Journal of Mathematics and Statistics 7 (3): 249;Z2011
ISSN 1549-3644
© 2011 Science Publications

A New Perturbative Approach in
Nonlinear Singularity Analysis

Tat-Leung Yee
Department of Mathematics and Information Technglog
The Hong Kong Institute of Education, Tai Po,
New Territories, Hong Kong

Abstract: Problem statement: The study is devoted to the “mirror” method whiahables one to
study the integrability of nonlinear differentiad@ations.Approach: A perturbative extension of
the mirror method is introducedResults: The mirror system and its first perturbation arerth
utilized to gain insights into certain nonlineamatjons possessing negative Fuchs indices, which
were poorly understood in the literatur€ancluson/Recommendations. In particular, for a non-
principal but maximal Painleve family the first-@mdperturbed series solution is already a local
representation of the general solution, whose cagerece can also be proved.
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INTRODUCTION point of view. Secondly, Hu et al. (2001) showed

that the mirror transformations are canonical for

The relevant literature study dates back to ondinite-dimensional Hamiltonian systems. Moreover,

century ago when Painleve made an in-depth study of ©& (2002) demonstrated that the linearization of

singularities and initiated the (now named) Paielev M'TOr systems near movable poles gives the

analysis of integrability. Painleve set up the peabof ~ POSsibility to construct the associated Backlund
determining all differential equations whose geheratransformatlons_, of some partial Qn‘ferenual equag

solution are single-valued. Following the pionegrin 3'}? the S(l:hle5|nger transformations of some orgtinar

work of Painleve 1902, the methods of Gambier lferential equations.

} . In the current work our primary goal is to
1909 Bureau (1964); Ablowitzt al. (1980) and introduce an improvement of the mirror method so

Weisset al. (1983) have been evolved and they werey, i o qative indices (“resonances”) can be treated

successful to apply in many cases. However, thepg giricture of the study can now be explained Th
main drawback of the methods is that none of themyeryrpative Painleve method is first introducede W
can build necessary conditions at all integer valo®  gemand single-valuedness not only for any pole-like
“resonances”. To be specific, negative Fuchs |rEGJI|ceexpansion as in the Painleve test, but also foryeve
cannot be handled by these methods. The reason Why|ution close to it, represented as a perturbation
the methods cannot handle negative indices lies iReries in a small parameter The usage of the idea
the fact that their Laurent series is assumed to bef the perturbative method proves to be
bounded from below. tremendously beneficial for the mirror method as a
The mirror method uses the new tool innew improvement. Order-zero is the usual mirror
singularity analysis: mirror transformations andsystem. Order-one reduces to a linearization of
regular mirror systems, which was first introdudsd mirror system near a regular singularity and allows
Hu and Yan (1999; 2000). By this method they werethe introduction of all missing arbitrary coefficits.
successful in the following several aspects. Birstl Higher orders lead to the analysis of a linear,
the success of constructing mirror transformationsFuchsian type inhomogeneous system. In particular,
enables us to treat each principal balance in thaegative indices give rise to doubly infinite Laate
Painleve test, singularity structures and symptecti series. An illustrative example of Bureau’s equatio
structures of Hamiltonian systems from a commonis also presented and finally the conclusion foBow
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KU, x) = 0,
Ku”u = o, ...,

MATERIALSAND METHODS Ei‘l’;
E

Perturbative Painleve analysis: Now we first present

the perturbative method originally developed by €on \here, K’ is the Frechet operator acting ¢h it each
et al. (1993). The method allows us to extract thejevel of perturbation, we construct a pole expandiuit
information contained in the negative indices, thusthe order of the pole increases with the order hef t

building infinitely many necessary conditions fdret perturbation. The resulting infinite perturbatiomansion
absence of movable critical singularities of thejs a doubly infinite Laurent expansion:

logarithmic type.
Let us consider a nonlinear ordinary differential

equation: Ff“[i U?”’X“’}: 3 uxre
n=0 j=ns o
E=K(ux)=0 @ e=Fe Sen|-Sex-o
n=0 j=ns Froo
which is polynomial in u and its derivatives, argdyn _ _
X. The standard Painleve expansion takes the fria ( In general, perturbation theory practically always
the expansion variable,X1): yields divergent series. However, by considering th

