Remark on Bi-Ideals and Quasi-Ideals of Variants of Regular Rings

${ }^{1}$ Samruam Baupradist and ${ }^{2,3}$ Ronnason Chinram
${ }^{1}$ Department of Mathematics, Chulalongkorn University, Bangkok 10330, Thailand
${ }^{2}$ Department of Mathematics and Statistics, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
${ }^{3}$ Centre of Excellence in Mathematics, CHE, Si Ayuthaya Road, Bangkok 10400, Thailand

Abstract

Problem statement: Every quasi-ideal of a ring is a bi-ideal. In general, a bi-ideal of a ring need not be a quasi-ideal. Every bi-ideal of regular rings is a quasi-ideal, so bi-ideals and quasi-ideals of regular rings coincide. It is known that variants of a regular ring need not be regular. The aim of this study is to study bi-ideals and quasi-ideals of variants of regular rings. Approach: The technique of the proof of main theorem use the properties of regular rings and bi-ideals. Results: It shows that every bi-ideal of variants of regular rings is a quasi-ideal. Conclusion: Although the variant of regular rings need not be regular but every bi-ideal of variants of regular rings is a quasi-ideal.

$\underline{\text { Key words: Bi-ideals, quasi-ideals, variants, regular rings, BQ-rings }}$

INTRODUCTION

The notion of quasi-ideals in rings was introduced by (Steinfeld, 1953) while the notion of bi-ideals in rings was introduced much later. It was actually introduced (Lajos and Sza'sz, 1971).

For nonempty subsets A, B of a ring R, AB denotes the set of all finite sums of the form $\sum a_{i} b_{i}, a_{i} \in A, b_{i} \in B$. A subring Q of a ring R is called a quasi-ideal of R if $\mathrm{RQ} \cap \mathrm{QR} \subseteq \mathrm{Q}$ and a bi-ideal of R is a subring B of R such that $B R B \subseteq B$. Every quasi-ideal of R is a bi-ideal. In general, bi-ideals of rings need not be quasi-ideals. See the following example. Consider the ring $\left(\mathrm{SU}_{4}(\mathbb{R}),+, \cdot\right)$ of all strictly upper triangular 4×4 matrices over the field \mathbb{R} of real numbers under the usual addition and multiplication of matrices.

Let $B=\left\{\left.\left[\begin{array}{cccc}0 & 0 & x & 0 \\ 0 & 0 & 0 & x \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\}$.

Then B is a zero subring of $\left(\mathrm{SU}_{4}(\mathbb{R}),+, \cdot\right)$. Moreover, $\mathrm{BSU}_{4}(\mathbb{R}) \mathrm{B}=\{0\}$. Thus B isa bi-ideal of $\left(\mathrm{SU}_{4}(\mathbb{R}),+, \cdot\right)$.

But
Corresponding Author: Samruam Baupradist, Department of Mathematics, Chulalongkorn University, Bangkok 10330, Thailand
ring. We usually write $(\mathrm{R},+, \mathrm{a})$ rather that $(\mathrm{R},+, \mathrm{o})$ to make the element a explicit. The ring ($\mathrm{R},+$, a) is called a variant of R with respect to a . It is well-known that the variant of regular rings need not be regular ring (see (Kemprasit, 2002) and (Chinram, 2009).

Our aim is to prove that every bi-ideal of variants of regular rings is a quasi-ideal. In fact, the technique of the proof of Theorem 1 is helpful for our work. However, our proof is more complicated.

RESULTS

The following theorem is our main result.
Theorem 2: Let R be a regular ring and $a \in R$. Then every bi-ideal of the ring $(R,+, a)$ is a quasi-ideal.

Proof: Let B be a bi-ideal of a ring ($\mathrm{R},+$, a). Then $\mathrm{BaRaB} \subseteq \mathrm{B}$. To show that $\mathrm{RaB} \cap \mathrm{BaR} \subseteq \mathrm{B}$, let x be an element of $\mathrm{RaB} \cap \mathrm{BaR}$.

