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Abstract: Problem statement: For square contingency tables with ordered categothis study
considers four kinds of extensions of the margh@mhogeneity model and gives decompositions for
the ordinal quasi-symmetry model. The decompositioare extensions of some existing
decompositions.Approach: This study gives a decomposition theorem that thdéinal quasi-
symmetry model holds if and only if the quasi-synmyenodel and the proposed weighted marginal
homogeneity model hold. An example is givResults: For the data of cross-classification of father's
and his son's occupational status in Denmark, geemposition of the ordinal quasi-symmetry model
is applied and the detailed analysis is giv@anclusion: When the ordinal quasi-symmetry model fits
the data poorly, this decomposition is useful feeiag which of decomposed two models influences
stronger.
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INTRODUCTION The Marginal Homogeneity (MH) model is defined

by:

Consider an RxR square contingency tables with the

same

probability that an observation will fall in théitow and

row and column classifications. Lgtdenote the p=p (i=1 B

jth column of the table (i =1, -+ ,R; j =1, -}. ,;Fhe Quasi-
Symmetry (QS) model (Caussinus, 1965) is defined by: where,p,=> "p, andp=>"5 p (Stuart, 1955).

where,y; = y;. A special case of this model with;{=

Caussinus (1965) gave the decomposition of the S

ppo= By (=1 Ry 1 ) model as follows:

Bi}is the usual Symmetry (S) model (Bowker, 1948). QS and MH models hold.

The QS model can be also expressed in a log-linear
form as (Bishopet al., 1978):

(i =1,

~ Rij= 1 - R analyzing the data on an ordinal scale becauseathigy
Y o require a categorical scale.

Where: (Agresti, 2002), which is a special case of the QS
b = model, is often useful when the categories arererie
) A Let <---<i denote the ordered known scores assigned
Ui = 0o = Uip = 3 U = 0 for both the rows and columns of same classification
kZ:‘I 1 ; 2 kzl e kzl 1200 The OQS model is defined by:
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Theorem 1: The S model holds if and only if both the

Each of the S, QS and MH models is invariant
under arbitrary permutations of same row and column
categories. So, these models are suitable for zingly
logpy = 0 + Uy + Uy + Uy the data on a nominal scale, but they are pos$ible

The Ordinal Quasi-Symmetry (0OQS) model



J. Math. & Stat., 7 (4): 314-318, 2011

[, (<)) . Also, we apply the QS model to these data.
P = W, (i2)) Since the value of Gis 6.468 with 6 degrees of
! freedom (p = 0.373), the QS model also fits these
data well. Note that each of the OQS and LDPS
where,y; = y;. The OQS model with scores {i} instead models is a special case of the QS model.
of {u} is the Linear Diagonals-Parameter Symmetry  Then, since the OQS model implies the QS model
(LDPS) model (Agresti, 1983). Thus, the LDPS modelang these models fit the data in Table 1 well, wesicier
is useful for analyzing the data with positive G@e \yhich of the models fits these data much better. Fo
scores or equal-interval scores. While the OQS tisde testing the goodness-of-fit of the OQS model untler t
useful for analyzing the data with any increasiog ( assumption that the QS model holds true, the eifiiee
decreasing) scores. between the &values for the OQS and QS models is
Tomizawa (1987) introduced two kinds of 10,186 with 3 degrees of freedom (p = 0.017). Thoese
Diagonal Weighted Marginal homogeneity (DWM) e see that the OQS model does not fit these ddta we
models and gave the decompositions of the LDPQssuming that the QS model holds true.
model as follows. Therefore, we shall consider a decomposition of
the OQS model, to investigate the reason that & O
Theorem 2: The LDPS model holds if and only if both model has a poor fit for the data in Table 1.
the QS and DWM models hold. The purpose of this study is to give a

Consider the data in Table 1, taken directly fromdecomposition of the OQS model, introducing four
Bishopet al. (1978), which represents father's and hiskinds of new models.

son’s occupational status in Denmark. Each category

means that (1) is High professionals, (2) Whitdazol MATERIALSAND METHODS
employees of higher education, (3) White-collar
employees of less high education, (4) Upper WorkingShal
class and (5) Unskilled workers. We treat the
classifications as ordinal.

