Journal of Mathematics and Statistics 7 (1): 78-80, 2011 ISSN 1549-3644 © 2010 Science Publications

Remark on Bi-Ideals and Quasi-Ideals of Variants of Regular Rings

¹Samruam Baupradist and ^{2,3}Ronnason Chinram ¹Department of Mathematics, Chulalongkorn University, Bangkok 10330, Thailand ²Department of Mathematics and Statistics, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand ³Centre of Excellence in Mathematics, CHE, Si Ayuthaya Road, Bangkok 10400, Thailand

Abstract: Problem statement: Every quasi-ideal of a ring is a bi-ideal. In general, a bi-ideal of a ring need not be a quasi-ideal. Every bi-ideal of regular rings is a quasi-ideal, so bi-ideals and quasi-ideals of regular rings coincide. It is known that variants of a regular ring need not be regular. The aim of this study is to study bi-ideals and quasi-ideals of variants of regular rings. **Approach:** The technique of the proof of main theorem use the properties of regular rings and bi-ideals. **Results:** It shows that every bi-ideal of variants of regular rings and bi-ideals. **Results:** It shows that every bi-ideal of variants of regular rings is a quasi-ideal.

Key words: Bi-ideals, quasi-ideals, variants, regular rings, BQ-rings

INTRODUCTION

The notion of quasi-ideals in rings was introduced by (Steinfeld, 1953) while the notion of bi-ideals in rings was introduced much later. It was actually introduced (Lajos and Sza'sz, 1971).

For nonempty subsets A, B of a ring R, AB denotes the set of all finite sums of the form $\sum a_i b_i, a_i \in A, b_i \in B$. A subring Q of a ring R is called a quasi-ideal of R if RQ \cap QR \subseteq Q and a bi-ideal of R is a subring B of R such that BRB \subseteq B. Every quasi-ideal of R is a bi-ideal. In general, bi-ideals of rings need not be quasi-ideals. See the following example. Consider the ring (SU₄($\mathbb{R}, +, \cdot$) of all strictly upper triangular 4×4 matrices over the field \mathbb{R} of real numbers under the usual addition and multiplication of matrices.

Let B =
$$\left\{ \begin{vmatrix} 0 & 0 & x & 0 \\ 0 & 0 & 0 & x \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix} \middle| x \in \mathbb{R} \right\}.$$

Then B is a zero subring of $(SU_4(\mathbb{R}, +, \cdot))$. Moreover, BSU₄(\mathbb{R})B = {0}. Thus B is a bi-ideal of $(SU_4(\mathbb{R}, +, \cdot))$.

[0) () ()]	[]	0	1	0	0	0	0	1	0
0) () () ()	0	0	0	0	0	0	0	1
0) () () () ⁼	0	0	0	0	0	0	0	0
6) ()) () (<u>ן</u>	0	0	0	0	0	0	0	0
=	0	0	1	0]	0	0	0	0]				
	0	0	0	1	0	0	0	0				
	0	0	0	0	0	0	0	1				
	0	0	0	0	0	0	0	0				
$\in (\mathrm{SU}_4(\mathbb{R})\mathrm{B} \cap \mathrm{BSU}_4(\mathbb{R})) \setminus \mathrm{B}.$												

So B is not a quasi-ideal of $(SU_4(\mathbb{R}, +, \cdot))$.

MATERIALS AND METHODS

An element a of a ring R is called regular if there exists x in S such that a = axa. A ring R is called regular if every element in R is regular. The following known result shows a sufficient condition for a bi-ideal of a ring to be a quasi-ideal.

Theorem 1: If B is a bi-ideal of a ring R such that every element of B is regular in R, then B is a quasiideal of R. In particular, if R is a regular ring, then every bi-ideal of R is a quasi-ideal.

Let R be a ring and $a \in R$. A new product o defined on R by x o y = xay for all x, $y \in R$. Then (R, +, o) is a

Corresponding Author: Samruam Baupradist, Department of Mathematics, Chulalongkorn University, Bangkok 10330, Thailand

But

ring. We usually write (R, +, a) rather that (R, +, o) to make the element a explicit. The ring (R, +, a) is called a variant of R with respect to a. It is well-known that the variant of regular rings need not be regular ring (see (Kemprasit, 2002) and (Chinram, 2009).

