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Abstract: Problem statement: Flows of continuous-time dynamical systems with the same number of 
equilibrium points and trajectories, and which has no periodic orbit form an equivalence class under 
the topological conjugacy relation. Approach: Arbitrarily, two trajectories resulting from two distinct 
flows of this type of dynamical systems were written as a set of points (orbit). A homeomorphism 
which maps between these two sets is then built. Using the notion of topological conjugacy, they 
were shown to conjugate topologically. By the arbitrariness in selection of flows and their respective 
initial states, the results were extended to all the flows of dynamical system of that type. Results: Any 
two flows of such dynamical systems were shown to share the same dynamics temporally along with 
other properties such as order isomorphic and homeomorphic. Conclusion: Topological conjugacy 
serves as an equivalence relation in the set of flows of continuous-time dynamical systems which have 
same number of equilibrium points and trajectories, and has no periodic orbit. 
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INTRODUCTION 

 
 Dynamical system is a system where its temporal 
evolution from some initial state is dictated by a set of 
rules (Eduard et al., 1999). Another way to understand 
this is, it consists of a set of variables that describe its 
state and a law that describe the evolution of the state 
variables with time (i.e., how the state of the system in 
the next moment of time depends on the input and its 
state in the previous moment of time) (Eugene, 2007). 
There exist various classifications of dynamical systems, 
e.g. continuous-time (flow or semiflow) or discrete-time, 
continuous state or discrete state and linear or non linear. 
In order to study the system of interest more richly, some 
authors require the state space to possess certain specific 
structure such as compact Hausdorff space as in (Tim 
and Justin, 1989), separable metric space (Flytzanis, 
1976), or even smooth manifold as define in (Artur, 
1979). For some survey on the definition of dynamical 
system we direct the readers to (Chen, 2000; Ling and 
Anthony, 2007; Sekhar et al., 1999). 
 Dynamical systems have been used in many areas 
of research, e.g. fluid flow analysis, economic 
processes (stock market models), physics, medicine, 
meteorology, astronomy, and population growth 

models. Nandhakumar et al. (2009) for example, the 
dynamics of robot arm is studied. On the other hand, 
(Krishan et al., 2010) shows that by adopting neuro-
fuzzy system, the design of robust controllers for 
uncertain non-linear dynamical systems can be done 
without resorting to system model simplifications and 
linearization and without imposing structural conditions 
on the system uncertainties. This shows that the use of 
concept of dynamical system is vast. Mark and Marc 
(2005), the importance of dynamical systems as an 
approach in understanding development was discussed. 
One power of dynamical systems approach is that we 
can tell something or many things, about a system 
without knowing all the details that govern the system 
evolution (Eugene, 2007). With the use of this 
mathematical theory, it allows one to talk about 
stability, equilibrium, bifurcations.  
 This study is motivated by the study in (Tahir and 
Tan, 2010), where the authors shows that the dynamics 
of an epilepsy patients who is having seizure, modeled 
as a continuous dynamical system can be transported to 
Flat Electroencephalography (Flat EEG) that are 
modeled in the same way. This study basically 
generalizes the theorems obtained from (Tahir and Tan, 
2010). 
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Literature review: Some dynamical systems are 
governed by differential equations and this is the type of 
dynamical systems that will be discussed in this study. A 
system of differential equations is relations between its 
functions and its derivatives (James, 2007). Sometimes 
they are referred to as vector field because they assign a 
vector (direction and magnitude) to each point in the 
state space (also known as phase space). Two general 
classes of system of differential equations are 
autonomous and non-autonomous. Systems that depend 
explicitly on time are referred to as non-autonomous or 
time-dependent vector fields and those which do not 
depend explicitly on time are referred to as autonomous. 
Every non-autonomous vector fields can be made into 
autonomous by redefining the time as a new dependent 
variable. Thus, for simplification purposes we will just 
speak of continuous-time dynamical system from this 
point onwards. 
 The type of dynamical system that we will be 
discussing in this study will be of continuous-time 
dynamical system non-periodic orbit where the 
evolution rule is a flow. An example usage on the flow 
concept in different area of research is in (Adeqbie and 
Alao, 2007), where the temperature-dependent viscous 
fluid between parallel heated walls is modeled as a 
flow. According to (James, 2007), a flow φt(x) is a one-
parameter differentiable mapping φ:ℜ × X → X, such 
that it fulfills two properties, which are: 
 

