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Abstract: Problem statement: Transient non-Darcy mixed double convection from a semi-infinite, 
isothermal vertical plate embedded in a homogeneous porous medium, in the presence of surface 
suction or injection had been numerically investigated. Approach: Forchheimer extension was 
considered in the flow equations. Appropriate transformations were employed to transform the derived 
partial differential equations governing the problem under consideration on the assumption of a small 
magnetic Reynolds number into a system of non linear ordinary differential equations, which were 
integrated by the fourth-order Runge-Kutta method. Results: Numerical results illustrating the effects 
of all involved parameters on the transient velocity, temperature and concentration profiles, the local 
Nussle, the local Sherwood numbers and the local skin fiction coefficient, were presented and 
discussed. The results were compared with those known from literature. Conclusion: Velocity and 
temperature increase due to the increasing of the parameters involved in the problem, while the 
increasing in the solutal dispersion parameter decreases the mass transfer coefficint.  
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INTRODUCTION 

 
 Convection heat transfer and flow through porous 
medium is phenomenon of great interest from both 
theoretical and practical point of view. This is because 
of its important applications in several geophysical, 
environmental and engineering fields. These 
applications include geothermal and petroleum 
resources, in-site combustion of oil shale, boiling 
enhancement using porous coatings, compact heat 
exchangers, packed bed reactors or absorbent, high 
performance of building insulation and others. Free-
convection flows past a semi-infinite vertical plate have 
been studied under different physical conditions by 
Irwan et al. (2010). Free-convection flow with mass 
transfer along a vertical plate in the presence of 
magnetic field has been investigated by Elbashbashy 
(1998). However, Aboeldabab and Elbarbary (2001) 
studied the Hall current effects on MHD free-convection 
flow past a semi-infinite vertical plate with mass transfer. 
Very recently, many investigations studying consequent 
flow and heat transfer characteristics that are brought 
about by the movement of a stretched permeable and 
impermeable. Isothermal and non isothermal surface 
with power law variation have been reported (see for 
instance, Abo-Eldahab and Gendy (2000) and Abo-
Eldahab et al. (2007). Most studies of natural 

convection in porous media have been based on Darcy's 
law which is applicable for slow flows and does not 
account for non-Darcian inertial effects. Nield and 
Bejan (2006) have made a comprehensive review of the 
growing volume of study devoted to heat transfer and 
flow through porous medium. Although, there is still a 
great deal of theoretical as well as practical interest in this 
area of research. 
 Most of the existing works on mixed convection 
flow over heated bodies embedded in fluid-saturated 
porous medium are concerned with steady state 
conditions (Merkin, 1980; Hsieh et al., 1993; Takhar 
and Beg, 1996). On the other hand, transient convection 
flow problems have not received as much attention. 
This is because that the transient heat transfer is usually 
difficult to solve either analytically or numerically. In 
fact there is no actual flow situation, which does not 
involve unsteadiness and examples of transient 
convective flows are numerous, for example, cooling of 
electronic devices in which the heat generation is not 
constant but time varying. Perhaps, the first study on 
transient boundary layer on flat plate was made by 
Johnson and Ping (1978). Raptis (1983) studied the 
case if two-dimensional free convection over a vertical 
plate embedded in a porous medium using the 
perturbation method. Al-Nimr and Masoud (1998) 
analyzed the problem of transient free convection flow 
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over an impermeable vertical flat plate embedded in 
porous medium using Laplace transformation method. 
Extended Al-Nimr and Masoud (1998) study by 
considering the effect of variable suction on transient 
free convection. It is worth mentioning that all of these 
works the Ergun inertial effect was neglected. Also 
these studies were based on the assumption that the 
flow quantities are independent on the longitudinal 
direction (x-direction). This assumption leads to a 
constant free boundary layers thickness (momentum as 
well as thermal). Actually, it is impossible for the 
transient flow to be x-independent. Shigeo (1989) 
solved the problem of transient forced in Darcy flow 
using the second-order upwind finite difference 
method. Nakayama and Ebinuma (1990) studied the 
inertial effects on transient forced convection for 
suddenly heated plate using the Frochheimer-extended 
Darcy model. Bejan and Nield (1991) obtained 
analytical solution for the three regimes, namely, the 
initial, transient period and steady heat transfer in a 
Darcian-porous medium. Analyzed the problem of 
transient free convection from suddenly cooled 
vertical in a Darcian-porous medium using asymptotic 
expansion method, while by Cheng and  Pop (1983) 
used the integral method to study the same problem. 
Harris et al. (1996; 1997) and Ingham et al. (1982) 
have produced very detailed studies of the problem of 
transient free convection flow from vertical isothermal 
plate immersed in a fluid-saturated Darcian-porous 
medium when the temperature of the plate or the heat 
flux is suddenly changed. Harris et al. (1999) studied 
the problem of transient mixed convection flow from 
vertical isothermal plate immersed in a fluid-
saturated Darcian-porous medium. Al-Odat (2004) 
extended Harris problem by considering the effect of 
variable suction on transient free-convection. Based 
on the above brief review, it is obvious that the 
transient non-Darcy MHD mixed convection flow 
along a vertical permeable flat plate embedded in 
porous medium has not been investigated yet. 
Therefore, the aim of the present study is to drop the 
steady state restriction and examine the time 
evolution of non-Darcy MHD mixed convection flow 
over a vertical isothermal semi-infinite flat plate 
immersed in a porous medium with wall suction or 
injection, when the plate temperature is suddenly 
raised from that of the ambient fluid. Appropriate 
transformations are employed to transform the partial 
differential equations, governing non-Darcy flow and 
heat transfer, to a non-similar form. The transformed 
equations have been solved numerically using the 
shooting technique with the fourth-order Runge-
Kutta method.  