Then:
$x \in \operatorname{RaB}$
and
$x=b_{11} a_{1}+b_{12} a r_{2}+\ldots+b_{1 n} a r_{n}$
for some $b_{11}, b_{12} \ldots, b_{1 n} \in B$ and $r_{1}, r_{2}, \ldots, r_{n} \in R$.

Since each $b_{1 i} a \in R$ and ($R,+$,) is a regular ring, there exists $s_{1 i} \in R$ such that $b_{1 i} a=b_{1 i} a s_{1 i} b_{1 i} a$. By (2), we have:
$x=b_{11} \mathrm{as}_{11} \mathrm{~b}_{11} \mathrm{ar}_{11}+\mathrm{b}_{12} \mathrm{as}_{12} \mathrm{~b}_{12} \mathrm{ar}_{2}+\ldots+\mathrm{b}_{1 \mathrm{n}} \mathrm{as}_{1 \mathrm{n}} \mathrm{b}_{1 \mathrm{n}} \mathrm{ar}_{\mathrm{n}}$
and

$$
\begin{align*}
& b_{11} a_{11} b_{11} a_{1}=b_{11} a_{11}\left(x-b_{12} a r_{2}-\ldots-b_{1 n} a r_{n}\right) \tag{4}\\
& =b_{11} a s_{11} x-b_{11} a a_{11} b_{12} a_{2}-\ldots-b_{11} a s_{11} b_{1 n} a a_{n} .
\end{align*}
$$

It then follows from (3) and (4) that:

$$
\begin{aligned}
& \mathrm{x}=\mathrm{b}_{11} \mathrm{as}_{11} \mathrm{x}+\left(\mathrm{b}_{12} \mathrm{as}_{12} \mathrm{~b}_{12}-\mathrm{b}_{11} \mathrm{as}_{11} \mathrm{~b}_{12}\right) \mathrm{ar}_{2} \\
& +\ldots+\left(\mathrm{b}_{1 \mathrm{n}} \mathrm{as}_{1 \mathrm{n}} \mathrm{~b}_{1 \mathrm{n}}-\mathrm{b}_{11} \mathrm{as}_{11} \mathrm{~b}_{1 \mathrm{n}}\right) \mathrm{ar}_{\mathrm{n}} .
\end{aligned}
$$

But from (1) and (2):
$\mathrm{b}_{11} \mathrm{as}_{11} \mathrm{x} \in \mathrm{Bas}_{11} \mathrm{RaB} \subseteq \mathrm{BaRaB}$
and for $\mathrm{i} \in\{2,3, \ldots, \mathrm{n}\}$,
$\mathrm{b}_{1 \mathrm{i}} \mathrm{as}_{1 \mathrm{i}} \mathrm{b}_{1 \mathrm{i}}-\mathrm{b}_{1} \mathrm{as}_{11} \mathrm{~b}_{1 \mathrm{i}} \in$ Bas $_{1 \mathrm{i}} \mathrm{B}-\mathrm{Bas}_{11} \mathrm{~B} \subseteq \mathrm{BaR}$.
So:
$x=b_{1}+b_{22} a r_{2}+\ldots+b_{2 n} a r_{n}$
for some $b_{1} \in \operatorname{BaRaB}$ and $b_{22}, \ldots, b_{2 n} \in B a R$.

Since for $\mathrm{i} \in\{2,3, \ldots, \mathrm{n}\}, \mathrm{b}_{2 \mathrm{i}} \mathrm{a} \in \mathrm{R}$, we have that for each $i \in\{2,3, \ldots, n\}, b_{2 i} a=b_{2 i} a_{2 i} b_{2 i} a$ for some $s_{2 i} \in R$. Thus from (5),
$\mathrm{x}=\mathrm{b}_{1}+\mathrm{b}_{22} \mathrm{as}_{22} \mathrm{~b}_{22} \mathrm{ar}_{2}+\ldots+\mathrm{b}_{2 \mathrm{n}} \mathrm{as}_{2 \mathrm{n}} \mathrm{b}_{2 \mathrm{n}} \mathrm{ar}_{\mathrm{n}}$
and