perturbation series solutio’i+eu® and expanding in

o Zwl e X, with coefficients dependent @&f we can prove the
u=u= Ul
j=0

convergence. This can be done introducing a new
2) g Th be d by introd g
0 E oui transformation for the mirror system. Eventually we
E=E®=) EOX"=0 :
= succeed to deduce a regular extended mirror system

with regular initial data. The Cauchy-Kowalevski

in which the negative integers p and q are theees® theorem is then applied and convergence follows

singularity order of u and E. accordingly. The importance of the perturbed sotuti
We seek a Laurent expansion for any solutiort®+eu® is that: for a non-principal but maximal

which is near to the solution obtained by the stmdd Painleve family it is already a local representataf

Painleve method. We do this by considering athe general solution.

perturbation expansion. For a non-principal but  In the following we investigate in detail eaclier

maximal Painleve family the perturbation extends th of €:

particular solution into a representation of theeayal

solution. Let us define the Painleve expansidt,@”)  with n = 0, E9U®) = K(u®, x) = 0

as the solution of unperturbed problem, and loagkafo

nearby solution formally represented by an infinite

. . where, is a (either particular or general) solution of
perturbation series in powers of small parameter

the original nonlinear equation, which is deterrdiny

standard Painleve analysis:

u = Taylorg) Eia”d”) 3
) =xP(A+BoX+..), AZO 4)

K(ux)=E=Y¢e"EM=0

n=0

with n = 1, B, W) =K' u®) u® =0

Let us denote, for the equation E = @,=Rthe set 1) ) )
of indices for K family = {..., -1, ... }, with the Where,_ WPis (the_gener_al solution of _homo equation) +
following assumptions: (1) all indices are distinct (& particular solution of inhomo equation):
integers, and s to be the smallest index-(k); (2) all k
families are maximal (families with a number ofices = X® (A X+ B X'+ ...) + 0 (5)
equal to the order of the equation); (3) at least of
the k families is principal (any maximal family Wit where, A, By, ... are arbitrary coefficients introduced
apart from -1, all integer indices non-negative). at level one. The Painleve seri€?,wa Laurent series
Now, the condition that the perturbation expansionyhich is bounded below, is substituted into the
still be a solution generates an infinite sequente linearized equation ¥u®) u® = 0, the resulting
successive differential equations: equation for () is of Fuchsian type, the movable
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singularity X = 0 of the original ODE is a regular K (u, t)= u”+3uu’+3(U)*+(3LP-Co)u'-Cy' U-Ch, (7)

singularity for the linearized equation and its Rsic

indices are i+p, where i runs over the Painlevewhere, g and @ are functions of t. By the standard

resonances. Painleve test we obtain two families of solutionishw
At this first order, an arbitrary coefficient is singularity orders and Fuchs indices in the follogvi

introduced at each index. Not all of these are sewe

we already have a coefficient if®ucorresponding to  (F1) p=-1, w=1, {-1, 1, 3},

each positive integer index. The coefficients idtroed ~ (F2) p=-1, ¥=2, {-2,-1, 3}

into UV at the corresponding indices (i+p, i a positive

so add nothing new and it is not harmful to seftrthe
zero at this level. However, all other indices gige to ~ yo =12+, +(—r22+%)T+r3Tz+..., 8)

new arbitrary coefficients. Therefore the exprassio
u@+eu® already contains as many arbitrary ,

. . . o And:
coefficients as there are indices in the family:

with n> 2, E"u®, ... , ") = KU - RO, U“’):ZT”%T*%TZ ©)
n-1) —

) =0 G, oty &) e,

360 30 30

Where:

o . . o1 where, T :=t-dand g, r,, 13, S are arbitrary.

U™ = X0 (An X+ Bp X 4 ) Now we are applying the perturbative Painleve
X (Cy X% D X+ L) (6)  analysis to the second family (F2) and the resatls:

where, A, B, ... are arbitrary (independent of,A;, i , I ,

< n-1) n-th level coefficients that can be absorbgd U“=T [2+gq,(to)T +5 T+ } :

€} i i =

u-’. Without the loss of generality, we set AB, =0 s 1 3 (10)

for each n> 2. Therefore, for 12 2, we only concern u =T AT 0T A )= 5T

about_ a particular _s_olution of each inhomogeneouerAl(_ng(to)_ido(toﬁilco..(to)ﬁz+01e+___]

equation. The coefficients,CD,, ... are dependent of 240 30 120

the previous “useful” coefficients which belong &

subset of {A B, ... |i=0, 1}. Thus, the resulting infinite perturbation expansio
At these n-th orders (& 2) each function @  for (F2) is a doubly infinite Laurent expansion:

satisfies an inhomogeneous, linear differentialagign.

