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Abstract: Problem statement: To obtain new exact traveling wave soliton solutions for the three-
wave interaction equation in a dispersive medium and a non zero phase mismatch. Approach: The 
tanh method is usually used to find a traveling wave analytic soliton solutions for one nonlinear wave 
and evolution partial differential equation. Here, we generalize this method to solve a system of 
nonlinear evolution partial differential equations, then we use this generalization to find new family of 
exact traveling wave soliton solutions for the nonlinear three-wave interaction equation. Results: We 
were able to generalize the tanh method and apply this generalization to the (TWI) system of (PDE’s). 
We derive a system of algebraic Eq. 28-32 and introduced some interested sets of solutions for this 
system, these sets of solutions leads us to write explicit analytic new family of soliton solutions for the 
three-wave interaction equation. Conclusion: The generalization of the tanh method is proved its 
efficiency in obtaining exact solutions for nonlinear evolution partial differential equations. This 
method also can be used similarly to obtain exact solutions for another interested nonlinear evolution 
system of partial differential equations. 
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INTRODUCTION 

 
 Obtaining an exact solution for a nonlinear 
equation is considered an interesting problem for 
mathematicians, so, what if we have a system of 
nonlinear equations? As an example on those systems is 
the nonlinear Three-Wave Interaction (TWI) system of 
Partial Differential Equations (PDE’s), which 
represents a mathematical model for three interacting 
optics waves? This system describes many physical 
phenomena, such as, the resonant quadratic nonlinear 
interaction of three optics waves (Ibragimov and 
Struthers, 1997), the second harmonic generation 
process which produces the first coherent or laser light 
source (Rushchitskii, 1996; Kumar et al.,  2008) and the 
study of the model in x2 materials (Chen et al., 2004). 
Many analytic solutions for the (TWI) system were 
found, such as, the solution of this system when it 
includes the phase mismatch (Δk) (Ibragimov et al., 
2001), the solution of this system when it includes the 
second order dispersion (Werner and Drummond, 1994; 
Menyuk et al., 1994;  Tahar, 2007), the solution of this 
system when it doesn’t include the second order 
dispersion by the Inverse Scattering Transform method 
(IST) (Ibragimov et al., 1998; Batiha, 2007) and the 
exact soliton solution found by some ansatz introduced 
by (Huang, 2000). 

 In this study we introduce a direct generalization of 
the tanh method (Wazwaz, 2004) to solve a nonlinear 
evolution system of (PDE’s), then we apply this 
generalization and get new families of soliton solutions 
for the (TWI) system of (PDE’s) which includes 
nonzero quadratic dispersion coefficients {g1, g2, g3} 
and a nonzero phase mismatch (Δk) in Eq. 14. In all of 
the obtained solutions we mentioned that replacing the 
tanh function with the coth function will keep our 
solutions valid. 
 

MATERIALS AND METHODS 
 
 This method is used to solve many nonlinear wave 
and evolution equations, such as, the soliton solutions 
found for many forms of the fifth order Kdv equation 
(Wazwaz, 2007). In using this method, we are looking 
for a traveling wave solution u(x, y, z, t) to a given 
nonlinear (PDE) in the form: 
 

t x y z xx yy zzH(u,u ,u ,u , y ,u ,u ,u ,...) 0=   (1) 
 
 If we assume that: 
 

1 2 3c x c y c z tθ = + + − λ   (2) 
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where, ci, λ are unknown constants to be found, then 
Eq. 1 will be transformed to an Ordinary Differential 
Equation (ODE) in the form: 
 
F(U,U',U '',...) 0=   (3) 
 
where, U(θ) = u(x, y, z, t) and the derivatives appear in 
(3) are with respect to θ. If we introduce the variable Y 
(θ) = tanh (θ) then the derivatives appear in (3) become: 
 

