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Abstract: Problem statement: In this study, numerical solution for the Fredholm integral equation of 
the second kind with Cauchy singular kernel is presented. Approach: The Chebyshev polynomials of 
the second kind are used to approximate the unknown function. Results: Numerical results are given to 
show the accuracy of the present numerical solution. Conclusion: The present numerical solution to 
the Fredholm integral equation of the second kind with Cauchy kernel is accurate. 
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INTRODUCTION 

 
          Consider the Fredholm integral equation of the 
second kind with Cauchy kernel of the form: 
  

1

1

(t)(x) dt = f (x), ( is a constant)
t x−

ϕ
ϕ + λ λ

−∫             (1) 

 
with specified end conditions: 
 

( 1) = 0ϕ ±                                                        (2) 
 
where f is  assumed to be real-valued functions belong 
to the class of Holder on the interval [-1, 1] and ϕ is the 
unknown function to be determined. The singular 
integral in Eq. 1 being understood in the sense of 
Cauchy principal value. Many researchers devoted their 
works on approximating the singular integrals of 
Cauchy type. Particularly, Dagnino and Santi (1990) 
obtained a product quadrature rules, based on spline 
interpolation, for the numerical evaluation of Cauchy 
singular integrals. They also proposed an error bound 
and obtained convergence results for functions f∈Ck[-
1,1], k=1,2 or 3. Orsi (1990) proved the uniform 
convergence of some quadrature formulas based on 
spline approximation for Cauchy principal value 
integral. They also presented some numerical 
applications. In particular, they applied their rules to the 
well-known Prandtl’s integral equation. Rabinowitz 
(1990) proved convergence results for product 
integration rules based on approximating splines. These 
results are both for bounded and unbounded integrands. 

Pointwise and uniform convergence results are proved 
for sequences of Cauchy principle values of these 
approximating splies. .Dagnino and Santi (1991) 
considered the same rules as in Dagnino and Santi 
(1990) and investigated their convergence for a large 
class of functions f. They established an error bound and 
some uniform convergence results in the case of equally 
spaced quadrature nodes, for function f, satisfying a 
Holder condition of order μ on [−1,1], 0 < μ ≤ 1. 
Hasegawa and Torii (1991) presented an automatic 
quadrature for computing Cauchy principal value 
integrals for smooth functions f(t). They approximated 
the function f(t) by a sum of Chebyshev polynomials 
whose coefficients are computed using the Fast Fourier 
Transform (FFT). Hasegawa and Torii (1994) presented 
an automatic quadrature for approximating Hadamard 
finite-part (fp) integrals of a smooth function, with a 
double pole singularity within the range of integration. 
The quadrature rule is drived from the differentiation of 
an approximation to a Cauchy principal value integral. 
Diethelm (1995) investigated the numerical 
approximation of the Cauchy principal value integral. 
He presented the quadrature formula for approximating 
the Cauchy principal value integral. He proved the 
convergence of the quadrature formula and gave the 
estimation for the errors. Dagnino and Lamberti (1996) 
evaluated the Cauchy principal value integral by 
applying a local spline approximation method, defined 
for any function f∈L1[−1,1]. They established 
convergence results with error bound. Diethelm (1997) 
considered the so-called modified quadrature formulas, 
i.e. formulas obtained by first subtracting out the 
singularity and then applying a classical quadrature 
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formula, for the numerical approximation of Cauchy 
principal value integrals. They have given new bounds 
involving the total variation Var f(s) and Lp-norms ||f(s)||p 
of some derivative of the integrand function. 
Eshkuvatov et al.  (2009) constructed a new quadrature 
formulas for evaluating the singular integral of Cauchy 
type. The construction of the quadrature formulas is 
based on the modification of discrete vortices method 
and linear spline interpolation over the finite interval 
[−1, 1]. They proved that the constructed quadrature 
formula converges for any singular point x not 
coinciding with the end points of the interval [1, 1]. 
They have given error bounds in the classes of functions 
Hα[−1, 1] and C1[−1, 1] of order O(hα|ln h|), 0 < α ≤ 1 
and O(h |ln h|), respectively. Eshkuvatov et al. (2010) 
considered the singular integral with the Cauchy kernel. 
They constructed new quadrature formulas based on the 
modification of discrete vortex method to approximate 
the singular integral. They have shown error bounds in 
the classes of functions Hα[−1,1] and C1[−1,1] for either 
x = tj or x = t0j where tj , j = 1, 2, . . . ,N are the node 
points and t0j =(tj + tj+1) / 2. 
          The integral equations with Cauchy kernel have 
been widely used in solving problems associated with 
aerodynamic, hydrodynamic and elasticity (Lifanov, 
1996; Ladopoulos, 2000; Abdou and Naser, 2003; 
Mohankumar and Natarajan, 2008; Lara and 
Mariagrazia, 2005;  Kasozi  and Paulsen, 2005a;  
Kasozi and Paulsen, 2005b; Ganji et al., 2008; Thukral, 
2005). 
          In this study, we present a numerical solution for 
the Eq. 1 with conditions (2). 
 