The indicial equation is the same for albri but for n U= U@ +eu®+e2u@ 4 ae Ve = Tl*z‘“ ut (11)

> 2 the leading behaviour oflis determined by the =4
singularity order of the rhs functiof® not by K(u®).
The local representation of the general solut®n i
RESULTS given by:

We begin to illustrate, through a simple but u =u”+eu” = A)T*+2T"
instructive example, that the analysis on mirrcstesns
might be performed in a perturbative approach shah
negative and positive indices can be treated asdinge
time. We illustrate the algorithm of performing thew ~ To demonstrate explicitly the extension of the
perturbative approach on the mirror system throtngh ~ Mirror method we mtrodu_ce the cqrrespondmg mirror
following ODE example of third-order kind, namehget transformation for the original equation given BY: (
Bureau’s equation. We also aim at showing the pobof

(12)
+£A1(%Col(to) _gsz)T‘J o

convergence of the no principal balance of mirystem. u= 671'2 ) (13)
The Bureau’s third-order ODE is E =K(u,t)=0, (V=9 +n.9",
where: w=20"°-3,07+¢c8"+n,
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The regular mirror system is given by: a,+n® 0@ 0 J

K‘(Om){ -y’ o, +2ny -6

8'=1-n,0 0 0 0,
nmeoeng (14
Ns'=d, R®=|-(y))"+6%n;’

0

The above mirror system can be expressed @ K(
=0, whereo=(8,n,,n,). Based on the dominant balance |R® =

we obtain the two families of solutions of the rairr
system with the following singularity orders andcks

~nEn? +6n 0
0

—_aMR(2) _ g2, @)
89n% -6 J
)

indices: Finally the successive linearizations of mirror
system can be determined now. We consider the non-
(F1) p=(1,-1-3),0=@0,0), {-1, 1, 3}, principal balance (F2) only. With n = 0:
(F2) p = (11_11_3)1(9:(},1,0)1 {_21_11 3}
2 950) =1—n§°’6‘°’
0; —_ 0)y2 0 0] 18
The Painleve series of (F1)-(F2) are respectively: (”%:)' =¢ = (1) 405’8 (18)
(), =d,

1
89 =T|1-,T+(2¢-= T . : .
[ BT (2 3 %)) which determinese® =@ n®n® as given by (16).

2 =1
+(-3r - r3+§rzco(to))T3+ } , (15) With n = 1:
(0) -
n, =T 1|:0+ 2LT+ (AR + 6 ()T 80 + 109w + 8O M =0
+H4r + 4= 1,0 (4) T + ] (D), ~nP8% +2n P 9 -9 °h ¥= 0 (19)
o =T [ovoreor i, =0
+(-81 + 8+ 25,6, ()~ ¢ ()T + .. ]
which gives:
and:
89 =T[a, T2 +0T "~y (t,) T+ ..
8 = TE +0T—2*1400(t0)T2 ‘isﬁ * } Ng =T 0T+ 0T+ 0T+ A, s -0, 6 )T ] (20)
16 ng =T2[0T2+0T '+ 0T+ 0T+ ..]
- 1. yp2s 5 (16)
nY =T* 1+ 0T+§q](to)T +Egﬁ+ .
NP =T°[0+0T+0T*+ (205 - 26 (¢ )T+ .} where s and o, are independent arbitrary constants

introduced at the zero and the first level, which
correspond to indices -1 and -2, respectively. &as
The perturbative expansion for the mirror systemi  the new (important) parameter that we are looking f
At this level, we set another two arbitrary contdato
zero without any loss of generality since the taloy
a7) L
constants (at indices -1 and 3) are already reptede
into ©©. Since the family (F2) is maximal then the
ior©Q+e@® | i
K(@) = 0, K@Y = 0. The first few terms are perturbed solutio®™+e@™ is a local representation
of the general solution. One indeed can continue to
look for higher level perturbation in order to dbta
doubly infinite expansion. We just list the second
ow - K'(O(O))O(l) =0 . . . .
level linearization of mirror system below and the

