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Abstract: Problem statement: This study treats the probabilistic safety stock n-items inventory 
system having varying holding cost and zero lead-time subject to linear constraint. Approach: The 
expected total cost is composed of three components: the average purchase cost; the expected order 
cost and the expected holding cost. Results: The policy variables for this model are the number of 
periods *

rN and the optimal maximum inventory level *
mrQ and the minimum expected total cost. 

Conclusion/Recommendations:  We can obtain the optimal values of these policy variables by using 
the geometric programming approach. A special case is deduced and an illustrative numerical example 
is added. 
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INTRODUCTION 

 
 In many situations demand is probabilistic since it 
is a random variable having a known probability 
distribution. All researchers have studied unconstrained 
probabilistic inventory models assuming the holding 
cost to be constant. Hadley and Within (1963) and Taha 
(1997) and Ben-Daya (1999) have examined 
unconstrained probabilistic inventory problems. 
 Fabrycky and Banks (1967) studied the 
probabilistic single-item, single source inventory 
system with zero lead-time, using the classical 
optimization. Also Hariri and Abou-El-Ata (1995; 
1997) and Kotb (1998) investigated the constrained 
deterministic inventory models using a geometric 
programming approach. Recently, Abou-El-Ata (2002) 
and Fergany (2005) introduced the probabilistic multi-
item inventory system with zero lead time under 
constraints and varying order cost, using geometric 
programming approach.  
 The aim of this study is to investigate the 
probabilistic safety stock multi-item, single source 
inventory model with zero lead-time and varying 
holding cost. The developed models are the 
probabilistic safety stock multi-item, single source 
inventory model with zero lead-time and varying 
holding cost under the expected order cost constraint 
and the probabilistic safety stock multi-item, single 

source inventory model with zero lead-time and varying 
holding cost under the expected varying holding cost 
constraint. The optimal numbers of periods *

rN , the 
optimal maximum inventory levels *

mrQ and the 
minimum expected total cost are obtained. Also a 
special case is deduced and an illustrative numerical 
example is added. 
 
Model development: The following notations are 
adopted for developing our model: 
 
cpr = The purchase cost of the rth item, 
cor = The order cost of the rth item per cycle  
chr (Nr) = The varying holding cost of the rth item per 

period, which takes the form 
 
 hr r hr rC (N ) c N β=  
 
where, chr>0 and β>0 are constant real numbers selected 
to provide us the best estimation of the cost function. 
 

rH  = The expected level of inventory held per rth 
cycle 

α = The positive value representing apart of time 
for safety stock 

xr = A random variable represent the demand of the 
rth item during the cycle Nr 
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F(xr) = The probability density function of the demand 
xr 

E(xr) = The expected value of the demand  
 

 

ur

lr

r r rr

x
x x f (x )dx

x
= ∫

  
where, xur and xlr are the maximum value and minimum 
value of the demand xr, respectively 
 
Dr = The annual demand rate of the rth item per 

period 
E(Dr) = The expected annual demand Dr  
Qmr = The maximum inventory level of the rth item 
Nr = The number of period, cycle, of the rth item (a 

decision variable) and a review of the stock 
level of the rth item is made every Nr period 

Ko = The limitation on the expected order cost 
Kh = The limitation on the expected varying 

holding cost 
E(PC) = The expected annual purchase cost 
E(HC) = The expected annual holding cost 
E(OC) = The expected annual ordering cost 
E(TC) = The expected total cost function 
 
The model analysis: consider an inventory process in 
which a review of the stock level is made every Nr 
periods, r = 1, 2,…,n. An amount is ordered so that the 
stock level is returned to its initial position designated 
by: Qmr, r = 1, 2,…,n. To avoid shortage during Nr 
periods we must maintain a safety stock absorbing 
demand fluctuations. Also, this is done maintaining the 
quantity Qmr = xur for any cycle Nr. Hence the resulting 
safety stock, E(Dr)a, meet the exceed demands cycle Nr. 
The system is represented graphically in Fig. 1. 
 The expected annual total cost is composed of 
three components: the expected purchase cost, the 
expected varying holding cost and the expected order 
cost, i.e.: 
 