MATERIALS AND METHODS 
 
Mathematical formulation: Consider the unsteady, 
tow-dimensional, non-Darcy MHD mixed convection 
flow heat and mass transfer of laminar, incompressible 
and electrically conducting fluid over a semi-infinite 
vertical plate embedded in a porous medium with 
surface suction. A uniform magnetic field is applied 
normal to the plate. The schematic diagram of the 
physical problem is shown in Fig. 1. Initially the wall 
and the surrounding porous medium are at uniform and 
constant temperature T∞, constant concentration C∞ and 
constant velocity u∞ vertically past the plate inside the 
porous medium. At time t = 0, the vertical plate is 
suddenly heated isothermally with imposed suction 
which in turn, suddenly raised the temperature and 
concentration at the wall to Tw and Cw, respectively and 
they maintained at these values for t>0. It is assumed 
that the fluid properties are constant except the 
influence of density variation with temperature, which 
is considered only in the body force term of the 
momentum equation. Both the fluid and solid matrix 
are assumed to be in local thermal equilibrium. Under 
these assumptions along with Boussinesq 
approximation, the transient laminar boundary layer 
Eq. 1-4 are given by:  
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Fig. 1: Schematic diagram for the problem  
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 The appropriate boundary conditions relevant to 
the problem are Eq. 5: 
 
V(x, 0, t) = -Vw (x) T(x, 0, t) = Tw, C(x, 0, t) = Cw  
U(x, ∞, t) = U∞ T(w, ∞,t) = T∞, C(x, ∞, t) = C∞  (5) 
 
 And the initial conditions are Eq. 6: 
 
U(x, y, 0) = v(x, y,0) = ,0,  
T(x, y, 0) = T∞, C(x, y, 0) = C∞  (6) 
 
Where: 
(x, y) = The dimensional distance along and 

normal to the plate 
(u, v) = The velocity components in x-and y-

direction 
T = The temperature 
C = The concentration 
β = The coefficient of thermal expansion 
v = The effective kinematics viscosity 
F = The dimensional inertial coefficient 
K = The permeability of the medium 
g = The gravitational acceleration 
σ = The heat capacity 
ρ = The fluid density 
αe and De  = The effective thermal and solutal 

diffusivities 
 
 Following to Telles and Travisan (1993) the 
expression for αe vand De can be written as αe = α + 
χud and De = D+ ςud and where α and D are the 
molecular thermal and solutal diffusivities, 
respectively, whereas χ ud and ς ud represent the 
effective thermal and soluta l diffusivities due to the 
transverse thermal and solutal dispersion, where χ and ς 
are coefficient of dispersion thermal and solutal 
diffusivities and d is the pore diameter. The plus sign is 
to designate the flow as an aiding flow when the 
buoyancy force has a component in the direction of the 
free stream and the minus sign as an opposing flow 
when the buoyancy component is opposite to the free 
stream velocity. The subscripts w and ∞  indicate the 
conditions at the wall and at the outer edge of the 
boundary layer, respectively. 
 In order to reduce the number of independent 
variables from three to two and to make the 
governing equations dimensionless, the following 
transformation is applied: 
 