Our aim is to prove that every bi-ideal of variants of regular rings is a quasi-ideal. In fact, the technique of the proof of Theorem 1 is helpful for our work. However, our proof is more complicated.

RESULTS

The following theorem is our main result.

Theorem 2: Let R be a regular ring and $a \in R$. Then every bi-ideal of the ring (R, +, a) is a quasi-ideal.

Proof: Let B be a bi-ideal of a ring (R, +, a). Then $BaRaB \subseteq B$. To show that $RaB \cap BaR \subseteq B$, let x be an element of $RaB \cap BaR$.

Then:

$$x \in RaB$$
 (1)

and

$$\mathbf{x} = \mathbf{b}_{11}\mathbf{a}\mathbf{r}_1 + \mathbf{b}_{12}\mathbf{a}\mathbf{r}_2 + \dots + \mathbf{b}_{1n}\mathbf{a}\mathbf{r}_n \tag{2}$$

for some $b_{11}, b_{12}, ..., b_{1n} \in B$ and $r_1, r_2, ..., r_n \in R$.

Since each $b_{1i}a \in R$ and $(R, +, \cdot)$ is a regular ring, there exists $s_{1i} \in R$ such that $b_{1i}a = b_{1i}as_{1i}b_{1i}a$. By (2), we have:

$$\mathbf{x} = \mathbf{b}_{11} \mathbf{a} \mathbf{s}_{11} \mathbf{b}_{11} \mathbf{a} \mathbf{r}_{11} + \mathbf{b}_{12} \mathbf{a} \mathbf{s}_{12} \mathbf{b}_{12} \mathbf{a} \mathbf{r}_2 + \dots + \mathbf{b}_{1n} \mathbf{a} \mathbf{s}_{1n} \mathbf{b}_{1n} \mathbf{a} \mathbf{r}_n$$
(3)

and

It then follows from (3) and (4) that:

$$x = b_{11}as_{11}x + (b_{12}as_{12}b_{12} - b_{11}as_{11}b_{12})ar_2$$

+...+ (b_{1n}as_{1n}b_{1n} - b_{11}as_{11}b_{1n})ar_n.

But from (1) and (2):

 $b_{11}as_{11}x \in Bas_{11}RaB \subseteq BaRaB$

and for $i \in \{2, 3, ..., n\}$,

 $b_{1i}as_{1i}b_{1i} - b_1as_{11}b_{1i} \in Bas_{1i}B - Bas_{11}B \subseteq BaR.$

So:

$$\mathbf{x} = \mathbf{b}_1 + \mathbf{b}_{22}\mathbf{a}\mathbf{r}_2 + \dots + \mathbf{b}_{2n}\mathbf{a}\mathbf{r}_n \tag{5}$$

for some $b_1 \in BaRaB$ and $b_{22}, \dots, b_{2n} \in BaR$.

Since for $i \in \{2, 3, ..., n\}, b_{2i}a \in R$, we have that for each $i \in \{2, 3, ..., n\}, b_{2i}a = b_{2i}as_{2i}b_{2i}a$ for some $s_{2i} \in R$. Thus from (5),

$$\mathbf{x} = \mathbf{b}_1 + \mathbf{b}_{22} \mathbf{a} \mathbf{s}_{22} \mathbf{b}_{22} \mathbf{a} \mathbf{r}_2 + \dots + \mathbf{b}_{2n} \mathbf{a} \mathbf{s}_{2n} \mathbf{b}_{2n} \mathbf{a} \mathbf{r}_n \tag{6}$$

and

$$b_{22}a_{22}b_{22}a_{2} = b_{22}a_{22}(x - b_1 - b_{23}a_3 - \dots - b_{2n}a_n)$$

= $b_{22}a_{22}x - b_{22}a_{22}b_1 - b_{22}a_{22}b_{23}a_3$ (7)
-... - $b_{22}a_{22}b_{2n}a_n$.