( )0 x x x Xφ = ∀ ∈  

 
 And for all t and S∈ℜ: 

 
t s t s+φ φ = φ�  

 
where the composition symbol, ° means φt°φs (x) = 
φt(φs(x)). 
 For each x∈X,φt(x) defines a curve in X as t varies 
over ℜ. This curve is known as orbit or trajectory. A 
consequence from the property (b) which is also known 
as group property is that two distinct trajectories will 
not cross. A property of flow is that it is differentiable, 
therefore there is an associated ordinary differential 
equations or more precisely a vector field which assigns 
a vector (magnitude and direction) to each of the points 
in the state space (James, 2007). To visualize this, 
consider a point chosen from the state space, this point 
will generate a curve in the state space. The movement 
of this point from one state to another is according to 
the evolution rule (flow) and the tangent vector to each 
point on this curve is exactly the vectors computed by 
using the vector field: 
 

( ) ( )t

d
f x x t 0

dt
= φ ∋ =  

 Suppose {φt(x0):t∈ℜ} is an orbit starting at x0∈X, 
then this orbit is periodic if for each x∈{ φt(x0):t∈ℜ}, 
there exist a time T∈ℜ such that φt(x) = x. In our 
discussion, we restrict our dynamical system to those 
that has no periodic orbit (since it is not possible to 
construct a homeomorphism from a loop to ℜ), those 
with the same number of equilibrium points (since a 
single point cannot be homeomorphic to ℜ) and with 
the same dimension in terms of their state space. We 
also assume that the number of trajectories of the 
systems discussed to be same so that our 
homeomorphism will be constructible. For some survey 
on periodic system, readers may read (Baryarama et al., 
2005) where the periodicity of the HIV/AIDS epidemic 
in a mathematical model that incorporates complacency 
is discussed or (Ibrahim et al., 2007) for the periodic 
and non periodic (complex) behavior of a model of 
bioreactor with cell recycling. 
 

MATERIALS AND METHODS 
 
 Let x0∈X, be a initial state such that ( )0 0 0x xφ = , 

then the flow will traces out an orbit or trajectory. 
Denote this trajectory as ( ) ( ){ }

t o t oxO x : tφ = φ ∈ℜ . Note 

that the set ℜ is linearly ordered by the usual less than 
or equal relation, ≤. Taking account of this property, it 
is not difficult to see that elements in the set ( )t oxOφ  is 

also linearly ordered, with the ordering relation be 
defined as follows 

 

( ) ( ) ( )
t oi i j j i jxx , t x , t t tφ ⇔ ≤≺  

 
 Therefore, the pair ( ) ( )( )

t o t ox xO ,φ φ≺  is linearly 

ordered and we have lemma 1. As an example, see 
(Tahir et al., 2005), where the state space trajectory of 
seizure is augmented and shown to exhibit linear 
ordering properties. The construction is however a little 
different from the one we have just presented above 
because the formulation of dynamical system they started 
off from is slightly different. Nevertheless, they actually 
meant the same as the augmented trajectory is simply the 
evolution of states in seizure over an interval of time. 
 

Lemma 1: ( ) ( )( )
t o t ox xO ,φ φ≺  is linearly ordered. 