2

2
2 2

2

dU (1 Y )U'(Y)
d
d U ( 1 Y )(2YU'(Y) ( 1 Y )U''(Y))
d

= −
θ

= − + + − +
θ

  (4) 

 
where similar formula for higher derivatives can be 
obtained as well. The tanh method now admits 
solutions of the form: 
 

n
i

i
i 0

U( ) u(x, y,z, t) S(Y) a Y( )
=

θ = = = θ∑   (5) 

 
where, n is an unknown positive integer, which can be 
determined from the resulted equation by balancing the 
linear and nonlinear terms of the highest orders. After 
determining n we substitute Eq. 5 in Eq. 3. Doing this, 
will give us an algebraic coefficients of some powers of 
Y (θ), making these coefficients zeros, will produce a 
system of algebraic equations in ai and ci, then we solve 
this system and substitute the result in (2) and (5), to get 
a solution u(x, y, z, t) for (1). 
 
Generalization of the tanh method: This is a direct 
generalization for the above tanh method. Here, we 
suppose that we have a system of nonlinear evolution 
(PDE’s) in the form: 
 

i i j

i j m

r rt rx rx x

rx x ...x

H(t,X,u (t,X),u (t,X),u (t,X),u

(t,X),...,u (t,X)) 0=
  (6) 

 
where, 1 2 n rX [x x ....x ],u (t,X),1 r n= ≤ ≤ , are the required 
solutions and: 
 

i j m

m
r

rx x ...x
i j m

u (t,X)u (t,X)
x x ...x
∂

=
∂ ∂

  (7) 

 
 If we assume that: 
 

1 1 2 2 n nc x c x ... c x tθ = + + + − λ   (8) 
 
where, cr, λ are unknown constants to be found, then 
the partial derivatives in (7) becomes: 

m m
r r

i j m m
i j m

u (t,X) d u ( )c c ...c
x x x d
∂ θ

=
∂ ∂ ∂ θ

  (9) 

 
if we substitute Eq. 9 in Eq. 6, then Eq. 6 will be 
transformed to a system of (ODE’s) in the form: 
 

' ''
r r rF(u ( ),u ( ),u ( ),...) 0θ θ θ =   (10) 

 
where the derivatives appear in Eq. 10 are with respect 
to θ. If we assume that: 
 
Y( ) tanh( )θ = θ   (11) 
 
then the derivatives appear in (10) are given by: 
 

2 'r
r

2
2 ' 2 ''r

r r2

du (1 Y )u (Y)
d
d u ( 1 Y )(2Yu (Y) ( 1 Y )u (Y))
d

= −
θ

= − + + − +
θ

  (12) 

 

where, several formula for 
3 4

r r
3 4

d u d u, ,..
d dθ θ

 can be easily 

obtained as well. The generalized tanh method now 
admits solutions of the form: 
 

rn
i

r r 1 2 n r ri
i 0

u ( ) u (t,x , x ,,x ) S (Y) A Y( )
=

θ = = = θ∑   (13) 

 
Where: 
nr = Positive integers depend on r  
Ari = Constant coefficients (usually Ari are complex 

numbers) yet to be determined 
 
 From the resulted system of (ODE) we determine 
nr by balancing the highest nonlinear terms with the 
highest orders of the given system. After determining nr 
we substitute Eq. 13 in Eq. 10, to get a system of 
equations, where in each individual equation in this 
system, there will be some algebraic coefficients 
contains Ari and ci, multiplied by some powers of Y (θ), 
setting these coefficients with zero, will give us a 
system of algebraic equations, doing the same for the 
rest of the equations and collecting all these algebraic 
equations, we will get a universal system of algebraic 
equations in Ari and cr, then we try to find a solution for 
this universal system, if we are able to find such a 
solution we substitute it in Eq. 8 and 13, then the result 
is an explicit analytic formula for the required solution 
ur(θ) = ur(t, x1, x2,…,xn) for the given system of 
(PDE’s) in (6). 
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Basic equations: We will apply the generalized tanh 
method to the following nonlinear evolution (TWI) 
system of (PDE’s) given by (Ibragimov et al., 1998; 
Faiedh et al., 2006): 
 