First, we apply the LDPS model to these data. For . . - o
testing goodness-of-fit of the LDPS model, the vaifie PO)+P+R=R+R*R Q) (=1L R
likelihood ratio statistic (denoted by’(ds 19.054 with  \Where:

9 degrees of freedom (p = 0.025). Thus, the LDPS

To consider decompositions of the OQS model, we
| introduce four kinds of new models. First,
consider a model defined by:

model does not fit these data well. This may be lmra .l .t
we assign the equal-interval scores for the categjor Pio™ ;1 R = e~ R
Next we apply the OQS model to the data in Table iz R
1. We shall assign the same ordered scores fortheth PG =28, @)= 3 p
rows and columns of same classifications by using ! o
empirical ridit. Then, we use the average of rfdit a This model indicates that the row marginal totals

row category and that for the corresponding columnsummed by multiplying the probabilitieg for the cells
category. Therefore, we assign the scoies 0.014, 4 with a distance i-j (>0) below main diagonal in taéle
= 0.089, y = 0.293, y = 0.604 and 4= 0.886 for both by the Weight 5;&-% (>0) are equa| to the column

the rows and columns of same classifications. Then t . .
G?value for the OQS model is 16.654 with 9 degrees o argmal totals summed _by the same way. We W|§rr_ef
) o this model as the weighed marginal homogeneity 1

freedom (p = 0.054). Thus, the OQS model fits thes?WMH-l) model
data moderately. Next, consider the following model defined by:

Table 1: Occupational status for Danish father-quairs; from _ + R . .
Bishopet al. (1978) PR tRG)=RHG )R+ R (LR

Son’s status

Where:
Father's status (1) 2) ?3) 4) (5) Total
@) 18 17 16 4 2 57 o o
) 24 105 109 59 21 318 - - - _ ,
®) 23 84 289 217 95 708 Pio ;pk’ Ry k:zi;l R
@) 8 49 175 348 198 778 R i
(5) 6 8 69 201 246 530 p3,)=> 8% p , 16,)=Y 8 p,
Total 79 263 658 829 562 2391 e k; z P RO kz; 2 R
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This model states that the row marginal totalsConversely, assuming that the QS and WMH-t models
summed by multiplying the probabilitieg for the cells hold and then we shall show that the OQS modelshold
with a distance j-i (> 0) above main diagonal ia thble First, consider the case of t = 1. From the

by the weights? ™ (> 0) are equal to the column marginal assumption that the QS model holds, we obtain Eq. 1
totals summed by the same way. This is contraghdo

WMH-1 model. We will refer to this model as the Po@)*p +Ro=K expb+u,} (i=1--R) 1)
weighed marginal homogeneity 2 (WMH-2) model.
Thirdly, we introduce a model defined by: Where:

&)= P @) (i=1-,R) 3
D( 3 P s K = kz‘,él‘ " eXp{Uz(k) + U12(ik)} + kz:eXp{Uz(k) + U12(ki}
=1 =i
Where:
Also we obtain Eq. 2:

PlBI= 2 8P BEIZE B PR +EE)=0E epp+uy) (1R) ()

This model shows that the ith row marginal totalswhere:
summed by multiplying the probabilities for thelseh

the kth column by the weigl& (> 0) is equal to the ith @ =5 U=

|-

R
2 U
column marginal totals multiplied by, . We will refer k=1

to this model as the weighed marginal homogeneity :{ \ exolu. +u.. )+ S 5% exd U +U... } fo,
(WMH-S) models_ i ; p{ 1(k) 12(|k)} 21 1 d 1(k) 12(k|)} i

Finally, consider a model:

k=i+

Since Eq. 1 is equal to Eq. 2 in terms of the

p(,)=p0,6,) (i=1--,R) assumption that the WMH-1 model holds, we obtain:
Where: exp{ul(i)} =q@h exéuz(i)} (i=1 - F 3)
R R
Pm(54)=5i‘épik: R @F;&“ R where, h = &/y;. Substituting Eq. 3 ir§; and using

Q./@ = &', yield:

This model represents that the ith row marginal
totals multiplied bys! (>0) is equal to the ith column f=Wf 4)
marginal totals summed by multiplying the probadigi
for the cells in the kth row by the weighf . This is
contrast to the WMH-3 model. We will refer to this
model as the weighted marginal homogeneity 4 (WMH-
4) model.

A special case of the WMH-t (t =1,2,3,4) model and “t” denotes the transpose and the (i, m)th efém
obtained by puttings; =1 is the MH model and the of the RxR matrix W is:
WMH-t (t = 1, 2) model with {§} replaced by {i} is the
Tomizawa (1987) DWM models. Note that the OQS

Where:

f=(h, k)

(3 exXp{ Uy + Uy} 15 (12 M)

model implies the WMH-t (t = 1, 2, 3, 4) model. W), =
We obtain the decompositions of the OQS model exp{Uz(m)+U12(mi)} e (i<m)
as follows.