 
 Now, according to (Steve, 2008), every linear 
ordering, ≤ can induce a strict linear ordering,< which 
can be written as: 
 
x<y if x≤y and x≠y 
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 Thus, we can certainly “transform” the linearly 
ordered set (Oφt(xo), ≺ φt(xo)) into a strictly linearly 
ordered set (Oφt(xo), ≺ ⋅φt(xo)), with the ordering relation 
defined as: 
 
( ) ( ) ( )

t oi i j jxx , t x , t•
φ≺  

 
If: 
 
( ) ( ) ( )

t oi i j jxx , t x , t•
φ≺  

 
And: 
 
( ) ( )i i j jx , t x , t≠  
 
Or simply: 
 
( ) ( ) ( )

t oi i j j i jxx , t x , t t t•
φ ⇔ <≺  

 
 And this can be stated formally as.  
 

Lemma 2: ( ) ( )( )
t o t ox xO , •

φ φ≺  is strictly linearly ordered. 

  
 Therefore, we have formulated a strictly linearly 
ordered set from a particular trajectory which resulted 
from a flow of an arbitrary continuous-time dynamical 
system. Before we proceed further, let us emphasize 
once that, whenever we speak continuous-time 
dynamical system from this point onwards, we meant 
those with the properties stated earlier. In the following, 
we explain how the trajectory can be composed into a 
topological space. 
 Using the definition of interval topology in 
(Kopperman et al., 1998) one can define a topology on 
a strictly linearly ordered set by using a subbasis which 
consists of the collection of all order open rays that can 
be defined as follow: 
 

( )

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

t o t o

x t o t ot o

t o t o

x x

O x x

x x

x, t O | x, t a, t

S , x, t O | b, t x, t

, ,O : a, t , b, t O

φ

•
φ φ

•
φ φ

φ φ

 ∈
 
 = ∈ 
 

ϕ ∀ ∈ 
 

≺

≺   (1) 

  
 Equation 1 will generate a topology called interval 
topology. The elements of the topology are the union of 
any finite intersections of elements of Eq. 1. Note that 
each element in Eq. 1 is itself open in the topology 
generated by it. We denote this topology as: 
 

( ) ( )x xt o t o

n

O j j O
i 1 j 1 i

| s : s S
φ φ

= =

   τ = α α = ∈   
   

∪ ∩  

 Consequently, the trajectory is composed into a 
topological space (Oφt(xo),τoφt(xo)), namely linearly 
ordered topological space (LOTS). LOTS are also a 
Generalized Ordered space (GO-space) (Bennet and 
Lutzer, 1996). In fact, the class of GO-spaces is exactly 
the class of all subspaces of LOTS (Bennet et al., 
2001). Hence from (Kopperman et al., 1998), which 
says that a GO-space is Hausdorff, we have 

( ) ( )( )xt o t o
OxO ,

φφ τ  as a Hausdorff LOTS. 

 
Lemma 3: (Oφ(xo),τoφt(xo)) is a Hausdorff LOTS.  
 Now consider two distinct flows from two 
continuous-time dynamical systems with no periodic 
orbit, φ:ℜ×X→X and ψ:ℜ×Y→Y such that the 
dimension of the state space of X and Y are same. 
Using the above argument, we then have two strictly 

linearly ordered set ( ) ( )( )
t o t ox xO , •

φ φ≺  and ( ) ( )( )
t o t oy yO , •

ψ ψ≺  

and this two strictly linearly ordered set can be 
composed into LOTS (Table 1).  
 From Table 1 we notice the existence of the 
following lemma. 
 
Lemma 4: Let (xi,ti) represents a point on a trajectory 

( )t oxOφ  at time ti. Similarly, let (yi,ti) represents another 

point on another trajectory ( )t oyOψ  at time ti. Then, for 

ti≤tj, a point (xi,ti) on the trajectory ( )t oxOφ  precede 

another point (xj,tj) if and only if a point (yi,ti) on 
another trajectory ( )t oyOψ  precede another point (yj,tj). 

