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Abstract: Problem statement: For square contingency tables with ordered categories, this study 
considers four kinds of extensions of the marginal homogeneity model and gives decompositions for 
the ordinal quasi-symmetry model. The decompositions are extensions of some existing 
decompositions. Approach: This study gives a decomposition theorem that the ordinal quasi-
symmetry model holds if and only if the quasi-symmetry model and the proposed weighted marginal 
homogeneity model hold. An example is given. Results: For the data of cross-classification of father's 
and his son's occupational status in Denmark, the decomposition of the ordinal quasi-symmetry model 
is applied and the detailed analysis is given. Conclusion: When the ordinal quasi-symmetry model fits 
the data poorly, this decomposition is useful for seeing which of decomposed two models influences 
stronger. 
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INTRODUCTION 
 
 Consider an R×R square contingency tables with the 
same row and column classifications. Let pij denote the 
probability that an observation will fall in the ith row and 
jth column of the table (i =1, ··· ,R; j =1, ··· ,R). The Quasi-
Symmetry (QS) model (Caussinus, 1965) is defined by: 
  

( )ij i j ijp   µ  i 1,  ··· ,R; j 1,  ··· ,R= α β ψ = =  

  
where, ψij = ψji. A special case of this model with {αi = 
βi}is the usual Symmetry (S) model (Bowker, 1948). 
 The QS model can be also expressed in a log-linear 
form as (Bishop et al., 1978): 
  

( ) ( ) ( )

( )
ij 1 i 2 j 12 ijlog p         

i 1,  ··· ,R;  j 1,  ··· ,R

= υ + υ + υ + υ

= =
 

 
Where: 
 

( ) ( )12 ij 12 ji

R R R R

1(k) 2(k ) 12(kj) 12(ik)
k 1 k 1 k 1 k 1

  

0
= = = =

υ = υ

υ = υ = υ = υ =∑ ∑ ∑ ∑
 

 The Marginal Homogeneity (MH) model is defined 
by: 
 

( )i· ·ip  p  i 1,  ··· ,R= =  

 
where, R R

i t 1 it i s 1 sip p and p p⋅ = ⋅ == =∑ ∑  (Stuart, 1955).  

 Caussinus (1965) gave the decomposition of the S 
model as follows:  
 
Theorem 1: The S model holds if and only if both the 
QS and MH models hold.  
 Each of the S, QS and MH models is invariant 
under arbitrary permutations of same row and column 
categories. So, these models are suitable for analyzing 
the data on a nominal scale, but they are possible for 
analyzing the data on an ordinal scale because they only 
require a categorical scale.  
 The Ordinal Quasi-Symmetry (OQS) model 
(Agresti, 2002), which is a special case of the QS 
model, is often useful when the categories are ordered. 
Let u1<···<uR denote the ordered known scores assigned 
for both the rows and columns of same classifications. 
The OQS model is defined by: 
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ij
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ij

(i j)
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(i j)

−δ ψ <= ψ ≥
 

  
where, ψij = ψji. The OQS model with scores {i} instead 
of {u i} is the Linear Diagonals-Parameter Symmetry 
(LDPS) model (Agresti, 1983). Thus, the LDPS model 
is useful for analyzing the data with positive integer 
scores or equal-interval scores. While the OQS model is 
useful for analyzing the data with any increasing (or 
decreasing) scores.  
 Tomizawa (1987) introduced two kinds of 
Diagonal Weighted Marginal homogeneity (DWM) 
models and gave the decompositions of the LDPS 
model as follows.  
 
Theorem 2: The LDPS model holds if and only if both 
the QS and DWM models hold.  
 Consider the data in Table 1, taken directly from 
Bishop et al. (1978), which represents father’s and his 
son’s occupational status in Denmark. Each category 
means that (1) is High professionals, (2) White-collar 
employees of higher education, (3) White-collar 
employees of less high education, (4) Upper working 
class and (5) Unskilled workers. We treat the 
classifications as ordinal.  
 First, we apply the LDPS model to these data. For 
testing goodness-of-fit of the LDPS model, the value of 
likelihood ratio statistic (denoted by G2) is 19.054 with 
9 degrees of freedom (p = 0.025). Thus, the LDPS 
model does not fit these data well. This may be because 
we assign the equal-interval scores for the categories.  
 Next we apply the OQS model to the data in Table 
1. We shall assign the same ordered scores for both the 
rows and columns of same classifications by using 
empirical ridit. Then, we use the average of ridit for a 
row category and that for the corresponding column 
category. Therefore, we assign the scores u1 = 0.014, u2 
= 0.089, u3 = 0.293, u4 = 0.604 and u5 = 0.886 for both 
the rows and columns of same classifications. Then the 
G2

 
value for the OQS model is 16.654 with 9 degrees of 

freedom (p = 0.054). Thus, the OQS model fits these 
data moderately.  
 