E(TC) E(PC) E(OC) E(HC)= + +   
where the expected annual purchase cost is given by: 
 

n

pr r
r 1

E(PC) c E(D )
=

= ∑
 

 
and the expected annual ordering cost is given by: 
 

n
or

r 1 r

cE(OC)
N=

= ∑
 

 
and the expected annual varying holding cost is given 
by: 

( )n hr r

r 1 r

C N H
E(HC)

N=
= ∑

 
 
where, H is the average inventory given by: 
 

r
r mr

E(x )H N Q
2

⎡ ⎤= −⎢ ⎥⎣ ⎦  
 
 Since, r rE(x ) E(Dr)N= , then: 
 

r r
r mr

E(D )NH N Q
2

⎡ ⎤= −⎢ ⎥⎣ ⎦  
 
 The Optimization of the decision variables Nr and 
Qmr can be performed if we assume that the maximum 
demand during the cycle, xur, is related to the expected 
demand during the cycle as: 
 

ur r r r r rx E(x )g(N ) E(D )N g(N )= =   
 
where, g(Nr) is a relational function, so we get: 
 

2 r
r r r

2g(N ) 1H E(D )N
2

−⎡ ⎤= ⎢ ⎥⎣ ⎦  
 
consider the case when g(Nr) is given by: 
 

r
r

r

Ng(N )
N
+ α

=
 

 
Then: 
 

r r
r r r

E(D )NH N E(D )
2

⎡ ⎤= + α⎢ ⎥⎣ ⎦   
 

 
 
Fig. 1: Safety stock for periodic review inventory 

system 
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 Then the expected varying holding cost is given 
by: 
 

( )
n

r r
hr r hr r

r 1

1n
hr r r

hr r
r 1

E(D )NE(HC) C N c E(D )
2

c N E(D ) c E(D )
2

=

β+

=

⎛ ⎞= + α∑⎜ ⎟
⎝ ⎠
⎛ ⎞

= + α∑⎜ ⎟
⎝ ⎠   

 
where, E(Dr)a is the safety stock required to absorb 
demand fluctuations during the inventory cycle Nr.  
 The expected total cost is then given by: 
 

 
]

1n
or hr r r

pr r
rr 1

hr r

c N E(D )cE(TC) c E(D ) N 2

c E(D )

β+

=

⎡
= + +∑ ⎢

⎣
+ α

 (1) 

 
 Our objective is to determine the optimal number 
of periods *

rN  that minimize the expected total cost for 
the following two models: 
  
Model (I): Safety stock for Probabilistic Periodic 

Review Multi- Item Inventory System with 
Zero Lead Time and Varying Holding Cost 
under the Expected Order Cost Limitation 

 
 Consider the relevant expected total cost (1), the 
restriction on the expected order cost is: 
 

n
or

o
r 1 r

c K
N=

≤∑  (2) 

 
 The terms 

n

pr r
r 1

c E(D )
=
∑  and 

n

hr r
r 1

c E(D )
=

α∑  are 

constants and can be postponed without any effect and 
then the expected total cost can be written as: 
 

1n
or hr r r

rr 1

c N E(D )cE(TC) N 2

β+

=

⎡ ⎤
= +∑ ⎢ ⎥

⎣ ⎦
 (3)  

 
 Subject to:  
 

n
or

r 1 r o

c 1
N K=

≤∑  (4)  

 
 Applying the geometric programming techniques 
to Eqs.3 and 4, the enlarged predual function can be 
given by: 
 