In other words: 
 
( ) ( ) ( ) ( ) ( ) ( )

t o t o1 1 2 2 1 1 2 2x yx , t x , t y , t y , tφ ψ⇔≺ ≺  
 
Proof: From the linear order of continuous-time 
dynamical system 1 (Table 1) we have: 
 
( ) ( ) ( )

t oi i j j i jxx , t x , t t tφ ⇔ ≤≺  
 
 And from the linear order of continuous-time 
dynamical system 2 (Table 1) we have: 
 
( ) ( ) ( )

t oi i j j i jyy , t y , t t tψ ⇔ ≤≺  
 
 Combining these two, we will have: 
 
( ) ( ) ( ) ( ) ( ) ( )

t o t o1 1 2 2 1 1 2 2x yx , t x , t y , t y , tφ ψ⇔≺ ≺  
 
 As desired.  
  
Next, define a function ( ) ( )t o t ox y: O Oφ ψθ →  as 
 

( )( ) ( )x, t y, tθ =  
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Table 1: Two continuous-time dynamical system
Continuous-time dynamical system 1 Type Continuous-time dynamical system 2 

n: X X Xφ ℜ × → ∋ = ℜ  Flow n: Y Y Yψ ℜ× → ∋ = ℜ  

( ) ( ){ }
t o t oxO x : tφ = φ ∈ℜ

 

Orbit ( ) ( ){ }
t o t oyO y : tψ = ψ ∈ℜ

 ( ) ( ) ( )
t oi i j j i jxx , t x , t t tφ ⇔ ≤≺  Linear order relation ( ) ( ) ( )

t oi i j j i jyy , t y , t t tψ ⇔ ≤≺  

( ) ( )( )
t o t ox xO ,φ φ≺  Linearly ordered set ( ) ( )( )

t o t oy yO ,ψ ψ≺  

( ) ( ) ( )
t oi i j j i jxx , t x , t t t•

φ ⇔ <≺  Strict linear order ( ) ( ) ( )
t oi i j j i jyy , t y , t t t•

ψ ⇔ <≺  

( ) ( )( )
t o t ox xO , •

φ φ≺  Strictly linearly ordered set ( ) ( )( )
t o t oy yO , •

ψ ψ≺  

( )

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

( )

( ) ( ) ( )

t o t o

t o t o

xt o

t o

t o

x x

x x
O

x

x

x, t O | x, t a, t ,

x, t O | b, t x, t ,
S

,O

: a, t , b, t O

φ

•
φ φ

•
φ φ

φ

φ

 ∈
 
 ∈ =  
 ϕ
 

∀ ∈  

≺

≺
 Subbasis 

( )

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

( )

( ) ( ) ( )

t o t o

t o t o

yt o

t o

t o

y y

y y
O

y

y

y, t O | y, t c, t ,

y, t O | d, t y, t ,
S

,O

: c, t , d, t O

ψ

•
ψ ψ

•
ψ ψ

ψ

ψ

 ∈
 
 ∈ =  
 ϕ
 

∀ ∈  

≺

≺

 
( ) ( )x xt o t o

n

O j j O
i 1 j 1 i

| s : s S
φ φ

= =

   τ = α α = ∈   
   

∪ ∩  Interval topology 
( ) ( )y yt o t o

n

O j j O
i 1 j 1 i

| s : s S
ψ ψ

= =

   τ = β β = ∈   
   

∪ ∩  

( ) ( )( )xt o t o
OxO ,

φφ τ  Hausdorff LOTS ( ) ( )( )yt o t o
OyO ,

ψψ τ  

 
Theorem 1: ( )( ) ( )x, t y, tθ =  is a bijective function. 

 
Proof: 
Function: Suppose ( ) ( )i i j jx , t x , t=  

 

Then by lemma 4, ( ) ( )i i j jy , t y , t=  

 

or ( )( ) ( )( )i i j jx , t x , tθ = θ  

 
Thus, ( )( ) ( )x, t y, tθ =  is indeed a function. 

 

Injective: Suppose ( )( ) ( )( )i i j jx , t x , tθ = θ  

 
 By the defined function, this implies: 
 

( ) ( )i i j jy , t y , t=  

 
 Now by lemma 4, we then have: 
 

( ) ( )i i j jx , t x , t=  

 
Thus, ( )( ) ( )x, t y, tθ =  is injective. 

