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Abstract: Problem statement: Every quasi-ideal of a ring is a bi-ideal. In general, a bi-ideal of a ring 
need not be a quasi-ideal. Every bi-ideal of regular rings is a quasi-ideal, so bi-ideals and quasi-ideals 
of regular rings coincide. It is known that variants of a regular ring need not be regular. The aim of this 
study is to study bi-ideals and quasi-ideals of variants of regular rings. Approach: The technique of 
the proof of main theorem use the properties of regular rings and bi-ideals. Results: It shows that every 
bi-ideal of variants of regular rings is a quasi-ideal. Conclusion: Although the variant of regular rings 
need not be regular but every bi-ideal of variants of regular rings is a quasi-ideal. 
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INTRODUCTION 

 
 The notion of quasi-ideals in rings was introduced 
by (Steinfeld, 1953) while the notion of bi-ideals in 
rings was introduced much later. It was actually 
introduced (Lajos and Sza'sz, 1971). 
 For nonempty subsets A, B of a ring R, AB denotes 
the set of all finite sums of the form 

i i i ia b ,a A,b B∈ ∈∑ . A subring Q of a ring R is called a 
quasi-ideal of R if RQ∩QR⊆Q and a bi-ideal of R is a 
subring B of R such that BRB⊆B. Every quasi-ideal of 
R is a bi-ideal. In general, bi-ideals of rings need not be 
quasi-ideals. See the following example. Consider the 
ring 4(SU ( ), , )+ ⋅ of all strictly upper triangular 4×4 
matrices over the field  of real numbers under the 
usual addition and multiplication of matrices. 
 

 Let

0 0 x 0
0 0 0 x

B x .
0 0 0 0
0 0 0 0

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥= ∈⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 
Then B is a zero subring of 4(SU ( ), , ).+ ⋅  Moreover, 

4BSU ( )B {0}.=R  Thus B is a bi-ideal of 4(SU ( ), , ).+ ⋅   
 
But 

4 4

0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

(SU ( )B BSU ( )) \ B.

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∈ ∩

  

 
So B is not a quasi-ideal of 4(SU ( ), , ).+ ⋅  
 

MATERIALS AND METHODS 
 
 An element a of a ring R is called regular if there 
exists x in S such that a = axa. A ring R is called regular 
if every element in R is regular. The following known 
result shows a sufficient condition for a bi-ideal of a 
ring to be a quasi-ideal.  
 
Theorem 1: If B is a bi-ideal of a ring R such that 
every element of B is regular in R, then B is a quasi-
ideal of R. In particular, if R is a regular ring, then 
every bi-ideal of R is a quasi-ideal. 
 
 Let R be a ring and a∈R. A new product ο defined 
on R by x o y = xay for all x, y∈R. Then (R, +, o) is a 
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ring. We usually write (R, +, a) rather that (R, +, o) to 
make the element a explicit. The ring (R, +, a) is called 
a variant of R with respect to a. It is well-known that 
the variant of regular rings need not be regular ring (see 
(Kemprasit, 2002) and (Chinram, 2009).  
 Our aim is to prove that every bi-ideal of variants 
of regular rings is a quasi-ideal. In fact, the technique of 
the proof of Theorem 1 is helpful for our work. 
However, our proof is more complicated. 
 

RESULTS 
 
 The following theorem is our main result. 
 
Theorem 2: Let R be a regular ring and a∈R. Then 
every bi-ideal of the ring (R, +, a) is a quasi-ideal. 
 
Proof: Let B be a bi-ideal of a ring (R, +, a). Then 
BaRaB B.⊆  To show that RaB BaR B∩ ⊆ , let x be an 
element of RaB BaR.∩   
 
Then:  
 
x∈RaB (1)  
 
and 
 

11 1 12 2 1n nx b ar b ar b ar= + + +…  (2) 
 
for some 11 12 1nb ,b ,b B∈…  and 1 2 nr , r , , r ∈… R. 
 
 Since each 1ib a R∈  and (R, , )+ ⋅  is a regular ring, 
there exists 1is R∈  such that 1i 1i 1i 1ib a b as b a.=  By (2), we 
have: 
 

11 11 11 11 12 12 12 2 1n 1n 1n nx b as b ar b as b ar b as b ar= + + +…  (3) 
 
and 
 

( )11 11 11 1 11 11 12 2 1n n

11 11 11 11 12 2 11 11 1n n

b as b ar b as x b ar b ar
b as x b as b ar b as b ar .

