
Journal of Mathematics and Statistics 7 (3): 249-254, 2011 
ISSN 1549-3644 
© 2011 Science Publications 

249 

 
A New Perturbative Approach in  

Nonlinear Singularity Analysis 
 

Tat-Leung Yee 
Department of Mathematics and Information Technology,  

The Hong Kong Institute of Education, Tai Po, 
New Territories, Hong Kong 

 
Abstract:  Problem statement: The study is devoted to the “mirror” method which enables one to 
study the integrability of nonlinear differential equations. Approach: A perturbative extension of 
the mirror method is introduced. Results: The mirror system and its first perturbation are then 
utilized to gain insights into certain nonlinear equations possessing negative Fuchs indices, which 
were poorly understood in the literatures. Conclusion/Recommendations:  In particular, for a non-
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INTRODUCTION 

 
 The relevant literature study dates back to one 
century ago when Painleve made an in-depth study of 
singularities and initiated the (now named) Painleve 
analysis of integrability. Painleve set up the problem of 
determining all differential equations whose general 
solution are single-valued. Following the pioneering 
work of Painleve 1902, the methods of Gambier 
1909 Bureau (1964); Ablowitz et al. (1980) and 
Weiss et al. (1983) have been evolved and they were 
successful to apply in many cases. However, the 
main drawback of the methods is that none of them 
can build necessary conditions at all integer values of 
“resonances”. To be specific, negative Fuchs indices 
cannot be handled by these methods. The reason why 
the methods cannot handle negative indices lies in 
the fact that their Laurent series is assumed to be 
bounded from below.  
 The mirror method uses the new tool in 
singularity analysis: mirror transformations and 
regular mirror systems, which was first introduced by 
Hu and Yan (1999; 2000). By this method they were 
successful in the following several aspects. Firstly, 
the success of constructing mirror transformations 
enables us to treat each principal balance in the 
Painleve test, singularity structures and symplectic 
structures of Hamiltonian systems from a common 

point of view. Secondly, Hu et al. (2001) showed 
that the mirror transformations are canonical for 
finite-dimensional Hamiltonian systems. Moreover, 
Yee (2002) demonstrated that the linearization of 
mirror systems near movable poles gives the 
possibility to construct the associated Backlund 
transformations of some partial differential equations 
and the Schlesinger transformations of some ordinary 
differential equations.  
 In the current work our primary goal is to 
introduce an improvement of the mirror method so 
that negative indices (“resonances”) can be treated. 
The structure of the study can now be explained. The 
perturbative Painleve method is first introduced. We 
demand single-valuedness not only for any pole-like 
expansion as in the Painleve test, but also for every 
solution close to it, represented as a perturbation 
series in a small parameter ε. The usage of the idea 
of the perturbative method proves to be 
tremendously beneficial for the mirror method as a 
new improvement. Order-zero is the usual mirror 
system. Order-one reduces to a linearization of 
mirror system near a regular singularity and allows 
the introduction of all missing arbitrary coefficients. 
Higher orders lead to the analysis of a linear, 
Fuchsian type inhomogeneous system. In particular, 
negative indices give rise to doubly infinite Laurent 
series. An illustrative example of Bureau’s equation 
is also presented and finally the conclusion follows. 
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MATERIALS AND METHODS 
 
Perturbative Painleve analysis: Now we first present 
the perturbative method originally developed by Conte 
et al. (1993). The method allows us to extract the 
information contained in the negative indices, thus 
building infinitely many necessary conditions for the 
absence of movable critical singularities of the 
logarithmic type. 
 Let us consider a nonlinear ordinary differential 
equation: 
 
E  ≡ K (u, x) = 0 (1)  
 
which is polynomial in u and its derivatives, analytic in 
x. The standard Painleve expansion takes the form (X is 
the expansion variable, Xx=1): 
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in which the negative integers p and q are the respective 
singularity order of u and E. 
 We seek a Laurent expansion for any solution 
which is near to the solution obtained by the standard 
Painleve method. We do this by considering a 
perturbation expansion. For a non-principal but 
maximal Painleve family the perturbation extends the 
particular solution into a representation of the general 
solution. Let us define the Painleve expansion (u(0), E(0)) 
as the solution of unperturbed problem, and look for a 
nearby solution formally represented by an infinite 
perturbation series in powers of small parameter ε: 
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 Let us denote, for the equation E = 0, Rk = the set 
of indices for kth family = {…, -1, … }, with the 
following assumptions: (1) all indices are distinct 
integers, and s to be the smallest index (s≤ -1); (2) all k 
families are maximal (families with a number of indices 
equal to the order of the equation); (3) at least one of 
the k families is principal (any maximal family with, 
apart from -1, all integer indices non-negative). 
 Now, the condition that the perturbation expansion 
still be a solution generates an infinite sequence of 
successive differential equations:  