Table 1: Occupational status for Danish father-son pairs; from 

Bishop et al. (1978) 
  Son’s status 
 ---------------------------------------------------- 
Father’s status (1)  (2)  (3)  (4)  (5)  Total 
(1)  18  17  16  4  2  57 
(2)  24  105  109 59  21 318 
(3)  23  84 289 217 95  708 
(4) 8  49  175 348  198 778 
(5) 6 8  69  201  246  530 
Total  79  263  658 829 562 2391 

 Also, we apply the QS model to these data. 
Since the value of G2

 
is 6.468 with 6 degrees of 

freedom (p = 0.373), the QS model also fits these 
data well. Note that each of the OQS and LDPS 
models is a special case of the QS model.  
 Then, since the OQS model implies the QS model 
and these models fit the data in Table 1 well, we consider 
which of the models fits these data much better. For 
testing the goodness-of-fit of the OQS model under the 
assumption that the QS model holds true, the difference 
between the G2 values for the OQS and QS models is 
10.186 with 3 degrees of freedom (p = 0.017). Therefore, 
we see that the OQS model does not fit these data well, 
assuming that the QS model holds true.  
 Therefore, we shall consider a decomposition of 
the OQS model, to investigate the reason that the OQS 
model has a poor fit for the data in Table 1.  
 The purpose of this study is to give a 
decomposition of the OQS model, introducing four 
kinds of new models.  
 

 MATERIALS AND METHODS 
 
 To consider decompositions of the OQS model, we 
shall introduce four kinds of new models. First, 
consider a model defined by: 
 

i 1 ii i i ii i 1p ( ) p p p p p ( ) (i 1, ,R)− + + −
⋅ ⋅ ⋅ ⋅δ + + = + + δ = ⋯  

 
Where: 
 

i k k i

R i 1

i ik i ki
k i 1 k 1

i 1 R
u u u u

i 1 1 ik i 1 1 ki
k 1 k i 1

p p , p p

p ( ) p , p ( ) p

−
+ +
⋅ ⋅

= + =

−
− −− −

⋅ ⋅
= = +

= =

δ = δ δ = δ

∑ ∑

∑ ∑
 

 
 This model indicates that the row marginal totals 
summed by multiplying the probabilities pij for the cells 
with a distance i-j (>0) below main diagonal in the table 
by the weight i ju u

1 ( 0)−δ >  are equal to the column 

marginal totals summed by the same way. We will refer 
to this model as the weighed marginal homogeneity 1 
(WMH-1) model.  
 Next, consider the following model defined by: 
 

i ii i 2 i 2 ii ip p p ( ) p ( ) p p (i 1, ,R)− + + −
⋅ ⋅ ⋅ ⋅+ + δ = δ + + = ⋯  

 
Where: 
 

k i i k
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i ik i ki
k 1 k i 1

R i 1
u u u u
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 This model states that the row marginal totals 
summed by multiplying the probabilities pij for the cells 
with a distance j-i (> 0) above main diagonal in the table 
by the weight j iu u

2 ( 0)−δ >  are equal to the column marginal 

totals summed by the same way. This is contrast to the 
WMH-1 model. We will refer to this model as the 
weighed marginal homogeneity 2 (WMH-2) model.  
 Thirdly, we introduce a model defined by: 
 

* *
i 3 i 3p ( ) p ( ) (i 1, ,R)⋅ ⋅δ = δ = ⋯  

 
Where: 
 

k i

R R
u u* *

i 3 3 ik i 3 3 ki
k 1 k 1

p ( ) p , p ( ) p⋅ ⋅
= =

δ = δ δ = δ∑ ∑  

 
 This model shows that the ith row marginal totals 
summed by multiplying the probabilities for the cells in 
the kth column by the weight ku