( )
1

2 1 11 222
u u t

y 2 u x f ( , )
2 x x

−∞ ∞
∞

 η = ξ ψ = α ξ ξ η τ = α 
 

w

T T
1 e u v

T T y x
−τ ∞

∞

− ∂ψ ∂ψξ = − θ = = = −
− ∂ ∂

 

 
 Using the above transformation in Eq. 1-4, we find 
that Eq. 1 is identically satisfied and Eq. 2-4 are 
reduced to Eq. 7-9:  
 

2f '' 2 f 'f '' ' Ha f '' N '+ Γ = ±λθ − + λ ϕ  (7) 
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∂ξ

  (9)  

 
where, the prime denotes partial differentiation with 
respect to η. The boundary conditions (Abo-Eldahab 
and Gendy, 2000) are reduced to Eq. 10:  
 
atη = 0: f(ξ, 0) = fw, θ(ξ, 0) = 1, φ(ξ, 0) =1 
atη ∞: f’( ξ,∞) = 1, θ(ξ, ∞) = 0, φ(ξ, ∞) =0  (10) 
 
 And the initial conditions (6) are reduced to Eq. 11: 
 
f (0η) = θ(0η) = φ(0,η) = 0 (11) 
 
Where: 
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α ν
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 Are the mixed convection parameter, Peclet 
number, Reynolds number, Raleigh number, the 
dimensionless wall mass transfer parameter, the 
dimensionless inertial parameter, Lewis number, 
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buoyancy ratio parameter, thermal dispersion parameter 
and solutal dispersion parameter, respectively. It should 
be noted that λ = 0 corresponds to the pure forced 
convection regime, while large values of λ corresponds 
to the free convection regime dominate. Also, the 
normal velocity at the surface must be inversely 
proportional to the square root of x, in order to make fw 
independent of x. 
 The physical quantities of fundamental interest of 
heat and mass transfer are the local friction factor, the 
local heat transfer and the local mass transfer 
coefficients in terms of the local skin friction 
coefficient, the local Nusselt and Sherwood numbers, 
respectively. The local skin friction coefficient can be 
expressed as Eq. 12: 
 

11 ''2
f 2

y 0

2 u
C 2Pe Re f ( ,0)

u y

−−

∞ =

 µ ∂= = ξ ξ ρ ∂ 
  (12) 

 
 Similarly, the Nusselt number can be expressed as 
Eq. 13: 
 

1 '2

w y 0

x T 1
Nu 2Pe ( ,0)

(T T ) y 2

−

∞ =

 ∂= = ξ θ ξ − ∂ 
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 Also, the Sherwood number can be written as Eq. 14:  
 

1 '2

w y 0

x C 1
Sh 2Pe ( ,0)

(C C ) y 2

−

∞ =

 ∂= = ξ ϕ ξ − ∂ 
 (14) 

 
RESULTS AND DISCUSSION  

 
 The influence of various parameters on the 
transient behavior of the laminar mixed convection 
flow heat and mass transfer along an isothermal vertical 
plate embedded in a porous medium is examined and 
discussed. During the early stages, heat and mass are 
transferred from the surface to the surrounding fluid in 
a one-dimension conduction process, similar to heat 
conduction in a semi-infinite conducting medium. After 
the passage of this stage, the transient process becomes 
and remains two-dimensioned until steady state 
conditions are reached. 
 Before solving the system of equations (Nield and 
Bejan, 2006; Merkin, 1980; Hsieh et al., 1993) with the 
boundary conditions (Takhar and Beg, 1996) and initial 
conditions (Johnson and Ping, 1978) it can be noticed 
that the equation (Hsieh et al., 1993) is uncoupled with 
any of the momentum or energy equation, also 
Hartmann Ha, inertial Γand the mixed convection χ 
parameters do not affect the concentration and slightly 