 
Surjective: For all ( ) ( )t oyy, t Oψ∈  

There exist ( ) ( )t oxx, t Oφ∈   

Such that ( )( ) ( )x, t y, tθ =  

Therefore, ( )( ) ( )x, t y, tθ =  is surjective  

 
Since ( )( ) ( )x, t y, tθ =  is injective and surjective, thus it 

is bijective. ■   
 Next, using the bijective function we show that 

( ) ( )( )
t o t ox xO ,φ φ≺  and ( ) ( )( )

t o t oy yO ,ψ ψ≺  are order 

isomorphic. 
 

Theorem 2: ( ) ( )( )
t o t ox xO ,φ φ≺  is order isomorphic to 

( ) ( )( )
t o t oy yO ,ψ ψ≺  

 
Proof: From lemma 4 we have: 
 
( ) ( ) ( ) ( ) ( ) ( )

t o t o1 1 2 2 1 1 2 2x yx , t x , t y , t y , tφ ψ⇔≺ ≺  

 
 Substituting the function ( )( ) ( )x, t y, tθ =  into this 

lemma, we then have 
 
( ) ( ) ( ) ( ) ( ) ( )

t o t o1 1 2 2 1 1 2 2x yx , t x , t x , t x , tφ ψ⇔ θ θ≺ ≺  

 

 Therefore, ( ) ( )( )
t o t ox xO ,φ φ≺  is order isomorphic to 

( ) ( )( )
t o t oy yO ,ψ ψ≺ . 
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 We now proceed to show that ( )( ) ( )x, t y, tθ =  is a 

homeomorphism. 
 
Theorem 3: The function ( )( ) ( )x, t y, tθ =  is 

continuous. 
 
Proof: Consider the set  
 

( )

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

t o t o

y t o t ot o

t o t o

y y

O y y

y y

y, t O | y, t c, t

S , y, t O | d, t y, t

, ,O : a, t , b, t O

ψ

•
ψ ψ

•
ψ ψ

ψ ψ

 ∈
 
 = ∈ 
 

ϕ ∀ ∈ 
 

≺

≺  

 
Case 1: Sets of the form: 
 

( ) ( ) ( ) ( ) ( ){ }
t o t oy yy, t O | y, t c, t•

ψ ψ∈ ≺  

 
Clearly: 
 

( ) ( ) ( ) ( ) ( ){ }( )
( ) ( ) ( ) ( ) ( ){ }

t o t o

t o t o

1
y y

x x

y, t O | y, t c, t

x, t O | x, t a, t

− •
ψ ψ

•
φ φ

θ ∈

= ∈

≺

≺

 

 
 For some ( ) ( )t oxa, t Oφ∈ , since θ−1 is bijective. 

 Notice that the set ( ) ( ) ( ) ( ) ( ){ }
t o t ox xx, t O | x, t a, t•

φ φ∈ ≺  

is an order-open ray in ( )t oxOφ , i.e. element of subbasis. 

Since ( ) ( ) ( ) ( ) ( ){ }
t o t ox xx, t O | x, t a, t•

φ φ∈ ≺  is an order-open 

ray Thus, ( ) ( ) ( ) ( ) ( ){ }
t o t ox xx, t O | x, t a, t•

φ φ∈ ≺  is an open set 

in ( )t oxOφ . 

 
Case 2: Sets of the form: 
 

( ) ( ) ( ) ( ) ( ){ }
t o t oy yy, t O | d, t y, t•

ψ ψ∈ ≺  

 
Clearly: 
 

( ) ( ) ( ) ( ) ( ){ }( )
( ) ( ) ( ) ( ) ( ){ }

t o t o

t o t o

1
y y

x x

y, t O | d, t y, t

x, t O | b, t x, t

− •
ψ ψ

•
φ φ

θ ∈

= ∈

≺

≺

 

 
 For some ( ) ( )t oxb, t Oφ∈ , since θ−1 is bijective. 