1

2

2 1

3

3 1

* i kz1
z 1 t 1 1 t, t 1 3 2v

* i kz1
z 2 t 2 2 t, t 2 3 1v

* i kz1
z 3 t 3 3 t, t 3 1 2v

i( A A ) g A A A e

i( A A ) g A A A e

i( A A ) g A A A e

Δ

ω Δ

ω

ω − Δ

ω

∂ + ∂ − ∂ = −σ

∂ + ∂ − ∂ = −σ

∂ + ∂ − ∂ = −σ

  (14) 

 
 The system in (14) describes three interacting plane 
waves traveling in the positive z direction in a nonlinear 
dispersive medium, with the following associated 
electric fields Ej(z, t) given by: 
 

jz

j zj

i( j K )
j j

i( K )*
j

E (z, t) A (z, t)e

A (z, t)e , j 1,2 and 3

ω =

− ω −

=

+ =
  (15) 

 
Where: 
Aj(z, t) = The slowly varying complex-amplitude 

envelopes of the three waves 
ωj = The center frequencies 

Kj = The wave numbers given by j j
j

n
K

c
ω

=  

c = The speed of light 
nj = The refractive indexes 
vj = The group velocities of the three waves 

which are in general different from each 
others 

gj = The second-order non zero dispersion 
coefficients 

σ = The nonlinear coupling constant given by 
2

nl 1
2

1

2 x
k c
π ω

σ ≈  

Xnl = The nonlinear dielectric susceptibility 
Δk = The phase   velocity mismatch given by Δk 

= K3-K2-K1  
* = For the complex conjugate, i2 = -1 
 
 If we assume that: 
 

32

1 1

*
1,2 1,2 3 3 1,2 3 3

1 2 3

A Q , A Q , g , g G ,

p , p , pωω

ω ω

→ → − → −

σ→ − σ → − σ → −
  (16) 

 
then the system in (14) will be transformed to the 
following symmetric form: 

1

2

3

* * i kz1
z 1 t 1 1 t ,t 1 1 2 3v

* * i kz1
z 2 t 2 2 t ,t 2 2 1 3v

* * i kz1
z 3 t 3 3 t ,t 3 3 1 2v

i( Q Q ) G Q p Q Q e

i( Q Q ) G Q p Q Q e

i( Q Q ) G Q p Q Q e

Δ

Δ

Δ

∂ + ∂ − ∂ = −

∂ + ∂ − ∂ = −

∂ + ∂ − ∂ = −

  (17) 

 
if we also let (Ibragimov et al., 1998): 
 

r r0 r
1

1S (t z), z, Q Q q (S, ), r 1, 2, 3
v

= − η = = η =   (18) 

 
Where: 
 

10 20 30

2 3 1 3 1 2

i i 1Q ,Q ,Q
p p p p p p
−

= = =
− − −

  (19) 

 
then the system in (17) will be rescaled to become: 
 

2
* * i k1 1 1

1 1 2 32

2
* * i k2 2 2

2 2 1 32

2
* * i k3 3 3

3 1 1 22

q q qi( ) q q e
S S

q q qi( ) q q e
S S

q q qi( ) q q e
S S

Δ η

Δ η

Δ η

∂ ∂ ∂
− γ + α =

∂η ∂ ∂

∂ ∂ ∂
− γ + α =

∂η ∂ ∂

∂ ∂ ∂
− γ + α =

∂η ∂ ∂

  (20) 

 
where, α1,2 = -g1,2, α3 = g3, γ1 = 0, is added for purposes 
of obtaining symmetric solutions later, while γ2 and γ3 
which are called the temporal walk-off parameters are 
given by the formula: 
 

r
1 r

1 1 , r 2,3
v v

⎛ ⎞
γ = − =⎜ ⎟

⎝ ⎠
 

 
Applying the generalized tanh method: To apply the 
generalized tanh method, Eq. 6 is now our system given 
in (20). To transform the system of (PDE’s) in (20) to a 
system of (ODE’s) as in equation (10), we use the 
following assumptions suggested in (Huang, 2000): 
 

ri
r rq (S, ) u ( )e θη = θ   (21) 

 
r r r(S, ) S K , (S, ) K S, r 1, 2, 3θ η = Ω − η θ η = η−Ω =   (22) 

 
where, Ω, K, Kr, Ωr are unknown real constants to be 
determined. Using Eq. 21 and 22, the system in (20) 
will be transformed to the following system of 
(ODE’s): 
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* * ' ''
1 1 2 3 1 1 1 1

