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Abstract: In this study, an integral two space-variablesdition for a class of parabolic equations.
The existence and uniqueness of the solution irfuhetional weighted Sobolev space were proved.
The proof is based on two-sided a priori estimated on the density of the range of the operator

generated by the considered problem.
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INTRODUCTION

In the domain&€ = {(x, t) O(0, 1)x(0,T), T>0}, we
consider the equation:

Lu=u, - (a(x,y,), = f(x,1) (1)

where the function a(x, t) and its derivative aoeitded
on the interval [0. TJ:

O<g,<a(xtx a
O0<a,< g (xt)< a

To Eqg. 1 and 2 we add the initial conditions:
fu=u(x,0)=9¢ (x),xd (0,1) (2)
The boundary condition Eq. 3:
u(o,t)= (1, t)td (0, T) 3)
And integral condition Eq. 4:

[Cue e +

1 (4)
jﬁu(z,t)dz=0a> o> 0,&p aP= 1 (O,

Here, we assumed that the known functign
satisfy the conditions given in (3) and (4), i.e.,

$(0) =M ,[ 6 (dx+ [ 0 (x)dx=

When considering the classical solution of the
problem (1)-(4), along with the condition (4) shibide
fulfilled the conditions:

£(0,0)-f(1,0)= 0
[ 1, 06,000 () + a(x, 0 "()}dx+
J{2.x,006 00+ a(x, 0 "()kdx=
[*(x,0)ax+ j;f (f (x,0)dx

Mathematical modeling of different phenomena
leads to problems with nonlocal or integral bougdar
conditions. Such a condition occurs in the casernwhe
one measures an averaged value of some parameter
inside the domaine. This problems arise in plasma
physics, heat conduction, biology and demography,
modelling and technological process, see for exampl
(Samarskii, 1980; Hieber and Pruss, 1997; Ewing and
Lin, 2003; Shi, 1993; Marhoune, 1990).

Boundary-value problems for parabolic equations
with integral boundary condition are investigated b
Batten (1963); Bouziani and Benouar (1998);
Cannon (1963); (1984); Cannehal. (1987); lonkin
(1977); Kamynin (1964); Field and Komkov (1992);
Shi (1993); Marhoune and Bouzit (2005); Marhoune
and Hameida (2008); Denclet al. (1994); Denche
and Marhoune (2001); Marhoune and Latrous
(2008); Yurchuk (1986) and many references therein.
The problem with integral one space-variable
(respectively two space-variables) condition is
studied in Fairweather and Saylor (1991) and Denche
and Marhoune (2000) (respectively in Marhoune
(2007) and Marhoune and Lakhal (2009)).
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The present paper is devoted to the study of a]. 9
problem with boundary integral two-space-variables/to 8(x )W o<t<TJ ©)
condition for a partial differential equation.

We associate to problem (1)-(4) the operator L = sup )

(L, 1), defined from E into F, where E is the Bahac [ o] dx 0<t<TI u dxﬁ <0< 1< IB‘M dx (10)

space of functionsliL, (Q), satisfying (3) and (4), with

the finite norm Eq. 5: - . .
Combining the in equalities (8), (9) and (10), we

obtain (7) for WE
Juf; = J,0000u.[*+[u. ")
]dth+0<S|:F<)T (5) Lemma 2: Marhoune (2007) for[UE we have Eq. 11:
Sup a, 2 +Sup 2 1 alpa a 2
Tosts TJ.O‘U‘ Moe i< qu o Zjo Ui Zdxs [ | u| dx (11)

And F is the Hilbert space of vector-valued Theorem 3: For any function OE, we have the a priori
functions F = (f$) obtained by completion of the space estimate Eq. 12:
L,(Q)xW? (0, 1) with respect to the norm Eq. 6:

Julle < KLyl (12)
IA = = [ 80|f| axat+ '8 o
F , e 0 (6) With the constant:
a 1
+j0\¢\ dx+jﬁ\¢\ dx
_ 45 . [ 1 6a0]
k=———————min| == —2
Where: exp(cT)@* + 136) 22 16
X2 0<x<a where ¢ and is such that Eq. 13:
8(x) =| (1-B)? as x<p
1-x) B<x<1 _%-433 >0,c< Oand- 8ca> (465 a & (13)

Using the energy inequalities method proposed i
(Yurchuk, 1986), we establish two-sided a prorquOO]c Define:
estimates. Then, we prove that the operator Uiisear
homeomorphism between the spaces E and F. (x U.is J‘ 7(5 t)dgj 0< X< a
a

Two-sided a priori estimates: Mu (@-B)* du
Theoreml: For any function UE we have the a priori a at

estimate Eq. 7: - , 0 ot
+ -
(( U ) 2 5

€, t)CE] B x<1

Lyl < klul. (7
We consider for UE the quadratic formula Eq. 14:
where the constant k is independent of u.