$$
\begin{align*}
& \mathrm{b}_{22} \mathrm{as}_{22} \mathrm{~b}_{22} \mathrm{ar}_{2}=\mathrm{b}_{22} \mathrm{as}_{22}\left(\mathrm{x}-\mathrm{b}_{1}-\mathrm{b}_{23} \mathrm{ar}_{3}-\ldots-\mathrm{b}_{2 \mathrm{n}} \mathrm{ar}_{\mathrm{n}}\right) \\
& =\mathrm{b}_{22} \mathrm{as}_{22} \mathrm{x}-\mathrm{b}_{22} \mathrm{as}_{22} \mathrm{~b}_{1}-\mathrm{b}_{22} \mathrm{as}_{22} \mathrm{~b}_{23} \mathrm{ar}_{3} \tag{7}\\
& -\ldots-\mathrm{b}_{22} \mathrm{as}_{22} \mathrm{~b}_{2 \mathrm{n}} \mathrm{ar}_{\mathrm{n}} .
\end{align*}
$$

We then deduce from (6) and (7) that:

$$
\begin{aligned}
& \mathrm{x}=\mathrm{b}_{1}+\mathrm{b}_{22} \mathrm{as}_{22} \mathrm{x}-\mathrm{b}_{22} \mathrm{as}_{22} \mathrm{~b}_{1} \\
& +\left(\mathrm{b}_{23} \mathrm{as}_{23} \mathrm{~b}_{23}-\mathrm{b}_{22} \mathrm{as}_{22} \mathrm{~b}_{23}\right) \mathrm{ar}_{2} \\
& +\ldots+\left(\mathrm{b}_{2 \mathrm{n}} \mathrm{as}_{2 \mathrm{n}} \mathrm{~b}_{2 \mathrm{n}}-\mathrm{b}_{22} \mathrm{as}_{22} \mathrm{~b}_{2 \mathrm{n}}\right) \mathrm{ar}_{\mathrm{n}}
\end{aligned} .
$$

But from (1) and (5):
$\mathrm{b}_{1} \in \mathrm{BaRaB}$,
$\mathrm{b}_{22} \mathrm{as}_{22} \mathrm{x} \in \mathrm{BaRas}_{22} \mathrm{RaB} \subseteq \mathrm{BaRaB}$,
$\mathrm{b}_{22} \mathrm{as}_{22} \mathrm{~b}_{1} \in \mathrm{BaRas}_{22} \mathrm{BaRaB} \subseteq \mathrm{BaRaB}$
and for $i \in\{3, \ldots, n\}$,
$\mathrm{b}_{2 \mathrm{i}} \mathrm{as}_{2 \mathrm{i}} \mathrm{b}_{2 \mathrm{i}}-\mathrm{b}_{22} \mathrm{as}_{22} \mathrm{~b}_{21}$
\in BaRas $_{2 \text { i }} \mathrm{BaR}+$ BaRas $_{22} \mathrm{BaR}$.

Thus $\mathrm{b}_{2 \mathrm{i}} \mathrm{as}_{2 \mathrm{i}} \mathrm{b}_{2 \mathrm{i}}-\mathrm{b}_{22} \mathrm{as}_{22} \mathrm{~b}_{21} \in B a R$, so we have:
$\mathrm{x}=\mathrm{b}_{2}+\mathrm{b}_{33} \mathrm{ar}_{3}+\ldots+\mathrm{b}_{3 \mathrm{n}} \mathrm{ar}_{\mathrm{n}}$
for some $b_{2} \in \operatorname{BaRaB}$ and $\mathrm{b}_{33}, \ldots, \mathrm{~b}_{3 \mathrm{n}} \in \operatorname{BaR}$.
Continuing in this fashion, we obtain the $n-1^{\text {th }}$ step that:

$$
\begin{equation*}
\mathrm{x}=\mathrm{b}_{\mathrm{n}-1}+\mathrm{b}_{\mathrm{n}} \mathrm{ar}_{\mathrm{n}} \tag{8}
\end{equation*}
$$

for some $b_{n-1} \in \operatorname{BaRaB}$ and $b_{n n} \in B a R$.
Let $s_{n n} \in R$ be such that $b_{n n} a=b_{n n} a s_{n n} b_{m n} a$. Then from (8):