( )

r r

r r

r
r

W WWn 1 2r 3r1ror orhr
r 1 o1r 2r 3r

W WWn lr 2r 3r W 1 W Wor orhr 2r 1r 3r
r 1 o1r 2r 3r

c N E(D )c cG(W) N W 2W N k W

c E(D )c c NW 2W k W

β+⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟= ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ β+ − −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟= ⎝ ⎠ ⎝ ⎠⎝ ⎠

= ∏

=∏

 (5)  

where, jr jrW W , 0 W 1, j 1,2,3, r 1,2,....,n= < < = =  are the 
weights and can be chosen to yield the normal and the 
orthogonal conditions as follows: 
 

( )
1r 2r

2r 1r 3r

W W 1
W 1 W W 0, r 1,2,3,...,n

+ =

β + − − = =  
 
 Solving the above equations, we get: 
 

3r 3r
1r 2r

1 W 1 WW and W
2 2

β + − +
= =

β + β +
 (6)  

 
 Substituting from Eq.6 into Eq.5, the dual function 
is given in the form: 
 

( ) ( )
( )3r 3r3r

1 W 1 W3r 3r
2 2 W3rn or rhr or

3r r 1 o

2 c c 2 E(D ) cg(W ) 1 W k w2 1 W

β+ − +
⎛ ⎞ ⎛ ⎞β+ β+ ⎛ ⎞⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎝ ⎠⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

β+ β+
= ∏ β+ − +

 (7)  

 
 Taking the logarithm of both sides of Eq. 7: 
 

( ) ( )

( ) ( )

n
3r

3r or 3r
r 1

3r
hr r 3r

or
3r 3r

o

1 Wln g(W ) ln 2 c ln 1 W
2

1 W ln c 2 E(D ) ln 2 1 W
2

cw ln ln w
K

=

β + −
= ⎡ β + − β + − ⎤∑ ⎣ ⎦β +
+

+ ⎡ β + − + ⎤⎣ ⎦β +

⎡ ⎤
+ −⎢ ⎥

⎣ ⎦  
 
 To find the optimal value of W3r which minimize 
g(W3r), take the first derivative of ln g(W3r) with 
respect to W3r and put it equal to zero, as follows: 
 

( ) ( )

( ) ( )

3r
or 3r

3r

hr r 3r

or
3r

o

d ln g(W ) 1 ln 2 c ln 1 W
dW 2

1 ln c 2 E(D ) ln 2 1 W
2

cln ln w 1 0
k

−
= ⎡ β + − β + − ⎤⎣ ⎦β +

+ ⎡ β + − + ⎤⎣ ⎦β +

+ − − =

 (8)  

 
 Simplifying Eq. 8, we obtain: 
 

( )

( )

2 2
hr r or hr r 3r

3r
or o or o

3 3
3r 3r

c E(D ) 1 cc c E(D )W orf (W )
2c K e 2c K e

W W 0

β+ β+

β+ β+

β + ⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

− + =

 

 
Let:  
 

2

hr r or

or o

c E(D ) cA
2c K e

β+
⎛ ⎞

= ⎜ ⎟
⎝ ⎠   
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 Then, we obtain: 
 

( )3 2
3r 3r 3r 3rf (W ) W W AW 1 A 0β+ β+= + + − β + =  (9)  

 
Where: 
 

( )f (0) 1 A 0
f (1) 2 A 0

= − β + <

= −β >    
 Which means that there exist a root W3r∈(0, 1). 
Any method such as the trial and error method could be 
used to calculate this root. However we shall first verify 
that *

3rW  calculated from Eq. 9 maximize g(W3r). This 
is done by showing that the second derivative is always 
negative: 
 

( )( )

( )( )

2
3r3r

2
3r

3r 3r

1
2 1 Wd ln g(W ) 0

1 1dW
2 1 W w

⎡ ⎤+⎢ ⎥β + β + −⎢ ⎥= − <
⎢ ⎥

+⎢ ⎥
β + +⎢ ⎥⎣ ⎦   

 Thus the root *
3rW calculated from Eq.9 maximize 

the dual function g(W3r). Hence the optimal solution is 
*

jrW , j 1,2,3=  , where *
3rW  is the solution of the Eq.9 

and * *
1r 2rW ,W are calculated by substituting the value of 

*
3rW  in Eq. 6. 