affect the temperature so no figure of these variables is 
presented herein.  
       Figure 2 shows the influence of the Hartmann 
number on the velocity profiles. We observe that the 
fluid velocity decrease owing to the increase of Ha. 
This is because the application of a transverse magnetic 
field to an electrically conducting fluid gives rise to a 
resistive force which has a tendency to slow down the 
motion of the fluid in the boundary layer. Figure 3 and 
4 shows the effect of the inertial parameter on the 
transient velocity profiles within the boundary layer for 
aiding and opposing flow, respectively.  
 As shown in Fig. 3 when the buoyancy is aiding 
the flow, the axial velocity evolves from non-zero wall 
velocity to uniform free stream for all values of time. 
 It is clear that (for aiding as well as opposing flow), 
the velocity profiles predicted by the non-Darcy model 
differ significantly from those obtained based on the 
Darcy model.  
 

 
 
Fig. 2: Variation of the transient velocity  profiles with 

the Hartmann number Ha  for N = Γ = 1, Le = 
0.5, ξ= λ = δ1 = δ2 = 0.2, fw = 0 

 

 

 
Fig. 3: Variation of the transient velocity  profiles for 

aidding flow with the inertial  parameter Γ for N 
= Ha =1, Le = 0.5, ξ = λ = δ1= δ = 0.2, fw = 0 
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Fig. 4: Variation of the transient velocity  profiles for 

opposing flow with the inertial  parameter Γ for 
N = Ha = 1, Le = 0.5,   ξ = δ1= δ = 0.2, fw = 0, λ 
= -0.02 

 

 
 
Fig. 5: Variation of the transient velocity  profiles with 

the mixed convection  parameter λ for N = Ha = 
Γ = 1,  Le = 0.5, ξ = δ1= δ2 = 0.2, fw = 0 

 

  

 
Fig. 6: Variation of the transient concentration  

profiles with the Lewis number Le for N = Ha 
= Γ = 1,ξ , λ= δ = δ2= 0.2, fw =  0 

 The inertia effect tends to decrease the velocity, 
since the fluid inertia provides an additional pressure 
loss in the flow field. Also, the hydrodynamic boundary 
layers predicted by the Darcy model are thicker than 
those predicted by the non-Darcy model. The 
influence of mixed convection parameter on the 
transient non-Darcy velocity profiles for aiding and 
opposing flow is shown in Fig. 5. 
 It is obvious that the velocity increases as the mixed 
convection parameter increase. Figure 6 illustrates the 
effect of the Lewis number Le on the concentration 
profiles. It is obvious that the increase in the Lewis 
number Le tends to decrease the concentration profiles. 
 The effect of time ξ for aiding flow case χ= 0.2 on 
the velocity, temperature and concentration profiles are 
shown in Fig.7-9 it is obvious that the flow velocity, 
temperature and concentration profiles increasing with 
time progressing. As 1( )ξ → τ → ∞  the fluid velocity, 
temperature and concentration distributions approach 
steady state conditions. The influence of the 
dimensionless wall mass transfer parameter fw on the 
temperature profiles is shown in Fig. 10. It is noted that 
as fw increases the temperature profiles increase. The 
value of  fw = 0 corresponds to an impermeable surface. 
The increase of the buoyancy ratio parameter increases 
the velocity profiles in the flow boundary layer as 
shown in Fig. 11. Figure 12 and 13 present typical 
profiles of fluid velocity and temperature for different 
values of the thermal dispersion parameter δt. It is 
observed that the temperature rises more quickly than 
the velocity distribution and the thermal boundary layer 
becomes thicker as the thermal dispersion thicker as the 
thermal dispersiont increases. Figure 14 and 15 
elucidate the influence of the solutal dispersion 
parameter δs on the velocity and concentration profiles.  