E(0)  =  K(u(0), x)  =  0,      
E(1)  =  K’(u(0)) u(1)  =  0,  … , 
 
where, K’ is the Frechet operator acting on u(n). At each 
level of perturbation, we construct a pole expansion, but 
the order of the pole increases with the order of the 
perturbation. The resulting infinite perturbation expansion 
is a doubly infinite Laurent expansion:  
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 In general, perturbation theory practically always 
yields divergent series. However, by considering the 
perturbation series solution u(0)+εu(1) and expanding in 
X, with coefficients dependent of ε, we can prove the 
convergence. This can be done by introducing a new 
transformation for the mirror system. Eventually we 
succeed to deduce a regular extended mirror system 
with regular initial data. The Cauchy-Kowalevski 
theorem is then applied and convergence follows 
accordingly. The importance of the perturbed solution 
u(0)+εu(1) is that: for a non-principal but maximal 
Painleve family it is already a local representation of 
the general solution. 
  In the following we investigate in detail each order 
of ε: 
 
With n = 0, E(0)(u(0)) ≡ K(u(0), x) = 0 
 
where, u(0) is a (either particular or general) solution of 
the original nonlinear equation, which is determined by 
standard Painleve analysis: 
 
= Xp (A0 + B0 X + …),   A0 ≠ 0 (4) 
 
With n = 1, E(1)(u(0), u(1)) ≡ K’(u (0)) u(1)  = 0 
 
where,  u(1) is  (the general solution of homo equation) + 
(a particular solution of inhomo equation): 
 
= Xp  (A1X

s+ B1X
s-1 + …) + 0 (5) 

 
where, A1, B1, … are arbitrary coefficients introduced 
at level one. The Painleve series u(0), a Laurent series 
which is bounded below, is substituted into the 
linearized equation K′(u(0)) u(1) = 0, the resulting 
equation for u(1) is of Fuchsian type, the movable 
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singularity X = 0 of the original ODE is a regular 
singularity for the linearized equation and its Fuchs 
indices are i+p, where i runs over the Painleve 
resonances.  
 At this first order, an arbitrary coefficient is 
introduced at each index. Not all of these are new since 
we already have a coefficient in u(0), corresponding to 
each positive integer index. The coefficients introduced 
into u(1) at the corresponding indices (i+p, i a positive 
integer) just perturb the already arbitrary coefficients, 
so add nothing new and it is not harmful to set them 
zero at this level. However, all other indices give rise to 
new arbitrary coefficients. Therefore the expression 
u(0)+εu(1) already contains as many arbitrary 
coefficients as there are indices in the family: 
 
With n ≥ 2, E(n)(u(0), … , u(n)) ≡ K′(u(0)) u(n) - R(n)(u(0), 
…, u(n−1)) = 0  
 
Where: 
 
u(n) =  Xp (An X

s
 + Bn X

s-1 + …) 
       +Xp  (Cn X

sn+ Dn X
sn-1 + …) (6) 

 
where, An, Bn, … are arbitrary (independent of Ai, Bi, i 
≤ n-1)  n-th level coefficients that can be absorbed by 
u(1). Without the loss of generality, we set An = Bn = 0 
for each n ≥ 2. Therefore, for n ≥ 2, we only concern 
about a particular solution of each inhomogeneous 
equation. The coefficients Cn, Dn, … are dependent of 
the previous “useful” coefficients which belong to a 
subset of {Ai, Bi, … | i = 0, 1}. 
 At these n-th orders (n ≥ 2) each function u(n) 

satisfies an inhomogeneous, linear differential equation. 
The indicial equation is the same for all n ≥ 1 but for n 
≥ 2 the leading behaviour of u(n) is determined by the 
singularity order of the rhs function R(n), not by K′(u(0)).  
 