 To find the optimal number of periods *
rN , use the 

following relations due to Duffin and Peterson (1974) 
theorem as follows: 
 

* *or
1r 3r*

r
* 1

* *hr r r
2r 3r

c W g(W )
N

c N E(D ) W g(W )
2

β+

=

=
  

 Solving these equations, the optimal number of 
periods per cycle is given by: 
 

( )
( )

1
* 2

or 3r*
r *

hr r 3r

2c 1 W
N

c E(D ) 1 W

β+⎛ ⎞+
⎜ ⎟=
⎜ ⎟β + −⎝ ⎠

 (10)  

 
Hence the optimal maximum inventory level is 

given by: 
 

( )
( )

*
* * r
mr r r *

r

1
* 2

or 3r
r r*

hr r 3r

NQ E(D )N
N

2c 1 W
E(D ) E(D )

c E(D ) 1 W

β+

⎛ ⎞+ α
= ⎜ ⎟

⎝ ⎠

⎛ ⎞+
⎜ ⎟= + α
⎜ ⎟β + −⎝ ⎠

 (11)  

 Substituting the value of *
rN  in Eq.3 after adding 

the constant terms, we get: 
 

( )
( )

( )
( )

1
2*

r 3rhr
pr r or *

or 3r

1
2*n or 3rrhr

*r 1 r 3rhr

rhr

c E(D ) 1 W
c E(D ) c

2c 1 W

2c 1 Wc E(D )min E(TC) 2 c E(D ) 1 W

c E(D )

⎡ ⎤
⎢ ⎥⎛ ⎞β+

⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

⎢ ⎥β+
⎢ ⎥⎛ ⎞β+⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟= ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

β+ −
+ +

+

+
= +∑

β+ −

α

 (12) 

 
Model (II): Safety stock for Probabilistic Periodic 

Review Multi- Item Inventory System 
with Zero Lead Time and Varying 
Holding Cost under the Expected Varying 
Holding Cost Limitation 

 
 Consider the relevant expected total cost (1), the 
restriction on the expected varying holding cost is: 
 

1n
hr r r

h
r 1

c N E(D ) K
2

β+

=
≤∑

 
 
 The terms 

n

pr r
r 1

c E(D )
=
∑  and 

n

hr r
r 1

c E(D )
=

α∑  are 

constants and can be postponed without any effect and 
then the expected total cost can be written as: 
 

1n
or hr r r

r 1 r

c c N E(D )E(TC)
N 2

β+

=

⎡ ⎤
= +∑ ⎢ ⎥

⎣ ⎦
 (13)  

 
 Subject to:  
 

1n
hr r r

r 1 h

c N E(D ) 1
2K

β+

=
≤∑  (14)  

 
 Applying the geometric programming techniques 
to Eq.13 and 14, the enlarged predual function can be 
given by: 
 

( )

WW 3r2rW1rn
hrrror hr

r 1 r 1r 2r 3rh

W WW 2r 3r1rn
(W W ) 1 Wr ror hr hr 2r 3r 1rr

r 1 1r 2r 3rh

11 c N E(D )c N E(D )c rrG(W) N W 2W 2k W

c E(D ) c E(D )c NW 2W 2k W

⎛ ⎞⎛ ⎞ ⎜ ⎟⎛ ⎞ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟= ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ + β+ −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

β+β+
= ∏

=∏

 (15) 

 
where, jr jrW W , 0 W 1, j 1,2,3, r 1,2,....,n= < < = =  are the 
weights and can be chosen to yield the normal and the 
orthogonal conditions as follows: 
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( )( )
1r 2r

2r 3r 1r

W W 1
W W 1 W 0, r 1,2,3,...,n

+ =

+ β + − = =  
 
 Solving the above equations, we get: 
 