 

 
 
Fig. 7: Variation of the transient velocity  profiles with 

the time ξ  for N = Ha = Γ = 1, Le = 0.5, δ1 = 
δ2 = 0.2, fw = 0 
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Fig. 8: Variation of the transient temperaure  profiles 

with the time ξ  for N = Ha = Γ = 1, Le = 0.5, δ 
= δ2 = 0.2, fw = 0 

 

  

 
Fig. 9: Variation of the transient concentration profiles 

with the time ξ  for N = Ha = Γ = 1, Le = 
0.5,δ1= δ2 = 0.2, fw = 0 

 

 
 
Fig.10: Variation of the transient temperature  profiles 

with  fw  for N = Ha = Γ = 1,ξ = λ = δ = δ2 0.2, 
Le = 0.5  

 

 
Fig. 11: Variation of the transient velocity profiles with  

the buoyancy ratio parameter N  for Ha = Γ = 
1, ξ = λ = δ1 = δ2 = 0.2 Le = 0.5, fw = 0 

 

   

 
Fig. 12: Variation of the transient velocity profiles 

with the dispertion thermal diffusivity 
parameter δ for N = Ha = Γ = 1, ξ  = χ = δ2 = 
0.2, Le = 0.5, fw = 0 

 

 

 
Fig. 13: Variation of the transient temperature  profiles 

with the dispertion thermal diffusivity 
parameter δ1 for N = Ha = Γ = 1,  ξ = λ =  δ2 = 
Le = 0.5, fw = 0 
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Table 1: Comparison of the values of f' (ξ, 0) for various values of 
λ λ Harris et al. (1999) Al-Odat (2004) Present study 

-1 0.0 0.0001 0.00000 
0 1.0 1.0000 1.00000 
1 2.0 1.9998 2.00018 
2 3.0  2.9992 3.00016 
 
Table 2: Variation of θ (ξ, 0) and φ (ξ, 0) at the plate surface with Le, 

fw δ, δ  and ξ for  Ha = N = Γ = 1.0 and  λ = 0.2 
Le fw δt δs ξ -θ ' (ξ, 0) -φ ' (ξ, 0) 
0.0 0.0 0.2 0.2 0.200 0.6368 0.3303 
0.1 0.0 0.2 0.2 0.200 0.6369 0.3432 
0.5 0.0 0.2 0.2 0.200 0.6371 0.4742 
0.9 0.0 0.2 0.2 0.200 0.6377 0.6088 
0.5 -1.0 0.2 0.2 0.200 0.6926 0.4707 
0.5 0.2 0.2 0.2 0.200 0.6370 0.4742 
0.5 0.5 0.2 0.2 0.200 0.6103 0.4767 
0.5 0.0 0.5 0.2 0.200 0.5973 0.4742 
0.5 0.0 1.0 0.2 0.200 0.5503 0.4742 
0.5 0.0 0.2 1.0 0.200 0.6369 0.3954 
0.5 0.0 0.2 5.0 0.200 0.6368 0.3311 
0.5 0.0 0.2 0.2 0.100 1.1427 0.8186 
0.5 0.0 0.2 0.2 0.750 0.3104 0.3150 
0.5 0.0 0.2 0.2 0.900 0.4270 0.3672 
0.5 0.0 0.2 0.2 0.998 0.7314 0.5400 
 

 
 
Fig. 14: Variation of the transient velocity  profiles 

with the dispertion solutal diffusivity 
parameter δ2 for N = Ha = Γ = 1,  ξ = λ = 

 δ1 =  0.2, Le = 0.5, fw = 0 
 

   

 
Fig. 15: Variation of the transient cocentration profiles 

with the dispertion solutal diffusivity 
parameter δ2 for N = Ha = Γ = 1, ξ = λ = 

 δ1 = Le = 0.5, fw = 0 

Table 3: Variation of f' (ξ, 0), θ (ξ 0) and φ (ξ, 0) at the plate surface 
with Ha, θ (ξ, 0) and φ  for Le = 0.5, fw = 0.0, δ = δ = ξ= 0.2 

Ha Γ λ N f ''(ξ, 0) -θ ' (ξ, 0) -φ ' (ξ, 0) 
0 1.0 0.2 1.0 1.1283 0.6340 0.4742 
0.5 1.0 0.2 1.0 1.1188 0.6351 0.4742 
1.0 1.0 0.2 1.0 1.0976 0.6370 0.4742 
1.5 1.0 0.2 1.0 1.0751 0.6396 0.4742 
1.0 0.7 0.2 1.0 1.1154 0.6355 0.4752 
1.0 1.5 0.2 1.0 1.0782 0.6392 0.4758 
1.0 2.0 0.2 1.0 1.0653 0.6406 0.4769 
1.0 1.0 -0.5 1.0 0.7321 0.6765 0.5057 
1.0 1.0 -0.2 1.0 0.8974 0.6588 0.4911 
1.0 1.0 0.1 1.0 1.0494 0.6423 0.4782 
1.0 1.0 0.2 0.5 1.0736 0.6398 0.4762 
1.0 1.0 0.2 1.5 1.1209 0.6344 0.4723 
 