RESULTS 
 
 We begin to illustrate, through a simple but 
instructive example, that the analysis on mirror systems 
might be performed in a perturbative approach such that 
negative and positive indices can be treated at the same 
time. We illustrate the algorithm of performing the new 
perturbative approach on the mirror system through the 
following ODE example of third-order kind, namely the 
Bureau’s equation. We also aim at showing the proof of 
convergence of the no principal balance of mirror system.  
 The Bureau’s third-order ODE is   E = K(u, t) = 0, 
where: 

K (u, t) ≡ u′′′+3uu′′+3(u′)2+(3u2-c0)u′-c0′ u-d0, (7) 
 
where, c0 and d0 are functions of t. By the standard 
Painleve test we obtain two families of solutions with 
singularity orders and Fuchs indices in the following: 
 
(F1)   p = -1,  u0 = 1,  {-1, 1, 3}, 
(F2)   p = -1,  u0 = 2,  {-2,-1, 3} 
 
 The Painleve series of (F1)-(F2) are respectively: 
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And: 
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where, T := t - t0 and t0, r2, r3, s2 are arbitrary.  
 Now we are applying the perturbative Painleve 
analysis to the second family (F2) and the result reads: 
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 Thus, the resulting infinite perturbation expansion 
for (F2) is a doubly infinite Laurent expansion: 
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 The local representation of the general solution is 
given by: 
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 To demonstrate explicitly the extension of the 
mirror method we introduce the corresponding mirror 
transformation for the original equation given by (7): 
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 The regular mirror system is given by: 
 

2

2
2 0 2 3

3 0

' 1

' c

' d

θ = − η θ
η = − η + η θ
η =

  (14) 

 
 The above mirror system can be expressed as K(Θ) 
= 0, where 

2 3( , , )Θ = θ η η . Based on the dominant balance 

we obtain the two families of solutions of the mirror 
system with the following singularity orders and Fuchs 
indices: 
 
(F1)  p = (1,-1,-3),  (1,0,0)Θ = ,  {-1, 1, 3}, 

(F2)  p = (1,-1,-3),  1
( ,1,0)
2

Θ = ,  {-2,-1, 3} 

 
 The Painleve series of (F1)-(F2) are respectively: 
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 The perturbative expansion for the mirror system is: 
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K( Θ ) = 0,  K(Θ(0)) = 0. The first few terms are 
determined by: 
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 Finally the successive linearizations of mirror 
system can be determined now. We consider the non-
principal balance (F2) only. With n = 0: 
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which determines  (0) (0) (0) (0)

2 3( , , )Θ = θ η η   as given by (16). 

With n = 1: 
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which gives: 
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where s2 and α1 are independent arbitrary constants 
introduced at the zero and the first level, which 
correspond to indices -1 and -2, respectively. So, α1 is 
the new (important) parameter that we are looking for. 
At this level, we set another two arbitrary constants to 
zero without any  loss of generality since the arbitrary 
constants (at indices -1 and 3) are already represented 
into Θ(0). Since the family (F2) is maximal then the 
perturbed solution Θ(0)+εΘ(1)  is a local representation 
of the general solution. One indeed can continue to 
look for higher level perturbation in order to obtain a 
doubly infinite expansion. We just list the second 
level linearization of mirror system below and the 
information up to n = 1 is good enough for our 
purpose. 
 
With n = 2: 
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(2) (0) (2) (0) (2) (1) (1)
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  (21) 

 
DISCUSSION 

 
 The new transformation for the mirror system can 
be determined based on the above results. In the 
following, let us also prove the convergence of the 
perturbation series solution Θ(0)+εΘ(1) of (F2). Again, 
we shall use a new transformation to convert the original 
mirror system into a new regular system of first-order 
differential equations with regular initial data. 
 With the family (F2), we deduce the following 
Laurent series based on (16) and (20): 
 

1
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2(0) (1)
1 2 0 0

1
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1 1
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2 6
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 − + 

  (22) 

 
where, α1 and s2 are the Painleve resonances at Fuchs 
indices -2 and 3, respectively. We easily see that the 
solution blows up when T → 0, or t → t0. We observe 
that fact that η2 is the only resonance variable blowing 
up in the order of  