MATERIALS AND METHODS 
 
          The unknown function ϕ of Eq. 1 which satisfies 
conditions (2) can be represented as: 
 

2(x) = 1 x (x), 1 x 1ϕ − ψ − ≤ ≤                           (3) 
 
where, ψ (x) is a well behaved function of x on the 
interval [-1, 1]. The function ψ (x) in Eq. 3 is 
approximated using the Chebyshev polynomials of the 
second kind, Ui, as:  
 

N

i i i
i=0

(x) a U (x)ψ ≈∑
                                         (4) 

 
where: 
 

1

i 1 1

sin[i (x)]cosU (x) = , i = 0,1, , N
sin[ (x)]cos

−

− −
…             (5) 

          From (3) and (4), we have: 
 

N
2

i i
i=0

(x) 1 x a U (x), 1 x 1ϕ ≈ − − ≤ ≤∑                           (6) 

 
          Substituting (6) into (1), yields: 
 

N
2

i i
i=0

1 2N
i

i
i=0 1

1 x a U (x)

1 t U (t)a dt = f (x)
t x−

−

−
+ λ

−

∑

∑ ∫
                                 (7) 

 
          It is known that (Kythe and Schaferkotter, 2005; 
Abdulkawi et al., 2009) 
 

1 2
i

i 1
1

1 t U (t) dt = T (x)
t x +

−

−
−π

−∫                           (8) 

 
where, Ti are the Chebyshev polynomials of the first 
kind which is defined by: 
 

1
iT (x) = cos i (x) , i = 0,1, , Ncos−⎡ ⎤⎣ ⎦ …                            (9) 

 
          Using (8) into Eq. 7, yields: 
 

N
2

i i i 1
i=0

a 1 x U (x) T (x) = f (x)+
⎡ ⎤− − πλ⎣ ⎦∑           (10) 

 
          Multiplying both sides of Eq. 10 by Ui and 
integrating from -1 to 1, we obtain the following system 
of linear equations; 
 

N

i ij j
i=0

a A = d , j = 0,1, , N∑ …                                        (11) 

 
where: 
  

ij ij ijA = B C+                                                      (12) 
 

1
2

ij i j
1

, i = j
B = 1 t U (t)U (t)dt = 2

0, i j−

π⎧
⎪− ⎨
⎪ ≠⎩

∫          (13) 

 

   
1

ij i 1 j
1

C = T (t)U (t)dt+
−

−πλ∫                                       (14) 

 
 and: 
 

1

j j
1

d = f (t)U (t)dt
−
∫                                                      (15) 
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          Solving the above system for the unknown 
coefficients ai, i = 0,1,…,N and substituting the values 
of ai into the approximate solution (6), we obtain the 
numerical solution of the Eq. 1 with conditions (2).  
 

RESULTS AND DISCUSSION 
 
Example 1: Let us consider the singular integral 
equation: 
  

1
2 2 2

1

(t)(x) dt = 2 x (2 1 x )x 1 x
t x−

ϕ
ϕ + − π + − − π + − + π

−∫ (16) 

 
with the conditions: 
  

( 1) = 0ϕ ±                                                       (17) 
 
          It is not difficult to see that the exact solution of 
the Eq.16 is: 
 
 2(x) = 1 x (2x 1)φ − +                                        (18) 
 
          Due to Eq. 12-14, we obtain: 
 

 

00 10 20

01 11 21

02 12 22

2A = , A = , A = 0,
2 3

4 4A = , A = , A =
3 2 5

6A = 0, A = , A = .
5 2

π ⎫π ⎪
⎪

π ⎪− π π ⎬
⎪
⎪π

− π ⎪
⎭

          (19) 