Theorem 3: For t fixed (t = 1, 2, 3, 4), the OQS model All elements of W are positive and satisfy \¥J
holds if and only if both the QS and WMH-t modetéch ~ J= Where & = (1, --- ,1)is a vector of order R whose
components are all unity. Thus from Eq. 4 and the
Proof: For t fixed (t = 1, 2, 3, 4), if the OQS model restriction Zy vigy = Z¢ Vo9 = 0, we get f = &
holds, then both the QS and WMH-t models hold.Namely we obtain:
316
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Uiy ~ Uy :(a - H)'Ogsl (i=1, - R
Thus noting that i = Vo), we see for i<j:

P _
—= exp{ sy =V )= Oy — Uy }
ji

— XUy
_61

Table 2: The values of likelihood ratio chi-squasdtistic G for
models applied to the data in Table 1

Applied models Degrees of freedom 2 G p-value

0oQs 9 16.654 0.054
Qs 6 6.468 0.373
WMH-1 3 10.464 0.015
WMH-2 3 9.672 0.022
WMH-3 3 9.456 0.024
WMH-4 3 10.663 0.014

Thus from Eq. 8 and the restrictiaia Voo = 2«

Thus the OQS model holds. The case of t = 2 caMzw = 0, We getf= k. Namely we get:

also be proved in the similar way.
Next consider the case of t =
assumption that the QS model holds, we obtain:

Pi(3,) = Wi expfu + Vit (=L R) 5)

Where:

R

K = Zégk exp{Uz(k) + UlZ(ik)}

k=1
Also we get:
Py (3,) =82 "E, expfu + Uy} (i =1+, R) (6)

Where:

R
Ei = 6; ZEXp{Ul(k) + UlZ(ki)}
k=1

Since Eq. 5 is equal to Eg. 6 in terms of themodel. As

assumption, we obtain:
expfu,,} =8, 'Zhi*exp{uz(i)} (i =, -+R) @
where, h’ =& /| . Substituting Eq. 7 i& , yield:
f =Wt (8)
Where:

f7 = (- hg)
and the (i, m)th element of the R xR matrix i/

(W*)im =g eXP{U () + Uagimpt/ “*i

With Viaim) = Viomie All elements of Ware positive and

satisfy Wk = k.

3. From the

Oy Uy =(u - Y)logs; (i=1, R

Thus the OQS model holds. The case of t = 4
can also be proved in the similar way. Thus, the
proof is completed.

For a full multinomial sampling, the maximum
likelihood estimates of expected frequencies arel th
parameted, under the WMH-t (t = 1, 2, 3, 4) model can
be obtained using the Newton-Raphson method to the
log-likelihood equations. Each WMH-t model can be
tested for goodness-of-fit by likelihood ratio sttt G
with R-2 degrees of freedom, which is only one less
than the number of degrees of freedom for the MH
model. The OQS and QS models have (R+1)(R-2)/2
and (R-1)(R-2)/2, degrees of freedom, respectively.

RESUTLS

Consider the data in Table 1 again. Table 2 gives
the values of likelihood ratio test statisti¢ 8r each
described in the section of
INTRODUCTION, the OQS and QS models fit these
data well. However, according to the test basedhen
difference between the’®alues for the OQS and QS
models (since the %alue is significant at the 0.05 level
under the assumption that the QS model holds ttine),
0OQS model does not fit the data well. Also, we se f
Table 2 that the WMH-t (t = 1, 2, 3, 4) model hamar fit
for the data in Table 1.

DISCUSSION

We see from Theorem 3 that the poor fit of the
OQS model is caused by the influence of the lack of
structure of the WMH-t (t = 1, 2, 3, 4) model rathe
than the QS model.

CONCLUSION

We have proposed the WMH-t (t = 1, 2, 3, 4) models
and have given Theorem 3, which is the decompasitid
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the OQS model using the new models. Theorem 3 iBishop, Y.M.M., S.E. Fienberg and P.W. Holland,

extensions of Theorems 1 and 2. 1978. Discrete Multivariate Analysis: Theory and
Since the WMH-t (t = 1, 2, 3, 4) and OQS models  Practice. 4th Edn., The MIT Press, Cambridge,

are based on the ordered scores, these models and ISBN: 13: 9780262520409, pp: 557.

Theorem 3 would be useful for analyzing the squaréBowker, A.H., 1948. A test for symmetry déontingency

contingency tables with ordered categories withrego tables. J. Am. Stat. Assoc., 43: 572-574.
Up < -+ <y (or u, > --- >u), especially being not equal- Caussinus, H., 1965. Contribution to the statistica
interval scores. analysis of correlation tables. Ann. Fac. Sci. Univ

Theorem3 may be useful for exploring the reason  Toulouse, 29: 77-183. . .
for the poor fit when the OQS model fits the dataStuart, A., 1955. A test for homogeneity of the giiaal

poorly. distributions in a two-way classification.
Biometrika, 42: 412-416.
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