3 ( 0)δ >  is equal to the ith 

column marginal totals multiplied by iu
3δ

 
. We will refer 

to this model as the weighed marginal homogeneity 3 
(WMH-3) models.  
 Finally, consider a model: 
 

** **
i 4 i 4p ( ) p ( ) (i 1, ,R)⋅ ⋅δ = δ = ⋯  

  
Where: 
 

i k

R R
u u** **

i 4 4 ik i 4 4 ki
k 1 k 1

p ( ) p , p ( ) p⋅ ⋅
= =

δ = δ δ = δ∑ ∑  

 
 This model represents that the ith row marginal 
totals multiplied by iu

4 ( 0)δ >  is equal to the ith column 

marginal totals summed by multiplying the probabilities 
for the cells in the kth row by the weight ku

4δ
 
. This is 

contrast to the WMH-3 model. We will refer to this 
model as the weighted marginal homogeneity 4 (WMH-
4) model.  
 A special case of the WMH-t (t =1,2,3,4) model 
obtained by putting δt =1 is the MH model and the 
WMH-t (t = 1, 2) model with {ui} replaced by {i} is the 
Tomizawa (1987) DWM models. Note that the OQS 
model implies the WMH-t (t = 1, 2, 3, 4) model.  
 We obtain the decompositions of the OQS model 
as follows.  
 
Theorem 3: For t fixed (t = 1, 2, 3, 4), the OQS model 
holds if and only if both the QS and WMH-t models hold.  
 
Proof: For t fixed (t = 1, 2, 3, 4), if the OQS model 
holds, then both the QS and WMH-t models hold. 

Conversely, assuming that the QS and WMH-t models 
hold and then we shall show that the OQS model holds.  
 First, consider the case of t = 1. From the 
assumption that the QS model holds, we obtain Eq. 1: 
 

i 1 ii i i 1(i)p ( ) p p exp{ } (i 1, ,R)− +
⋅ ⋅δ + + = µ υ + υ = ⋯  (1)  

 
Where: 
 

i k

i 1 R
u u

i 1 2(k ) 12(ik) 2(k) 12(ki)
k 1 k i

exp{ } exp{ }
−

−

= =

µ = δ υ + υ + υ + υ∑ ∑  

  
 Also we obtain Eq. 2:  
 

.i ii i 1 i i 2(i)p p p ( ) exp{ } (i 1, ,R)+ −
⋅+ + δ = φ ξ υ + υ = ⋯  (2) 

 
Where: 
 

{ } { }

i

k i

R
u u

i 1 k
k 1

i R
u u

i 1(k) 12(ik ) 1 1(k) 12(ki) i
k 1 k i 1

1
, u u

R

exp exp /

−

=

−

= = +

φ = δ =

 ξ = υ + υ + δ υ + υ φ 
 

∑

∑ ∑
 

 
 Since Eq. 1 is equal to Eq. 2 in terms of the 
assumption that the WMH-1 model holds, we obtain: 
 

( ){ } ( ){ } ( )i i1 i 2 iexp  h exp   i 1,  ··· ,Rυ = φ υ =  (3) 

 
where, hi = ξi/µi. Substituting Eq. 3 in ξi and using 

k iφ φ = i ku u
1

−δ , yield: 

 
f = W f (4) 
 
Where: 
 

t
1 Rf (h ,  ··· ,h )=  

 

and “t” denotes the transpose and the (i, m)th element 
of the R×R matrix W is: 
 

{ }
{ }

i mu u
1 2(m) 12(im) i

im

2(m) 12(mi) i

exp / (i m)
(W)

exp / (i m)

−δ υ + υ µ ≥= 
υ + υ µ <

 

 
 All elements of W are positive and satisfy WJR = 
JR where JR = (1, ··· ,1)t

 
is a vector of order R whose 

components are all unity. Thus from Eq. 4 and the 
restriction Σk 

v1(k) = Σk 
v2(k) = 0, we get f = JR. 