 The increase in the values of δs tends to increase the 
momentum and concentration boundary layers, which in 
turn increasing the velocity and concentration. It is worth 
mentioning that the concentration field is slightly 
responsive to the changes in the thermal dispersion δt, 
also the increase in the solutal dispersion parameter  δs 
very slightly reduces the temperature profiles, so no 
figure of these variables is presented herein.  
 Table 1 shows a comparison of the present results 
for the skin friction f’’(ξ, 0) with those reported by 
Harris et al. (1999) and Al-Odat (2004) for Γ = Ha = Le 
= 0 and various values of the mixed convection 
parameter λ, the results are found to be in good 
agreement. Our numerical values for f’’(ξ, 0) θ’ (ξ, 0) 
and φ’(ξ, 0) are listed in Table 2 and 3. It is clear that 
the skin friction decreases owing to the increase of Γ or 
Ha and increases owing to the increase of λ while it 
does not affected by the variation of Le and fw. The rate 
of heat and mass transfer increase asΓ, Ha or fw 
increases while they decrease as λ, ξ increase. Finally 
the increase of Le increases the rate of mass transfer. 
 

CONCLUSION 
 
 Transient non-Darcy MHD mixed double diffusive 
convection flow of an electrically conducting fluid over 
an isothermal semi-infinite, vertical plate embedded in 
a homogeneous porous medium, in the presence of a 
transverse uniform magnetic field and surface suction 
or injection has been numerically investigated. The 
non-Darcy model, which includes the Forchhimer 
extension, is employed to describe the flow in the 
porous medium. The plate is suddenly heated and its 
temperature and concentration are raised from T∞ to Tw 
and from C∞ to Cw, respectively. The governing partial 
differential equations are transformed to a non-similar 
form by introducing appropriate transformation. The 
transformed equations have been solved numerically 
using the fourth order Runge-Kutta method with the 



J. Math. & Stat., 8 (1): 15-23, 2012 
 

22 

shooting technique. The effects of all involved 
parameters on the transient velocity, temperature, 
concentration profiles, the local skin friction 
coefficient, Nusselt number and Sherwood number are 
presented and discussed. It has been found that: 
 
• Increasing the inertial parameter Γcan cause a 

slight increase in the fluid temperature, mass 
concentration, the local Nusselt and Sherwood 
numbers and a significant decrease in fluid velocity 
and the local skin friction coefficient. Furthermore, 
it is worth mentioning that the inertial effect grows 
with time 

• Increasing the mixed convection parameter  λ causes 
an increase in the fluid velocity and skin friction 
coefficient, also it reduce the heat and mass transfer 
coefficients for aiding flow, while an apposite trend is 
observed for the opposing flow case  

• Increasing the Hartmann number Ha causes 
decrease in the fluid velocity and skin friction 
coefficient while it increases the heat and mass 
transfer coefficients 

• Increasing the Lewis number Le can cause a 
decrease in mass concentration and increase the 
mass transfer coefficient 

• The fluid velocity, fluid temperature, mass 
concentration, heat and mass transfer coefficients 
increase as the time ξ increases from zero to 0.75 
then they decrease to reach the steady state as ξ-1 
(τ→∞) 

• Increasing the buoyancy ratio parameter increases 
the fluid velocity and skin friction while it 
decreases both the heat and mass transfer 
coefficients 

• Increasing the thermal dispersion parameter 
increases both the velocity and fluid temperature 
while it decreases the heat transfer coefficient 

• Increasing the solutal dispersion parameter 
increases both the velocity and fluid temperature 
while it decreases the mass transfer coefficient 

• Finally, increasing fw increases the mass transfer 
and decreases the heat transfer coefficients  
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