 Notice that the set ( ) ( ) ( ) ( ) ( ){ }
t o t ox xx, t O | b, t x, t•

φ φ∈ ≺  

is an order-open ray in ( )t oxOφ , i.e., element of subbasis. 

Since ( ) ( ) ( ) ( ) ( ){ }
t o t ox xx, t O | b, t x, t•

φ φ∈ ≺  is an order-open 

ray. 

 Thus, ( ) ( ) ( ) ( ) ( ){ }
t o t ox xx, t O | b, t x, t•

φ φ∈ ≺  is an open 

set in ( )t oxOφ . 

 
Case 3: The set φ, i.e., empty set. 
Clearly, θ−1(φ)=φ (trivial). Since 

( )xt o
OS

φ
ϕ∈  

Thus, φ is an open set in ( )t oxOφ . 
 
Case 4: The set ( )t oyOψ , i.e. the whole set. 

 Clearly, ( )( ) ( )t o t o

1
y xO O−

ψ φθ =  since θ−1 is surjective. 

 Since ( ) ( )xt o t o
OxO S

φφ ∈  Thus, ( )t oxOφ  is an open set in 

( )t oxOφ . 

  
 Combining these four cases, we have the inverse 
image of each element in the subbasis 

( )yt o
OS

ψ
 is open in 

( ) ( )( )xt o t o
OxO ,

φφ τ  . Thus, ( )( ) ( )x, t y, tθ =  is a continuous 

function that maps from ( ) ( )( )xt o t o
OxO ,

φφ τ  to 

( ) ( )( )yt o t o
OyO ,

ψψ τ .  
 
 
Theorem 4: The function θ−1((y,t))=(x,t) is continuous. 
 
Proof: Use similar argument in the proof for theorem 3. 
In that case, the function θ−1((y,t))=(x,t) is bijective, 
continuous and open. Thus, it is a homeomorphism 

from ( ) ( )( )xt o t o
OxO ,

φφ τ  to ( ) ( )( )yt o t o
OyO ,

ψψ τ . Next we show 

that the flows of the two continuous-time dynamical 
system are topologically conjugated temporally. The 
topological notion of conjugacy used will be the one 
introduced in (James, 2007). This topological notion of 
conjugacy is one of the usual ways to relate two 
dynamical systems (Erik and Joseph, 2010). In fact, it is 
one of the most useful and interesting among the 
different possibilities of introducing an equivalence 
relation to classify dynamical systems (Nguyen, 1996). 
To achieve this, we conjugate two trajectories resulting 
from two different flows, and then by the fact that the 
initial state chosen is arbitrary, this result were 
extended to the rest pair of trajectories in the state 
spaces. Start off by defining two functions that acts on 
two different set of points (trajectories) which results 
from two different flows, respectively as: 
 
 ( ) ( )0 t o t ox x x: O Oφ φφ →  and ( ) ( )0 t o t oy y y: O Oψ ψψ →  
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Where: 
 

( ) ( ) ( ) ( )0 t ox i i i 1 i 1 i i ixx , t x , t x , t O and t+ + φφ = ∀ ∈ ∈ℜ   
 
And: 
 

( ) ( ) ( ) ( )0 t oy i i i 1 i 1 i i iyy , t y , t y , t O and t+ + ψψ = ∀ ∈ ∈ℜ  

 
 Then it will be these two functions which we will 
show they are topologically conjugated. 
 
Theorem 5: ( ) ( )0 t o t ox x x: O Oφ φφ →  and 

( ) ( )0 t o t oy y y: O Oψ ψψ →  is topologically conjugated. 
 