( )( ) ( )3r 3r
1r 2r

1 1 W 1 1 W
W and W

2 2
β + + − β +

= =
β + β +

 (16)  

 
 Substituting from Eq. 16 into Eq. 15, the dual 
function is given in the form: 
 

( )
( )( )

( )( )
( )

( )

( )

3r 3r

1 1 W1 1 W 3r3r
22n or rhr

3r r 1

W3r
hr r

h 3r

2 c c 2 E(D )
g(W )

1 1 W 2 1 1 W

c E(D )
2K W

− β+β+ +
⎛ ⎞ β+⎛ ⎞ β+ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

β+ β+
= ∏

β+ + − β+

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (17) 

 
 Taking the logarithm of both sides of Eq.17: 
 

( )( ) ( ) ( ) ( )

( ) ( ) ( )( )

3rn

3r or 3rr 1

3r
hr r 3r

hr r
3r 3r

h

1 1 W
ln g(W ) ln 2 c ln 1 1 W2

1 1 W
ln c E(D ) 2 ln 2 1 1 W

2

c E(D )W ln ln W
2K

=

β+ +
= ⎡ β+ − β+ + ⎤∑ ⎣ ⎦β+
− β+

⎡ ⎤+ β+ − − β+⎣ ⎦β +

⎡ ⎤
+ −⎢ ⎥

⎣ ⎦  
 
 To find the optimal value of W3r which minimize 
g(W3r), take the first derivative of ln g(W3r) with 
respect to W3r and put it equal to zero, as follows: 
 

( ) ( )( )

( ) ( )( )

3r
or 3r

3r

hr r 3r

hr r
3r

h

d ln g(W ) 1 ln 2 c ln 1 1 W
dW 2

1 ln c E(D ) 2 ln 2 1 1 W
2

c E(D )ln ln W 1 0
2K

β +
= ⎡ β+ − β+ + ⎤⎣ ⎦β +

β +
⎡ ⎤− β+ − − β+⎣ ⎦β +

+ − − =

 (18) 

 
 Simplifying Eq. 18, we obtain: 
 

( )

( )

hr

2
2 1
1 or 3r r

3r 3r 3r
hr r h

2
1

or hr r

hr r h

2c W c E(D )f (W ) W 1 W
c E(D ) 2K e

2c c E(D ) 0
1 c E(D ) 2K e

β+
β+ β+
β+

β+
β+

⎛ ⎞
= + + ⎜ ⎟

⎝ ⎠

⎛ ⎞
− =⎜ ⎟
β+ ⎝ ⎠  

 
Let: 
  

( )

2
1

or hr r

hr r h

2c c E(D )A
1 c E(D ) 2K e

β+
β+⎛ ⎞

= ⎜ ⎟
β + ⎝ ⎠   

 Then, we obtain: 
 

( )
2 3 2

1 1
3r 3r 3r 3rf (W ) W W A 1 W A 0

β+ β+
β+ β+= + + β + − =  (19)  

 
Where: 
 
f (0) A 0
f (1) 2 A 0

= − <
= + β >   

 
 Which means that there exist a root W3r∈(0, 1). 
Any method such as the trial and error method could be 
used to calculate this root. However we shall first verify 
that *

3rW  calculated from Eq. 19 maximize g(W3r). This 
is done by showing that the second derivative is always 
negative: 
 

( )
( ) ( )

( )
( ) ( )( )

3r

2

2
3r 3r3r

2

3r

1 1
2 1 W 2 1 1 Wd ln g(W ) 0

dW 1
W

⎡ ⎤β+ β+
+⎢ ⎥

β+ + β+ − β+⎢ ⎥= − <⎢ ⎥
⎢ ⎥+
⎢ ⎥⎣ ⎦  

 
 Thus the root *

3rW  calculated from (19) maximize 
the dual function g(W3r). Hence the optimal solution is 