$$
\begin{equation*}
\mathrm{x}=\mathrm{b}_{\mathrm{n}-1}+\mathrm{b}_{\mathrm{nn}} \mathrm{as}_{\mathrm{nn}} \mathrm{~b}_{\mathrm{mn}} \mathrm{ar}_{\mathrm{n}} \tag{9}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathrm{b}_{\mathrm{nn}} \mathrm{as}_{\mathrm{n}} \mathrm{~b}_{\mathrm{nn}} \mathrm{as}_{\mathrm{nn}} \mathrm{~b}_{\mathrm{nn}} \mathrm{ar}_{\mathrm{n}}=\mathrm{b}_{\mathrm{nn}} \mathrm{as}_{\mathrm{nn}}\left(\mathrm{x}-\mathrm{b}_{\mathrm{n}-1}\right) \tag{10}\\
& =\mathrm{b}_{\mathrm{nn}} \mathrm{as}_{\mathrm{nn}} \mathrm{x}-\mathrm{b}_{\mathrm{nn}} \mathrm{as}_{\mathrm{nn}} \mathrm{~b}_{\mathrm{n}-1} .
\end{align*}
$$

Thus we obtain from (9) and (10) that:

$$
\mathrm{x}=\mathrm{b}_{\mathrm{n}-1}+\mathrm{b}_{\mathrm{nn}} \mathrm{as}_{\mathrm{nn}} \mathrm{x}-\mathrm{b}_{\mathrm{nn}} \mathrm{as}_{\mathrm{nn}} \mathrm{~b}_{\mathrm{n}-1} .
$$

But since by (1) and (8):
$\mathrm{b}_{\mathrm{n}-1} \in \mathrm{BaRaB}$,
$\mathrm{b}_{\mathrm{nn}} \mathrm{as}_{\mathrm{nn}} \mathrm{X} \in \mathrm{BaRas}_{\mathrm{nn}} \mathrm{RaB} \subseteq \mathrm{BaRaB}$ and
$\mathrm{b}_{\mathrm{nn}} \mathrm{as}_{\mathrm{nn}} \mathrm{b}_{\mathrm{n}-1} \in \mathrm{BaRas}_{\mathrm{nn}} \mathrm{BaRaB} \subseteq \mathrm{BaRaB}$,
it follows that $\mathrm{x} \in \mathrm{BaRaB}$ which implies that $\mathrm{x} \in \mathrm{B}$.
This proves that $\mathrm{RaB} \cap \mathrm{BaR} \subseteq \mathrm{B}$, so B is a quasiideal of the ring ($\mathrm{R},+$, a).

Hence the theorem is proved.

DISCUSSION

It is known that every bi-ideal of regular rings is a quasi-ideal. However, although the variant of regular rings need not be a regular ring but every bi-ideal of variants of regular rings is a quasi-ideal.

CONCLUSION

Every bi-ideal of variants of regular rings is a quasi-ideal, so bi-ideals and quasi-ideals of variants of regular rings coincide.

REFERENCES

Chinram, C., 2009. Regularity-preserving elements of regular rings. Sci. Asia, 35: 111-112. DOI: 10.2306/scienceasia1513-1874.2009.35.111

Kemprasit, Y., 2002. Regularity and unit-regularity of generalized semigroups of linear transformations. Southeast Asian Bull. Math., 25: 617-622. DOI: 10.1007/s100120200006

Kemprasit Y. and S. Baupradist, 2001. A note on the multiplicative semigroups Z_{n} whose bi-ideals are quasi-ideals. Southeast Asian Bull. Math., 25: 269-271. DOI: 10.1007/s10012-001-0269-9
Lajos, S. and F.A. Sza'sz, 1970. On the bi-ideals in associative rings. Proc. Japan Acad., Ser. A, 46: 505-507. DOI:10.3792/pja/1195520265
Steinfeld, O., 1953. On ideal-quotients and prime ideals. Acta Math. Acad. Sci. Hung., 4: 289-298. DOI: 10.1007/BF02127587