Proof: For any ( ) ( )t oi 1 i 1 xx , t O− − φ∈  

 Composition of functions θ and 
0xφ  is 

 

( )
( )

0x i 1 i 1

i i

i i

[ (x , t )]

x , t

y , t

− −θ φ

= θ

=

 

 
 Composition of functions 

0yψ  and θ is 

 
( )
( )

( )

0

0

y i 1 i 1

y i 1 i 1

i i

[ x , t ]

y , t

y , t

− −

− −

ψ θ

= ψ

=

 

 
This shows that 

0 0x yθ φ = ψ θ� �  

 Thus, the two trajectories are topologically 
conjugated. 
 In constructing this proof, the point chosen as an 
initial state in both trajectories is arbitrary, as such for 
the rest of pair of points, their trajectories can also be 
conjugated topologically using similar method 
presented above. In that case, the two flows, 

: X Xφ ℜ × →  and : Y Yψ ℜ × → can be conjugated 
topologically by the homeomorphism 
h : X Y× ℜ → × ℜ , which can be defined as: 
 

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

t o

0 0t o t o

t 1

1 1t 1 t 1

t 2

2 2t 2 t 2

t m

t m t m

0 x

0 0 x y 0x y

1 x

1 1 x y 1x y

2 x

2 2 x y 2x y

m x

m x y

x,t if x,t O where

:O O and

x,t if x,t O

where :O O and
h x,t

x,t if x,t O

where :O O and ....

x,t if x,t O

where :O O and

φ

φ ψ

φ

φ ψ

φ

φ ψ

φ

φ ψ

θ ∈

θ → θ φ =ψ θ

θ ∈

θ → θ φ =ψ θ
=

θ ∈

θ → θ φ =ψ θ

θ ∈

θ →

� �

� �

� �

m mm x y m














 θ φ =ψ θ

� �

 (2) 

 For all ( ) ( )x, t X , y, t Y∈ × ℜ ∈ × ℜ , and m∈N. 

 Notice that our claim that the homeomorphism, h 
defined above conjugate the two flows topologically 
must be true. This is clear from the properties of flow 
given earlier where two distinct trajectories will not 
intersect and that the property (a) for flow is defined for 
all x∈X. Thus, we can imagine the state space of the 
dynamical system as a space filled with a set of 
trajectories. In fact, the union of all these trajectories 
form the state space set. For example, if the state space 
of a flow is the Euclidean space ℜ2, then for each point 
on the state space, there will be a trajectory, and the 
union of all this trajectories will be the set ℜ2. This can 
also be visualized as the flow partitions the state space 
into classes where each class represents a trajectory and 
our method in conjugating the two flows is by 
conjugating each pair of these trajectories. As the two 
flows were chosen arbitrary, thus we conclude all the 
above results in the following theorems. 
 
Theorem 6: Any two continuous-time dynamical 
systems with no periodic orbit are: 
 
• Order-isomorphic 
• Homeomorphic 
• Topologically conjugated temporally 
 
Proof: Let : X Xφ ℜ × →  and : Y Yψ ℜ × →  be two 
flows of continuous-time dynamical systems with non-
periodic orbit. For all ( )i 1 i 1x , t X− − ∈ × ℜ  and 

h : X Y× ℜ → × ℜ  be defined as (2): 
 

( )
( )

( )

i 1 i 1

i i

i i

h x , t

h x , t

y , t

− −φ

=

=

�

 

 
( )

( )
( )

i 1 i 1

i 1 i 1

i i

h x , t

y , t

x , t

− −

− −

ψ

= ψ

=

�

 

 
 As such, h hφ = ψ� � . Therefore, the two flows are 
topologically conjugated. 
 

RESULTS 
 
 In this study, we have shown that the flows of any 
two continuous-time dynamical systems with the same 
number of equilibrium points and trajectories, and has no 
periodic orbit can be conjugated topologically 
temporally. Besides, their trajectories are linearly ordered 
and order isomorphic to each other by the relation 
induced from their flow Fig. 1. By endowing the interval 
topology, both the LOTS are proven to be Hausdorff and 
homeomorphic to each other. 
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DISCUSSION 
 