*
jrW , j 1,2,3=  , where *

3rW  is the solution of (19) and 
* *

1r 2rW W, are calculated by substituting the value of 
*

3rW  in Eq.16. 
 To find the optimal number of periods *

rN , use the 
following relations due to Duffin and Peterson (1974)  
theorem as follows: 
 

* *

* *

or
1r 3r

r

* 1
hr rr

2r 3r

*
c W g(W )
N

c N E(D )
W g(W )

2

β+

=

=
 

 
 Solving these equations, the optimal expected 
number of periods per cycle is given by: 
 

( )( )
( )( )

1
2

or 3r
r

hr r 3r

* 2c 1 1 W
N

c E(D ) 1 1 W

β+⎡ ⎤− β +
= ⎢ ⎥

β + +⎢ ⎥⎣ ⎦
 (20)  

 
 Hence the optimal maximum inventory level is 
given by: 
 

( )( )
( )( )

1
2

or 3r*
mr r r

hr r 3r

2c 1 1 W
Q E(D ) E(D )

c E(D ) 1 1 W

β+⎡ ⎤− β+
= + α⎢ ⎥

β+ +⎢ ⎥⎣ ⎦
 (21)  
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Table 1: the parameters of the three items 
Item parameters Item 1 Item 2                        Item 3 
E(Dr) 32.00 25.00 18.00 
chr 0.20 0.22 0.24 
cor 150.00 170.00 190.00 
cpr               100.00            120.00          140.00 
 

 
 
Fig. 2: The relation between *

rN  and β, Ko = 200  
 

 
 
Fig. 3: The relation between *

rN  and β, Kh = 100 
 
 Substituting the value of *

rN  in Eq. 13 after adding 
the constant term, we get: 
 

( )( )
( )

( )
( )( )

1
2

r 3rhr
pr r or

or 3r

1
2

n or 3rrhr
r 1 r 3rhr

rhr

c E(D ) 1 1 W
c E(D ) c

2c 1 1 W

2c 1 1 Wc E(D )min E(TC) 2 c E(D ) 1 1 W

c E(D )

⎡ ⎤
⎢ ⎥⎡ ⎤β+
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎛ ⎞
⎢ ⎥⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦⎢ ⎥
⎢ ⎥

β+⎢ ⎥
⎡ ⎤⎢ ⎥β+⎛ ⎞
⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

β+ +
+

− β+

− β+
= +∑

β+ +

+ α

 (22)  

Special case: We deduce a special case of our models 
as follows. 
 
 For Model (I), let β = 0, r = 1 and Ko→∞ then 
Chr(Nr) = chr and *

3rW 0→ . Also, for Model (II), let β = 
0, r = 1 and Kh→∞ then Chr(Nr) = chr and *

3rW 0→ . 
Then Eq. 10 and 20 become: 
 

* o

h

2cN
c E(D)

=  (23) 

 
 Also, Eq. 11 and 21 become: 
 

* o
m

h

2cQ E(D) E(D)
c E(D)

= + α  (24) 

 
 Also, Eq. 12 and 22 become: 
 

hp o hmin E(TC) c E(D) 2c c E(D) c E(D)= + + α  (25)  

 
 This is a probabilistic single-item inventory model 
without any restriction and constant costs, which agree 
with the model of maintaining stock to absorb demand 
fluctions (Fabrycky and Banks, 1967) 
 
An illustrative example: Consider the inventory 
parameters given in Table 1, we will find the optimal 
inventory doctrine by determining the minimum 
expected total cost when: 
 
• The system is probabilistic periodic review multi-

item inventory system under the expected order 
limitation Ko = 200 

• The system is probabilistic periodic review multi-
item inventory system under the expected varying 
holding cost limitation Kh = 100 