= − − −

= − − −

…
…

 (4) 

 
 It then follows from (3) and (4) that: 
 

( )
( )

11 11 12 12 12 11 11 12 2

1n 1n 1n 11 11 1n n

x b as x b as b b as b ar

b as b b as b ar .

= + −

+ + −…
 

 
 But from (1) and (2):  
 

11 11 11b as x Bas RaB BaRaB∈ ⊆  

and for { }i 2,3, ,n ,∈ …  
 

1i 1i 1i 1 11 1i 1i 11b as b b as b Bas B Bas B BaR.− ∈ − ⊆  
 
So:  
 

1 22 2 2n nx b b ar b ar= + + +…  (5) 
  
for some 1b BaRaB∈  and 22 2nb , ,b BaR.∈…  
 
 Since for { } 2ii 2,3, ,n ,b a R∈ ∈… , we have that for 
each { } 2i 2i 2i 2ii 2,3, ,n ,b a b as b a∈ =…  for some 2is R.∈  
Thus from (5), 
 

1 22 22 22 2 2n 2n 2n nx b b as b ar b as b ar= + + +…  (6) 
 
and 
 

( )22 22 22 2 22 22 1 23 3 2n n

22 22 22 22 1 22 22 23 3

22 22 2n n

b as b ar b as x b b ar b ar
b as x b as b b as b ar

b as b ar .

= − − − −

= − −
− −

…

…
 (7) 

 
 We then deduce from (6) and (7) that: 
 

( )
( )

1 22 22 22 22 1

23 23 23 22 22 23 2

2n 2n 2n 22 22 2n n

x b b as x b as b
b as b b as b ar

b as b b as b ar

= + −

+ −

+ + −…

 . 

 
 But from (1) and (5): 
 

1

22 22 22

22 22 1 22

b BaRaB,
b as x BaRas RaB BaRaB,
b as b BaRas BaRaB BaRaB

∈
∈ ⊆
∈ ⊆

 

 
and for { }i 3, ,n ,∈ …  
 

2i 2i 2i 22 22 21

2i 22

b as b b as b
BaRas BaR BaRas BaR.

−
∈ +

 

 
 Thus 2i 2i 2i 22 22 21b as b b as b BaR,− ∈  so we have: 
 

2 33 3 3n nx b b ar b ar= + + +…  

 
for some 2b BaRaB∈ and 33 3nb , ,b BaR.∈…  
 
 Continuing in this fashion, we obtain the n-1th step 
that: 
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n 1 nn nx b b ar−= +  (8) 
 
for some n 1b BaRaB− ∈ and nnb BaR.∈  
  
 Let nns R∈  be such that nn nn nn nnb a b as b a.=  Then 
from (8): 
 

n 1 nn nn nn nx b b as b ar−= +  (9) 
 
and 
 

nn nn nn nn nn n nn nn n 1

nn nn nn nn n 1

b as b as b ar b as (x b )
b as x b as b .

−

−

= −
= −

 (10) 

 
 Thus we obtain from (9) and (10) that: 
 

n 1 nn nn nn nn n 1x b b as x b as b .− −= + −  
 
 But since by (1) and (8): 
 

n 1

nn nn nn

nn nn n 1 nn

b BaRaB,
b as x BaRas RaB BaRaB and
b as b BaRas BaRaB BaRaB,

−

−

∈
∈ ⊆
∈ ⊆

 

 
it follows that x BaRaB∈ which implies that x∈B. 
 This proves that RaB BaR B,∩ ⊆ so B is a quasi-
ideal of the ring (R, +, a).  
 Hence the theorem is proved. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCUSSION  
 
 It is known that every bi-ideal of regular rings is a 
quasi-ideal. However, although the variant of regular 
rings need not be a regular ring but every bi-ideal of 
variants of regular rings is a quasi-ideal. 
 

CONCLUSION 
 
 Every bi-ideal of variants of regular rings is a 
quasi-ideal, so bi-ideals and quasi-ideals of variants of 
regular rings coincide. 
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