We then deduce from (6) and (7) that:

$$\begin{split} & x = b_1 + b_{22}as_{22}x - b_{22}as_{22}b_1 \\ & + \left(b_{23}as_{23}b_{23} - b_{22}as_{22}b_{23}\right)ar_2 \\ & + \ldots + \left(b_{2n}as_{2n}b_{2n} - b_{22}as_{22}b_{2n}\right)ar_n \end{split}$$

But from (1) and (5):

 $b_1 \in BaRaB,$ $b_{22}as_{22}x \in BaRas_{22}RaB \subseteq BaRaB,$ $b_{22}as_{22}b_1 \in BaRas_{22}BaRaB \subseteq BaRaB$

and for $i \in \{3, ..., n\}$,

$$\begin{split} & b_{2i}as_{2i}b_{2i} - b_{22}as_{22}b_{21} \\ & \in BaRas_{2i}BaR + BaRas_{22}BaR. \end{split}$$

Thus $b_{2i}as_{2i}b_{2i} - b_{22}as_{22}b_{21} \in BaR$, so we have:

 $x = b_2 + b_{33}ar_3 + \ldots + b_{3n}ar_n$

for some $b_2 \in BaRaB$ and $b_{33}, \dots, b_{3n} \in BaR$.

Continuing in this fashion, we obtain the $n-1^{th}$ step that:

(8)

 $\mathbf{x} = \mathbf{b}_{\mathbf{n}-1} + \mathbf{b}_{\mathbf{n}\mathbf{n}}\mathbf{ar}_{\mathbf{n}}$

for some $b_{n-1} \in BaRaB$ and $b_{nn} \in BaR$.

Let $s_{nn} \in R$ be such that $b_{nn}a = b_{nn}as_{nn}b_{nn}a$. Then from (8):

$$\mathbf{x} = \mathbf{b}_{n-1} + \mathbf{b}_{nn} \mathbf{a} \mathbf{s}_{nn} \mathbf{b}_{nn} \mathbf{a} \mathbf{r}_n \tag{9}$$

and

$$b_{nn}as_{nn}b_{nn}as_{nn}b_{nn}ar_{n} = b_{nn}as_{nn}(x - b_{n-1})$$

= $b_{nn}as_{nn}x - b_{nn}as_{nn}b_{n-1}.$ (10)

Thus we obtain from (9) and (10) that:

$$x = b_{n-1} + b_{nn}as_{nn}x - b_{nn}as_{nn}b_{n-1}.$$

But since by (1) and (8):

$$\begin{split} b_{n-1} &\in BaRaB, \\ b_{nn}as_{nn}x &\in BaRas_{nn}RaB \subseteq BaRaB \text{ and } \\ b_{nn}as_{nn}b_{n-1} &\in BaRas_{nn}BaRaB \subseteq BaRaB, \end{split}$$

it follows that $x \in BaRaB$ which implies that $x \in B$.

This proves that $RaB \cap BaR \subseteq B$, so B is a quasiideal of the ring (R, +, a).

Hence the theorem is proved.

DISCUSSION

It is known that every bi-ideal of regular rings is a quasi-ideal. However, although the variant of regular rings need not be a regular ring but every bi-ideal of variants of regular rings is a quasi-ideal.

CONCLUSION

Every bi-ideal of variants of regular rings is a quasi-ideal, so bi-ideals and quasi-ideals of variants of regular rings coincide.

REFERENCES

- Chinram, C., 2009. Regularity-preserving elements of regular rings. Sci. Asia, 35: 111-112. DOI: 10.2306/scienceasia1513-1874.2009.35.111
- Kemprasit, Y., 2002. Regularity and unit-regularity of generalized semigroups of linear transformations. Southeast Asian Bull. Math., 25: 617-622. DOI: 10.1007/s100120200006
- Kemprasit Y. and S. Baupradist, 2001. A note on the multiplicative semigroups Z_n whose bi-ideals are quasi-ideals. Southeast Asian Bull. Math., 25: 269-271. DOI: 10.1007/s10012-001-0269-9
- Lajos, S. and F.A. Sza'sz, 1970. On the bi-ideals in associative rings. Proc. Japan Acad., Ser. A, 46: 505-507. DOI:10.3792/pja/1195520265
- Steinfeld, O., 1953. On ideal-quotients and prime ideals. Acta Math. Acad. Sci. Hung., 4: 289-298. DOI: 10.1007/BF02127587