0

1
O( ).

t t−
 So we first introduce the new 

variable δ by 1
2
−η  and formally invert (t - t0) into a series 

of δ. In this example, it is: 
 

2
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t t (10s c '(t ))

1
( c (t ) (c '(t ) 10s ) ) O( )
3

− = δ + α ε − δ
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 Next, we formally expand θ and η3 into series of δ: 
 

1 2 2
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1
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2
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−θ = α εδ + α ε −

+ − α ε δ +

η = − +

 (24) 

 
 By truncating the δ-series for θ  at the location of 
the first resonance α1 to introduce a new variable ξ2, 
and similarly, truncating the δ-series for η3 at the 
location of s2 to introduce ξ3 we then deduce the new 
transformation (θ, η2, η3) ↔ (δ, ξ2, ξ3):  
 

1 1
2 2 3 3, ,− −θ = ξ δ η = δ η = ξ  (25) 

 The extended mirror system becomes: 
 

' 2
2 3 0

' 2
2 2 3 0 2

'
3 0

1 c

(1 c )

d

δ = − ξ ξ δ − δ


ξ = −ξ ξ + − ξ δ
ξ =

  (26) 

 
 The Laurent series for (δ, ξ2, ξ3) are: 
 

2
1 0 0 2

2 2
2 1 1 0 0 2

3 2 0 0

T (c '(t ) 10s )T ...,

(c '(t ) 10s )T ...,

20s 2c '(t ) ...,

δ = + α ε − +


ξ = α ε + α ε − +
ξ = − +
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  (27) 

 
 which gives the initial data: 
 

2 3 0 1 2 0 0( , , )(t ) (0, ,20s 2c '(t ))δ ξ ξ = α ε −  (28) 

 
 The convergence of the general solution can now 
be discussed. For a non-principal but maximal family 
(F2) the first-order perturbed series solution (12) is 
already a local representation of the general solution. In 
order to show the convergence of (12), we need the 
transformations: 
 

2 3 2 3(u,u ',u '') ( , , ) ( , , )↔ θ η η ↔ δ ξ ξ  

 
 By the Cauchy-Kowalevski theorem, the extended 
mirror system (26) with the initial data (28) has a 
unique analytic solution (δ(t), ξ2(t), ξ3(t)) near t = t0. 
 Then (θ, η2, η3) = (ξ2δ-1, δ-1, ξ3) is a solution of the 
original mirror system (14) near t = t0. Moreover, from 
the ordinary power series method, we can find the 
expansions for (δ, ξ2, ξ3). Then an easy calculation 
reveals that the Laurent series of (θ, η2, η3) = (ξ2δ-1, δ-1, 
ξ3) are exactly (22). The convergent power series 
solutions of the extended mirror system lead to 
convergent Laurent series solutions of the original 
mirror system, because of the equivalence between the 
systems. This proves the convergence of Θ(0)+εΘ(1) in 
(23). In particular, the series of θ(0) + εθ(1) is 
convergent. 
 
From: 
 

( ) 1(0) (1) (0) (1)u u ... ...
−

+ ε + = θ + εθ +  

 

Or: 
 
( ) ( )

( )
(0) (0) (0) (1) (1) (0)

2 (1) (1)

u 1 u u

u ... ... 0

θ − + ε θ + θ

+ε θ + + =
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we can find the expansions for (u(0), u(1)) and they are 
exactly (12), up to the order where all the resonances 
appear. This proves the convergence of Laurent series 
solution u(0)+εu(1), which is locally representing the 
general solution for (F2). 
 

CONCLUSION 
 
 In this study we are trying to introduce a patch to 
the mirror method so that the negative Fuchs indices 
can be treated. This consideration extends the use of 
mirror transformations to a larger class of differential 
equations. Based on the examples under consideration, 
we are successful in treating the negative Fuchs 
indices. Order-zero perturbation gives the ordinary 
mirror system. Order-one reduces to a linearization of 
mirror system near a regular singularity and allows the 
introduction of all missing arbitrary coefficients. The 
method reveals that u(0)+εu(1) is already a 
representation of the general solution, whose 
convergence can also be proved. 
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