ  
given in the above example. For all x, y ∈ ℝ: 
 

x
y

y

x

1, if x y;

0 , if x y;

1 , if 0 x y;r(x, y)

1 , if x y 0;

1 , if x 0 and y 0

=
 >
 − ≤ <= 
 − < ≤
 < >

 

 
 r is compatible with the addition and the 
multiplication by scalar on ℝ . But, r∉ℙ. Indeed, we 

have 1)1,0(r = , r(1,1) 1=  and .)2,1(r
2
1= We have 

also, )1,1()1,0()2,1( += , but 

.1)}1,1(r),1,0(rmin{
2

1
)11,10(r =<=++  

 
Proposition 3.4: Let r be an element of ℙ. Then, for all 
x, y ∈ ℝ we have:  

 
r(x, y) r(x y,0) r(0, y x)= − = −  

 
Proof: Let ∈y,x ℝ: 

  
• First let us show that: ).xy,0(r)y,x(r −=  Indeed, 

since (x, y) = (0, y-x) + (x, x) then r (x, y) =  r ((0, 
y-x) + (x, x)). On the other hand, since r∈ℙ, it then 
follows that r (x, y) ≥ min{r (0, y-x), r (x, x)}. As 
r(x, x) = 1, it holds that ).xy,0(r)y,x(r −≥  
Conversely, r (0, y-x) = r ((x, y) + (-x,-x). So, we 
have r (0, y-x)≥ min {r(x, y), r (-x,-x)}. In the same 
way, as r(-x, -x) = 1, it holds that 

).xy,0(r)y,x(r −≤  Therefore, r(x, y) r(0, y x)= −  

• We have ).0,yx(r)y,x(r −= Indeed, since (x, y) = 

(x-y, 0) + (y, y) then r (x, y) = r ((x-y, 0) + (y, y)). 
Hence, r (x, y) ≥ min{r (x-y, 0), r (y, y)}. Thus, we 
have r (x, y) ≥ r (x- y, 0). On the other hand, we 
have r (x-y, 0) = r ((x, y) + (-y,-y)). Hence, since 
r∈ℙ we get r (x-y, 0)≥ min{r (x, y), r (y, y)}. Then, 
we obtain r (x-y, 0)≥ r (x, y). Thus, 
r(x, y) r(x y,0)= −  

Consequentely, for all ∈y,x ℝ: 

 
r(x, y) r(x y,0) r(0, y x)= − = −  

 
Definition 3.5: Let r be a fuzzy order on ℝ and ∈x ℝ. If 

0)x,0(r > , then x is called a r-positive real number. The 

set of all r-positive real numbers is denoted by ℝr
+ . 

Similarly, if 0)0,x(r > , then x is called a r-negative real 
number and the set of all r-negative real numbers is 
denoted by ℝr

-. 
 In order to proof the main result of this study 
(Theorem 3.7) we need to show the following Lemma. 
 
Lemma 3.6: Let r be an element of ℙ. Then, we have:  
 
• For all ∈y,x ℝ, if x < y, then r(x, y) = r (0, 1)  

• For all ∈y,x ℝ, if x > y, then r(x, y) = r (1, 0)  

• ℝr
+
∩ ℝr

- = {0} 
• If r is a total fuzzy order on ℝ, then ℝ 

r
+
∪ ℝr

- = ℝ 
 
Proof: Let r be an element of ℙ.  
 Let ∈y,x ℝ such that x < y. By Proposition 3.4, we 

have ).xy,0(r)y,x(r −= Since r is compatible with the 

multiplication by scalar and 0xy >− , it holds that 
)1,0(r)xy,0(r ≥− . On the other hand, we know that 

)xy,0(r))xy(
xy

1
,0(r)1,0(r −≥−

−
= . Therefore, 

)y,x(r)xy,0(r)1,0(r =−= . 
 
• Follows in the same way. 
• Let ∈x  ℝr

+
∩ ℝr

-. Then, ∈x ℝr
+ and ∈x ℝr

- . So, r(0, 
x) > 0 and r(x, 0) > 0. Now, by fuzzy antisymmetry 
we get that 0x = . Hence, ℝr

+
∩ ℝr

- ⊆  {0} 

On the other hand, as 01)0,0(r >= so ∈0 ℝr
+
∩ ℝr

-. 

Therefore, ℝr
+
∩ ℝr

- = {0} 
• Assume that r is total on ℝ. So, for ever ∈x ℝ we 

have 0)x,0(r >  or 0)0,x(r > . This implies that 

∈x ℝr
+ or ∈x ℝr

-. Hence, ℝ ⊆ ℝr
+
∩ ℝr

- and therefore 

ℝ = ℝr
+
∩ ℝr

- 
 
Theorem 3.7: Let r be an element of ℙ. Then, r is 
defined for all ∈y,x ℝ as the following.  

 If r (0,1)> 0 and r (1,0) = 0, then: 
 

1  if x y

r(x, y) r(0,1)  if x y

0  if x y

=
= >
 <
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  If r (0,1) = 0 and r (1,0) > 0, then:  
 

1  if x y

r(x, y) 0  if x y

r(1,0)  if x y

=
= >
 <

 

 
 If r (0,1) = 0 and r (1,0) = 0, then:  
 

1  if x y
r(x, y)

0  if x y

=
=  ≠

 

 
Proof: Let x, y∈ℝ and r∈ℙ. We can distinguish three 
cases. 
 

First case: If x = y, then by fuzzy reflexivity we get 
r(x, y) = 1. 
 
Second case: If x < y, it then follows from Lemma 3.6 
that r(x, y) = r (0,1).  
 

Third case: If x < y, it then follows from Lemma 3.6 
that r(x, y) = r (1,0).  
 Hence, if x ≠ y we have either x < y or x > y. This 
means that either y > x or x > y. Thus, we have either  
R (x, y) = r (0,1) which implies r (y, x) = r (1,0) or (r (x, 
y) = r (1,0) which implies r (y, x) = r (0,1). 
 Now, by the fuzzy ant symmetry of r we cannot 
have at the same time that r (0,1) ≠ 0 and r (1,0) ≠ 0. 
Therefore we get three possible forms of the fuzzy 
order r∈ℙ. 
 
First form: If r (0,1) > 0 and r (1,0) = 0. Then: 
 

1  if x y

r(x, y) r(0,1)  if x y

0  if x y

=
= >
 <

 

 
Second form: If r (0,1) = 0 and r (1,0) > 0. Then: 
 

1  if x y

r(x, y) 0  if x y

r(1,0)  if x y

=
= >
 <

 

 
Third form: If r (0,1) = 0 and r (1,0) = 0. Then: 
 

1  if x y
r(x, y)

0  if x y

=
=  ≠

 

  
 Note that if r take the third form, then (ℝ, r) is a r-
fuzzy antichain. 

 As consequences of Theorem 3.7, we obtain the 
following corollary: 
 
Corollary 3.8: Let r be an element of ℙ. Then, we have 
r is total on ℝ if and only if r (1, 0) > 0 or r (1,0) > 0.  
 Conversely, we have the following result. 
 

Theorem 3.9: Each fuzzy order in ℝ takes one of the 
three forms given in theorem 3.7 isn’t necessarily an 
element of ℙ. 
 

Proof: Immediate. 
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