) - kK'(EONOR R @O0 oWy = . . .
0:K(©%)e”-R¥(©"0%)=0 information up to n = 1 is good enough for our
3) . 0 0 3] 3] 0; 1 2)\ —

0@:K(O@™e®-ROV,0We @) =0 purpose.

o= ang(n)yem) =©®™.nOn)

n=0

determined by:

Where: With n = 2:
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82 +n9? + 0N 2 = —gh ® The extended mirror system becomes:
(%), =P8+ 20 -0 Oh 2= (21)
~(®)2 +06%n® 8 =1-8,80-¢cd
. <0 € =-Ei,+(1-CF (26)
& =d,
DISCUSSION
The Laurent series fod,(&,, &) are:
The new transformation for the mirror system can
be dgtermined based on the above results. In thes-1. e, (t,)-108)F + ...,
following, let us also prove the convergence of the £, = o, + 0%E%(cy ()~ 108, )T+ ., (27)
perturbation series solutio®®+e@™ of (F2). Again,  |¢ 205 - 2¢ () ..
we shall use a new transformation to convert thgirad ’ ’
mirror system into a new regular system of firstesr , , L
differential equations with regular initial data. which gives the initial data:
With the family (F2), we deduce the following
Laurent series based on (16) and (20): (3.8,.85)(to) = (0.0 £,208~ 26 '(f) (28)

The convergence of the general solution can now
be discussed. For a non-principal but maximal famil
(22)  (F2) the first-order perturbed series solution (1)
already a local representation of the general molutn
T+ 0108~ G (b)) - order to show the convergence of (12), we need the
20526 (b ) - transformations:

_ 1 1
aeT ™+ (5 - gcxlsco(to))T

020 +e0" = +a18(‘§sz * ?15 G ()T + ..

where,o; and s are the Painleve resonances at Fuchgy yu". @n,n,)- 6%,%,)
indices -2 and 3, respectively. We easily see that

solution blows up when ¥ 0, or t— . V.Ve observ_e By the Cauchy-Kowalevski theorem, the extended
tha’_[ fact that), is the only resonance variable blowing irror system (26) with the initial data (28) has a
up in the order Ofo(t—ilto)' So we first introduce the new unique analytic solutions(t), &,(t), £(t)) near t = ¢
Then @, N2, Na) = €257, 87, &) is a solution of the
) o original mirror system (14) near t  Moreover, from
of 8. In this example, it is: the ordinary power series method, we can find the
expansions for & &, &z). Then an easy calculation
t'lto =8+ag(10s,- ¢ '(6)F° (23)  reveals that the Laurent series 8frfz, ns) = (€287, 57, _
+(§c0(to)+a§az(co'(to)—10g};53+ 0%*) &s) are exactly (22). The conyergent power series
solutions of the extended mirror system lead to
convergent Laurent series solutions of the original
mirror system, because of the equivalence between t
systems. This proves the convergencedft+e0® in
(23). In particular, the series 08© + €6 is
convergent.

variabled by n;' and formally invert (t - into a series

Next, we formally expanél andn; into series ob:

0=0,e8" +a’e%(c, (t,) - 10s,)

+%(1—C(1£C0 (t)o+ ..., (24)

N; =20s, = 2G ‘(H )+ ...
From:
By truncating thed-series for@ at the location of
the first resonance; to introduce a new variablg,
and similarly, truncating theé-series forn; at the
location of s to introduceé; we then deduce the new Or:
transformation@, n,, nNs) - (d, &z, &3):

-1
U@ +eu®+ = (0 +e00+ )

(u(‘”e“” _ 1) + s( u@e® + g (o))
9:&25_1,n2:5_1,q3223 (25) +EZ(U(1)9(1)+...)+...= 0
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solution P+eu™, which is locally representing the Conte, R., A. P. Fordy and A. Pickering, 1993. A

general solution for (F2). perturbative Painleve approach to nonlinear
differential equations. Physica D, 69: 33-58. DOI:
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