ReJ.; I: expt ct)LuMudxd (14)
Proof: Using Eq. 1 and initial conditions (2) we obtain
Eqg. 8-10: with the constant c satisfying (14), obtained by

multiplying the Eq. 1
[ 800 |Luf* dxdit< 2]99(X>[\ ut’ + 43| y, 2] by exp (-ct) Mu , by integrating overQ', where Q" =

8) 0, 1)x (0,1), , with 1< T, and by taking the real
dxdt+ 4a?2 sup jle (x) Lk‘zdx part. Integrating by parts in (14) with the use of
0

boundary conditions (3) and (4), we obtain Eq. 15:
186



J. Math. & Stat., 8 (2): 185-190, 2012

18(x) Integrating by parts the second, third and forth
Rej I expt Ct)LUMUdXdl:I j terms of the right-hand side of the inequality (and
adu taking into account the initial condition (2) andet
exp(-ct) |§1 dxalt [ Iog expt ngﬁ & 0g’ condition (13) give Eq. 18:

11l 0 ’
dxdt+§‘|‘D J';E expE Ctﬂs 071: £ ,t)d‘ dxdt ReJ‘;J': expE ct)LuMudxd&I: ) 2| d)(-J'B1 4 (d

trag@ agu 2 2
_ X — 1 2 T 0
IND —exp( ct% ot ,t)d‘ +5Lle(x)‘¢" dxzéj'oj':expe ctp (X%Ltj‘ dxdt

Tpel X 2 (18)
dxdt+ [ [ - x)% expt ct} % §,t)d€‘ dxdt

+1J'19(x)exp(— ct#@ (Xt 2
270 ox

dx+ J': exp

+Re.[0(.|‘: expt cth (x)a—uﬂ dxdt Re

2 1 2
(=ct)|u(x,T) dx+J'I3 expt ¢ ) u(xt|) dx
j‘ot.[;exp(— ctp (x)a—uﬂ dxdt- Rgo jo exp
By using the elementary inequalities on the first

(-ct)8 (x)a—uﬂ%d dt integral in the left-hand side of (18) we obtain:
ad
_zRejojo x—; expf ct@xit ,t)d] y dxdt 71 j expl- Ctﬁ(xrltj dxdlt+

_2Rej I (1~ x% expt ctéj — &) dE]u dxdt (15) 7.[ e(x)exp(—aj Y (XI} dx

j Ca)uxzy dx+J'1 expf T|) u(x (19)
On the other hand, by using the eIementary xp ' B ’
inequalities, we get Eq. 16: 34t . 2 1

== jo joe(x)exp( cth (x) Ly dxdte >
ReJ' I expf ct)Lul\/mdxdEJ' _[ 18(x) exp J-:G(X)‘¢"2dx+j;‘¢‘2dx+J'rj(b‘zdx

92
(=ct) *‘ dxdt+ Ref) [ expt cf (xf Now, from Eq. 1 we have:
dxdt- ReJ' j expt cth (xfla—a—u dxdt 16 5a2 e 2
(16) [[[ =-8(x)expt- ct“ dxdt

—jojox—gexp(—ct)jx—@,t)c{‘ dxdt 07016 ox

Oyl 2
I I x2 exp(— ct)— ‘ dxdt+ -[OT_[; (- x;:T; Szjo.[oexp(—Ctﬁ (Xj LL# dxdt 20)

O ptpl 2 -
exp(—ct)&‘ dxdt+ ZRq'OTJ': exp{ cl%% +*J‘0J.08Xp(—ctﬁ (Xi l‘l‘ dxdt =
udxdt+ ZR(%]';J'; expft Ct%% udxdt I J.o 6 exp(—ctﬁ (X# l: dxdt

Again, using the elementary inequaliies and  combining inequalities (19), (20) we get Eq. 21:
lemma 1 we obtain:

& +exp(-cT) 2 1t 2
ReJ'OIJ':expe ct)LuMudxde 6'[01]': exp{ ct 45 J.Qe(x)“_u‘ dXdHEJ‘Oe(X)‘M

a, 2 2
8(x) t(?TLtlzdde ReJ'DTJ': expt ctp (x%gi dx+J'0‘¢\ dx+m¢\ dx= (21)
x 1
axats 2R, [ expt o uoa a7 800]u,|" dxtr 2 [To 0ofu, (xa §
2ReJ'DTJ': expe ct% udxds gjgj‘:dxﬂ':\u(x,qzdxﬂ'g U(XT )2
522 ptp1 2 Orrel 2
%J‘O J'Oexp(- ct) I(TL:( f dxdt dx+5j0 J'Oe(x) u,| dxdt
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As the left-hand side of (21) is independenttof
by remplacing the right-hand side by its upper libun
with respect tot in the interval [0, T], we obtain the
desired inequality.

Solvability of the problem: The proof of existence of
solution is based on the following lemma.

Lemma 4: Let: D, (L) = {uOE: $u=0} If for udDy and
somewlL, (Q), we have Eq. 22:

IQ @(x)Lumdxdt= 0 (22)
where

X O<v<a

ox)=1(1-B) asx<P
1-x) PBsx<1
Then,w= 0.

Proof: From (22) we have:
J'Qcp(x)u‘wdxdt: J‘Q(p(x)(a(x,t)q )@ dxd (23)

Now, for givenw, we introduce the function:

w—ff@dé O<x<a
V(X,t) =< a< x<P
oo—J:oi(LEt)dE Bsx<1

Integrating by parts with respect &, we obtain:

xv+j:v(E,t)dE 0< x< a
Nv =@(x)w=< (1-B)v

a- x)v+j;v(a,t)dz B x<1

as x<f3

Which implies that Eq. 24:

[IvE oo =[ v, =0 (24)
Then, from equality (23) we obtain Eq. 25:
—jQ u, Nudxdt= jQ A(t)avdxdt (25)

188

Where:
At)u = ~(@(x)a(x, )y, ),

If we introduce the smoothing operators with
respect to t (Yurchuk, 1986; Marhoune and Lakhal,

2009), J'= (I+s§)'l and(J.")*, then these operators

provide the solutions of the respective problemsZ&q

€(9, ) () +g, ()= g(t)

26
9. (1)) 0= 0 20
And Eq. 27:
-&(g; ), (D+d. ()= g(1)
(27)

9. (1)

\t:T: 0

And also have the following properties : for agy
0 L, (0, T), the functionsg, = (J*)gand g, = (J")gare
in  W;(0,T)such that gl|t = 0 = 0 andg; |[t=T=0.

Moreover, J'commutes witl?;zt ,

sojOT|g£—gF dt— oand IOT|g£—gF dt— ofor &-0.

Puttingj;exp(a ) (xg)d in (25), where the constant ¢
2

satisfiexa, - as—%z € and using (27), we obtain Eq.

28:

exp(ct)y Nudxdt

- . dxdt
Q+J'QA(t)u exp(-ct)y dxdt—eJ'Q A(t)utu

)

Integrating by parts each term in the left-hartksi
of (28) and taking the real parts yield Eq. 29 38d

(28)

2 RejQ A(t)uexp€ ctyudxdt

[Ta(x.tyexpe ctp (xhu (.7 dx (29)
+J'Qexp(—ct)p(x)(ca(x,t)— a (x,ti) qz dxc

Re(—sJ'Q A(t)uexpt ctW) dxdj

=re{e[, a (b (1Y (7 ) o (30)

+J'Qa(x,t) expt ctlp (XP@F dxdt
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Usinge-inequalitiesweobtain Eq. 31: CONCLUSION

From estimates (7) and (11) it follows that the

(31) operator L: E-F is continuous and its range is closed
in F. Therefore, the inverse operatof kxists and is

continuous from the closed subspace R (L) onto E,

which means that L is a homeomorphism from E onto R

Re(—s [ Atuexpe (v ) dxd)

> [ exp-ctip(x)|a x| y[* dxd

Combining (29) and (31) we get Eq. 32: (L). The theorem 5 chow that R (L) = F. So the
existence and uniqueness of the solution of thblpno
—Re(jQ exp(ct)\*[Nvdxd)z is proved.

2 (32)
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