* * ' ''
2 2 1 3 2 2 2 2

* * ' ''
3 3 1 2 3 3 3 3

u ( ) u ( )u ( ) iX u ( ) u ( ) 0

u ( ) u ( )u ( ) iX u ( ) u ( ) 0

u ( ) u ( )u ( ) iX u ( ) u ( ) 0

Φ θ + θ θ + θ − τ θ =

Φ θ + θ θ + θ − τ θ =

Φ θ + θ θ + θ − τ θ =

  (23) 

 
Where: 
 

i i i i i i i i i i
2

i i 3 1 2

3 1 2

(K ( )), X (K ( 2 ))

, i 1, 2, 3, K (K K k),

( )

Φ = +Ω γ + α Ω = +Ω γ + α Ω

τ = α Ω = = − + − Δ

Ω = − Ω +Ω

  (24) 

 
 Notice that from Eq. 24, if later we able to find Φi 
and Xi, this will give us 6 real values for them, then we 
can easily use these values to find Ω1, Ω2, K1, K2, K, Ω. 
This means that τi which are related by 1 1

2 3
1 2 3

α α

α α
τ = τ = τ  

are actually known once we determine Ω. What left 
now is to determine nr given in Eq. 13, this can be done 
by substituting Eq. 12 in Eq. 23, we get: 
 

* * 2
1 1 2 3 1 1

' 2 ''
1 1 1

* * 2
2 2 1 3 2 2

' 2 ''
2 2 2

* * 2
3 3 1 2 3 3

' 2 ''
3 3 3

S (Y) S (Y)S (Y) ( 1 Y )((2Y iX )

S (Y) ( 1_ Y ) S (Y)) 0

S (Y) S (Y)S (Y) ( 1 Y )((2Y iX )

S (Y) ( 1_ Y ) S (Y)) 0

S (Y) S (Y)S (Y) ( 1 Y )((2Y iX )

S (Y) ( 1_ Y ) S (Y)) 0

τ

τ

τ

Φ + − − + +

+ − + τ =

Φ + − − + +

+ − + τ =

Φ + − − + +

+ − + τ =

  (25) 

 
 The maximum powers appear in Eq. 25 are 2nr and 
nr +2, those powers come from the terms Si

*(Y)Sj
*(Y) 

and 3 ' 4 ''
r rY S (Y),Y S (Y) . If we make these powers equal, 

then we get n1 = n2 = n3 = 2, so Eq. 13 becomes: 
 

2
r r r ru ( )A B tanh( ) C tanh ( ), r 1,2,3θ + θ + θ =   (26) 

 
where, Ar, Br, Cr are generally complex numbers yet to 
be determined. If we substitute Eq. 26 in 23 and use the 
identity: 
 

n n 2 2tanh ( ) tanh ( )(1 sech ( ))−θ = θ − θ   (27) 
 
then we get a system of equations consists of the 
following algebraic coefficients of some powers of 
Y(θ), these coefficients are: 
 
The constant coefficients: 
 

* * * * * *
i i i j k j j k k(A C ) B B (A C )(A C ) 0+ Φ + + + + =   (28) 

 
The coefficients of tanh(θ): 
 

* * * * * *
i i j k k k j jB B (A C ) B (A C ) 0Φ + + + + =   (29) 

The coefficients of sech2(θ): 
 