 
          From Eq. (15), we have: 
 

( )( )
( )

1
2 2

j j
1
1

2
j

1

d = 2 t 2 1 t t U (t)dt

1 t U (t)dt

−

−

− π + − − π

+ − + π

∫

∫
          (20) 

 
which gives: 
 

  

0

1

2

2 1d = ,
3 2

4 1d = ,
3 2
6d = .
5

⎫π + π ⎪
⎪
⎪− π + π ⎬
⎪
⎪

− π ⎪
⎭

                                       (21) 

 
          Thus the system of linear equations (11) for N = 2 
becomes: 

     

0 1

0 1 2

1 2

2 2a a = ,
3 3 2

4 4 4a a a = ,
3 5 3 2
6 6a a = .
5 5

π ⎫+ π π + ⎪
⎪

π ⎪− π + + π − π + ⎬
⎪
⎪

− π + − π ⎪
⎭

          (22) 

 
          It is easy to see that the solution to the above 
system is: 
 

0 1 2a = 1, a = 1, a = 0                                        (23) 
 
          Substituting (23) into (6) for N = 2, we obtain: 
 

2(x) = 1 x (1 2x)ϕ − +                                        (24) 
 
which is the exact solution. 
 
 
Example 2: Consider the following equation: 
 

1 2
5 61

(t)(x) dt = 1 x U (x) T (x)
t x−

ϕ
ϕ + − − π

−∫           (25) 

with the conditions: 
 

( 1) = 0ϕ ±                                                      (26) 
 
           It is clear that the exact solution of the Eq. 25 is: 
 

2 5 3(x) = 1 x (32x 32x 6x)ϕ − − +                          (27) 
 
          From Eq. 12-14, we obtain: 
  

00 10 20 30

2

40 50 01 11

21 31 41 51

2

02 12 22 32

42 52 03 13

2

23 33 43 53

04 14 24 34

2A = 2,A = 0,A = ,A = 0,
3

2 4A = ,A = 0,A = ,A = ,
5 2 3

8 12A = 0,A = ,A = 0,A = ,
15 35

2 6A = ,A = ,A = ,A = 0,
3 2 5

10 4A = ,A = 0,A = 0,A = ,
21 5

8 4A = ,A = ,A = 0,A = ,
2 7 9

2 6A = ,A = 0,A = ,A =
15 7

π
−

π
− −

−

π
−

− − −π2

44 54 05 15

2

25 35 45 55

,
2

10 4A = ,A = 0,A = 0,A = ,
9 21

8 12A = 0,A = ,A = ,A = .
9 2 11

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

− ⎪
⎪
⎪π

− ⎪⎭

           (28) 
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 Due to Eq. 15, we have: 
 

1 2
j 5 6 j1

d = ( 1 t U (t) T (t))U (t)dt
−

− − π∫                         (29) 
 
which gives: 
 

  
0 1 2

3 4 5

12d = 0, d = , d = 0,
35

4 12d = , d = 0, d = .
9 11

⎫
⎪⎪
⎬
⎪
⎪⎭

                       (30) 

 
          Thus the corresponding system of linear equations 
for N = 5 is: 
  

5

i ij j
i=0

a A = d , j = 0,1, ,5∑ …                                      (31) 

 
where, Aij, i, j = 0, 1, …, 5 are defined in (28) and dj, j = 
0, 1, …, 5  are defined in (30). 
 
          It is not difficult to see that the solution to the 
above system is: 
 0 1 2 3 4 5a = 0,a = 0,a = 0,a = 0,a = 0,a = 1            (32) 
 
          Substituting the values of ai, i = 0,1,…,5 into (6) 
where N = 5, we obtain the numerical solution of Eq. 25 
which is identical to the exact solution (27). 
 

CONCLUSION 
 
          The truncated series involving the Chebyshev 
polynomial approximation of the second kind is used to 
approximate the unknown function for solving the 
Fredholm integral equation of the second kind with 
Cauchy kernel and constant coefficients. The method of 
approximation illustrated here gives a good way for 
obtaining the numerical solution avoiding the 
complicated integrations. Numerical results show the 
accuracy of the method presented which, for some 
functions f (x), gives the exact solution.  
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