Namely we obtain: 
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( ) ( ) ( ) ( )i 11 i 2 i  u u log  i 1,  ··· ,Rυ − υ = − δ =  

 

 Thus noting that v12(ij) = v12(ji), we see for i<j: 
 

{ }
j i

ij
1(i) 2(i) 1( j) 2( j)

ji

u u
1

p
exp ( ) ( )

p
−

= υ − υ − υ − υ

= δ

 

 
  Thus the OQS model holds. The case of t = 2 can 
also be proved in the similar way. 
  Next consider the case of t = 3. From the 
assumption that the QS model holds, we obtain: 
 
 * *

i 3 i 1(i)p ( ) exp{ } (i 1, ,R)⋅ δ = µ υ + υ = ⋯   (5) 

 
Where: 
 

k

R
u*

i 3 2(k) 12(ik)
k 1

exp{ }
=

µ = δ υ + υ∑  

 
Also we get: 

 
iu u* *

i 3 3 i 2(i)p ( ) exp{ } (i 1, ,R)−
⋅ δ = δ ξ υ + υ = ⋯   (6)  

 
Where: 
 

R
* u
i 3 1(k) 12(ki)

k 1

exp{ }
=

ξ = δ υ + υ∑  

  
 Since Eq. 5 is equal to Eq. 6 in terms of the 
assumption, we obtain: 
 

iu u *
1(i) 3 i 2(i)exp{ } h exp{ } (i 1, ,R)−υ = δ υ = ⋯   (7) 

 
where, * * *

i i ih /= ξ µ . Substituting Eq. 7 in*
iξ , yield: 

 
* * *f W f=   (8)  

 
Where: 
 

* * * t
1 Rf (h , ,h )= ⋯  

  
and the (i, m)th element of the R ×R matrix W*

 
is: 

 
mu* *

im 3 2(m) 12(im) i(W ) exp{ } /= δ υ + υ µ  

 
with v12(im) = v12(mi). All elements of W*

 
are positive and 

satisfy W*JR = JR.  

Table 2: The values of likelihood ratio chi-squared statistic G2 for 
models applied to the data in Table 1 

Applied models Degrees of freedom G2  p-value  
OQS  9  16.654  0.054  
QS  6  6.468  0.373  
WMH-1  3  10.464  0.015  
WMH-2  3  9.672  0.022  
WMH-3  3  9.456  0.024  
WMH-4  3  10.663  0.014  

 
 Thus from Eq. 8 and the restriction Σk 

v1(k) = Σk 
v2(k) = 0, we get f* = JR. Namely we get: 
  

( ) ( ) ( ) ( )i 31 i 2 i  u u log  i 1,  ··· ,Rυ − υ = − δ =  

 
 Thus the OQS model holds. The case of t = 4 
can also be proved in the similar way. Thus, the 
proof is completed.  
 For a full multinomial sampling, the maximum 
likelihood estimates of expected frequencies and the 
parameter δt under the WMH-t (t = 1, 2, 3, 4) model can 
be obtained using the Newton-Raphson method to the 
log-likelihood equations. Each WMH-t model can be 
tested for goodness-of-fit by likelihood ratio statistic G2

 

with R-2 degrees of freedom, which is only one less 
than the number of degrees of freedom for the MH 
model. The OQS and QS models have (R+1)(R-2)/2 
and (R-1)(R-2)/2, degrees of freedom, respectively.  
 

RESUTLS 
 
 Consider the data in Table 1 again. Table 2 gives 
the values of likelihood ratio test statistic G2

 
for each 

model. As described in the section of 
INTRODUCTION, the OQS and QS models fit these 
data well. However, according to the test based on the 
difference between the G2 values for the OQS and QS 
models (since the G2

 
value is significant at the 0.05 level 

under the assumption that the QS model holds true), the 
OQS model does not fit the data well. Also, we see from 
Table 2 that the WMH-t (t = 1, 2, 3, 4) model has a poor fit 
for the data in Table 1. 

 
DISCUSSION 

 
 We see from Theorem 3 that the poor fit of the 
OQS model is caused by the influence of the lack of 
structure of the WMH-t (t = 1, 2, 3, 4) model rather 
than the QS model.  
 

CONCLUSION 
 
 We have proposed the WMH-t (t = 1, 2, 3, 4) models 
and have given Theorem 3, which is the decompositions of 
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the OQS model using the new models. Theorem 3 is 
extensions of Theorems 1 and 2.  
 Since the WMH-t (t = 1, 2, 3, 4) and OQS models 
are based on the ordered scores, these models and 
Theorem 3 would be useful for analyzing the square 
contingency tables with ordered categories with scores 
u1 < ··· <uR (or u1 > ··· >uR), especially being not equal-
interval scores.  
 Theorem3 may be useful for exploring the reason 
for the poor fit when the OQS model fits the data 
poorly.  
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