* * * * * * *
i i i i i j k k j j j k(4 )C iB X B B A C (A 2C )C 0τ −Φ + − − − + =  (30) 

 
The coefficients of sech2(θ)tanh(θ): 
 

* * * *
i i i i j k k j2B 2iC X B C B C 0τ + − − =   (31) 

 
The coefficients of sech4(θ): 
 

* *
i i j k6C C C 0− τ + =   (32) 

 
where, {i, j, k} take the values {1, 2, 3},{2, 1, 3} and 
{3, 1, 2}. The system (28-32) is a nonlinear system of 
15 equations in 15 unknowns, namely Ar, Br, Cr, Φr and 
Xr. 
 

RESULTS 
 
 We were able to find the following interested sets 
of solutions for the system in (28-32), however, finding 
another interested sets of solutions for this system is 
still an open problem. In all of these founded sets some 
of the unknowns were arbitrary constants, which mean 
that the system has infinitely many similar solutions. 
 
Set 1: Let r = 1, 2 and 3, choose arbitrary real constants 
Φr>0 and Xr, choose {δ1, δ2, δ3}, such that δ1+ δ2 + δ3 = 
2nπ, n is an integer and: 
 

i 1
r r 1 2 3

i 2 i 3
2 1 3 3 1 2

B C 0, A e

A e , A e

δ

δ δ

= = = − Φ Φ

= − Φ Φ = − Φ Φ
  (33) 

 
Set 2: Let r = 1, 2 and 3, {i, j, k} have the values {1, 2, 
3}, {2, 1, 3} and {3, 2, 1}, τr are arbitrary real numbers, 
choose {δ1, δ2, δ3} such that δ1+ δ2 + δ3 = 2nπ, n is an 
integer and: 
 

i
r

i
r r i j k r r rB 0, X 0,C 6 e , A C , 4δ= = = τ τ = − Φ = τ   (34) 

 
 Notice that, since τr = αrΩ2 are arbitrary real 
numbers, this means, Ω is actually chosen to be 
arbitrary real number. 
 
Set 3: Let r = 1, 2 and 3, {i, j, k} have the values {1, 2, 
3}, {2, 1, 3} and {3, 2, 1}, τr are arbitrary real numbers, 
choose {δ1, δ2, δ3}, such that δ1+ δ2 + δ3 = 2nπ, n is an 
integer and: 
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i
r

i
r r i j k r r r

1B 0, X 0, C 6 e , A C , 4
3

δ −
= = = τ τ = Φ = − τ   (35) 

 
Set 4: Let r = 1, 2 and 3, {i, j, k} have the values {1, 2, 
3}, {2, 1, 3} or {3, 2, 1}, choose arbitrary non zero real 
numbers br, A1, A2 and: 
 

i k
r r r r i

i

1 2 3 1 2 3
3

2 1 1 2
2 2 2 2
2 2 3 1 3

1 2
2 1 1 2 2 1 2

2 1 1 2 2
3

3

b bC 0, B ib , X ,
b

A A b b b bA
A b A b

(A b )b (A b1 )b, ,
A b A b A b1 A b

A b A b )b
b

= τ = = =

− +
=

+

+ +
Φ = Φ =

+ +

+
Φ =

  (36) 

 
DISCUSSION 

 
 To find an explicit formula for Qr(z, t) in (17), we 
do the following steps: 
 
• Substitute the values of Φr, Xr in (24) and solve the 

resulted equations to get Ω, K, Kr, Ωr 
• Substitute the values of Ω, K, Kr, Ωr, in (22) to get 

θ(S, η), θr(S, η) 
• Substitute the values of Ar, Br, Cr in (26) to get 

ur(θ) 
• Substitute the formula for ur(θ), θ(S, η), θr(S, η), in 

(21), to get qr(S, η) 
• Use (19) and qr(S, η) to write an explicit formula 

for Qr(z, t) in (18) 
 
 Applying the above steps on Set 1, we get the 
following solution for (17): 
 