 In the theory of dynamical systems, classification 
problem is important as it provides a method to simplify 
objects under investigation and gives us an insight into 
the structure of dynamical system (Nguyen, 1996). The 
results obtained in this study are therefore crucial as it 
provides us another viewpoint in observing a dynamical 
system of our interests. One example can be found in 
(Tahir et al., 2010) whereby the dynamics of patient 
having epileptic seizure is showed transported to a visual 
platform namely, Flat EEG. Since they are topologically 
conjugate, they have the same topological properties 
(Robbin, 1972). Thus, we can study the topological 
properties of seizure from Flat EEG. 
 Epilepsy is a general term used for a group of 
disorders that cause disturbances in electrical signal of 
the brain. In epilepsy there is a miniature brainstorm of 
certain groups of brain cells and this is often associated 
with a sudden and involuntary contraction of a group of 
muscles and loss of consciousness. It can happen in a 
small area of the brain or the whole brain. Depending on 
the part of the brain that is affected, it causes involuntary 
changes in body movement or function, sensation, 
awareness, or behavior where these changes are known 
as epileptic seizure (Fig. 4a). 
 Electroencephalography (EEG) is the recording of 
electrical activity originating from the brain in contrast 
to Magnetoencephalography (MEG) which records the 
magnetic fields. It plays an important diagnostic role in 
epilepsy and provides supporting evidence of  a  seizure 
 

 
 

Fig. 1: Framework 

disorder as well as assisting neurologist in classifying 
seizures. EEG has been used extensively to record the 
abnormal brain activity associated with epileptic 
seizures (Fig. 2). It is recorded on the surface of the 
scalp using electrodes, thus the signal is retrievable 
non-invasively. The type of activity and the area of the 
brain that is recorded from EEG will assist the 
physician in prescribing the correct medication for 
certain type of epilepsy. Patients with epilepsy that 
cannot be controlled by medication will often have 
surgery in order to remove the damaged tissue. Thus the 
EEG plays an important role in localizing this tissue. 
 On the other hand, Flat EEG is a method for 
mapping high dimensional signal, namely EEG into a 
low dimensional space (MC) developed in (Tahir et 
al., 2006). The whole process of this novel model is 
consists of three main parts. The first part is 
flattening the EEG where the transformation of three 
dimensional space into two dimensional space that 
involved location of sensor in patients head with 
EEG signal (Fig. 3). This flattening process can 
preserves magnitude and orientation of the surface 
(Tahir et al., 2006). Secondly, the EEG is processed 
using  Fuzzy C-Means (FCM) to obtain the number 
of cluster centers. Finally, the optimal number of 
clusters  is  determined  using  cluster  validity analysis. 
 

 
 
Fig. 2: EEG signal 
 

 
 
Fig. 3: EEG projection 
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Fig. 4: Topological conjugacy between seizure and Flat EEG
 
This new model enables tracking of brainstorm during 
seizure (Tahir et al., 2006). Figure 4b contains 
examples of Flat EEG. Red dots represent the 
electrodes while green dots represent the cluster centers 
after the transformation from the scalp of the patients. 
By using Theorem 6, the dynamics of epileptic seizure 
can be portrayed on Flat EEG (Fig. 4). For more details, 
see (Tahir et al., 2010). 

 
CONCLUSION 

 
 In this study, the set of all continuous-time 
dynamical systems with the same number of 
equilibrium points and trajectories, and has no periodic 
orbit is showed to form an equivalence class under the 
relation of topologically conjugated. Firstly, two 
trajectories resulting from two distinct flows of 
continuous-time dynamical systems were composed 
into a set of points, and then it is showed that they 
exhibit linear ordering properties. Next, a function, θ is 
introduced to show the two set of points are order 
isomorphic by an induced relation and homeomorphic 
when endowed with the interval topology. The two 
trajectories are then showed conjugated topologically. 
By the arbitrariness in selection of flows and their 
respective initial states, we conclude that any two 
continuous-time dynamical systems with the same 
number of equilibrium points and trajectories, and have 
no periodic orbit share the same dynamics temporally. 
In addition to the results achieved, we present an 
application of it. 
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