1 1 1 1 1 1

1

2 1 2 1 2 2

1

3 1 3 1 3 3

1

i(K v z z v ( t ))
v

2 3
1

2 3

i(K v z z v ( t ))
v

1 3
2

1 3

i(K v z z v ( t ))
v

1 2
3

1 2

Q (z, t) e
p p

Q (z, t) e
p p

Q (z, t) e
p p

+ Ω + δ − Ω

+ Ω + δ − Ω

+ Ω + δ − Ω

Φ Φ
=

Φ Φ
=

Φ Φ
=

−

  (37) 

 
 Applying the above steps on Set 2, we get the 
following solution for (17): 

1 1 1 1 1 1

1

2 1 2 1 2 2

1

3 1 3 1 3 3

1

i(zK v z v ( t ))
v

22 3
1

2 3 1

i(zK v z v ( t ))
v

21 3
2

1 3 1

i(zK v z v ( t ))
v

21 2
3

1 2 1

zQ (z, t) 6 e sech (Kz t )
p p v

zQ (z, t) 6 e sech (Kz t )
p p v

zQ (z, t) 6 e sech (Kz t )
p p v

+ Ω + δ − Ω

+ Ω + δ − Ω

Ω + δ − Ω

τ τ Ω
= − Ω +

τ τ Ω
= − − Ω +

τ τ Ω
= − − Ω +

−

 (38) 

 
 Applying the above steps on Set 3, we get the 
following solution for (17): 
 

1 1 1 1 1 1

1

2 1 2 1 2 2

1

3 1 3 1 3 3

1

i(zK v z v ( t ))
v

22 3
1

2 3 1

i(zK v z v ( t ))
v

21 3
2

1 3 1

i(zK v z v ( t ))
v

21 2
3

1 2 1

zQ (z, t) 2 e ( 1 3tanh (Kz t ))
p p v

zQ (z, t) 2 e ( 1 3tanh (Kz t ))
p p v

zQ (z, t) 2 e ( 1 3tanh (Kz t ))
p p v

+ Ω + δ − Ω

+ Ω + δ − Ω

Ω + δ − Ω

τ τ Ω
= − − + − Ω +

τ τ Ω
= − + − Ω +

τ τ Ω
= − + − Ω +

−

 (39) 

 
 Applying the above steps on Set 4, we get the 
following solution for (17): 
 

1 1 1 1

1

1

2 1 1 2

1

1

3 1 1 3

1

i(K v z ( tv z) )
v

1

2 3

z
1 1 v

i(K v z ( tv z) )
v

2

1 3

z
2 2 v

i(K v z ( tv z) )
v

3

1 2

1 2 3 1 2 3
3 1

2 1 1 2

1Q (z, t) e
p p

(iA b tanh(Kz t ))

1Q (z, t) e
p p

(iA b tanh(Kz t ))

1Q (z, t) e
p p

A A b b b b( ib b tanh(Kz t
A b A b

+ − + Ω

Ω

+ − + Ω

Ω

+ − + Ω

−
=

−

+ − Ω +

−
=

−

+ − Ω +

−
=

− +
− + − Ω +

+ 1

z
v

))Ω

  (40) 

 
 Notice that if instead of the assumption in (26), we 
assume that: 
 

2
r r r ru ( ) A B coth( ) C coth ( ), r 1,2,3θ = + θ + θ =   (41) 

 
then we will obtain the same system as in (28-32), so in 
the solutions (37-40), we can replace tanh with coth and 
still get a solution. 
 

CONCLUSION 
 
 We were able to generalize the tanh method, then 
apply this generalization on the Three-Wave-Interaction 
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(TWI) system of  (PDE’s).  We were able to construct 
an algebraic nonlinear system of 15 complex equations 
and found 4 different sets of solutions for this system, 
then construct 4 new families of analytic traveling wave  
soliton solutions for the (TWI) system. We are very 
positive that there are more sets of solutions for our 
algebraic system, which means that there are more 
similar family of analytic solutions for the (TWI) 
system which can be constructed as well. 
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