 
 Also assume that a = 5 and 0.1≤β≤1. 
 Using the results of our models, the optimal 
expected number of periods per cycle, the optimal 
maximum inventory level and the minimum expected 
total cost min E(TC) can be summarized in the 
following Table 2 and 3. 
 The solution of the problem may be determined 
more readily by plotting min E(TC) against β and *

rN  
against β for the two inventory models in the following 
Fig. 2-5. 
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Table 2: The optimal solution, Ko = 200 

β *
1N  *

m1Q  *
2N  *

m2Q  *
3N  *

m3Q  min E(TC)  

0.1 6.16683 357.339 7.02215 300.554 8.29147 355.327 8941.81 
0.2 5.50808 336.259 6.23161 280.790 7.29529 323.449 8954.61 
0.3 4.99926 319.976 5.62184 265.546 6.52868 298.918 8967.08 
0.4 4.59296 306.975 5.13629 253.407 5.92095 279.470 8979.22 
0.5 4.25977 296.313 4.73954 243.489 5.42709 263.667 8991.01 
0.6 3.98080 287.386 4.40869 235.217 5.01765 250.565 9002.44 
0.7 3.74335 279.787 4.12825 228.206 4.67262 239.524 9013.52 
0.8 3.53851 273.232 3.88732 222.183 4.37788 230.092 9024.23 
0.9 3.35984 267.515 3.67800 216.950 4.12321 221.943 9034.58 
1 3.20253 262.481 3.49442 212.360 3.90099 214.832 9044.56 
 
Table 3: The optimal solution, Kh = 100 

β *
1N  *

m1Q  *
2N  *

m2Q  *
3N  *

m3Q  min E(TC)  

0.1 5.52414 336.772 6.30517 282.629 7.48797 224.784 8942.19 
0.2 4.88502 316.321 5.54002 263.500 6.52647 207.476 8955.04 
0.3 4.38068 300.182 4.93893 248.473 5.77547 193.958 8967.54 
0.4 3.97504 287.201 4.45747 236.437 5.17707 183.187 8979.64 
0.5 3.64342 276.589 4.06533 226.633 4.69202 174.456 8991.33 
0.6 3.36841 267.789 3.74125 218.531 4.29291 167.272 9002.60 
0.7 3.13235 260.237 3.46725 211.706 3.87292 162.524 9013.81 
0.8 2.92851 253.732 3.23432 205.673 3.57988 158.092 9024.55 
0.9 2.75984 248.215 3.02800 200.510 3.33521 154.943 9034.99 
1 2.61253 243.281 2.86437 196.156 3.10129 152.832 9045.11 
 

  
 
Fig. 4: The relation between min E(TC) and β, Ko = 200 
 

 
 
Fig. 5: The relation between min E(TC) and β, Kh = 100 

MATERIALS AND METHODS 
 
 The aim of this study is to investigate the periodic 
review probabilistic multi-item inventory system with 
zero lead time when the holding cost is a varying 
function of the inventory cycle. The geometric 
programming approach is used to determine the optimal 
inventory cycle and the optimal maximum inventory 
level which minimize the expected total cost under the 
expected order cost constraint and under the expected 
holding cost constraint. 
 

RESULTS AND DISCUSSION 
 
 The basic results of this chapter are. 
 The minimum annual expected total cost under the 
expected order cost constraint is given by: 
 

( )
( )

( )
( )

1
2*

r 3rhr
pr r or *

or 3r

1
2*n or 3rrhr

*r 1 r 3rhr

rhr

c E(D ) 1 W
c E(D ) c

2c 1 W

2c 1 Wc E(D )min E(TC) 2 c E(D ) 1 W

c E(D )

⎡ ⎤
⎢ ⎥⎛ ⎞β+

⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

⎢ ⎥β+
⎢ ⎥⎛ ⎞β+⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟= ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

β+ −
+ +

+

+
= +∑

β+ −

α

 
 
 And minimum annual expected total cost under the 
expected varying holding cost constraint is given by: 
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( )( )
( )

( )
( )( )

1
2

r 3rhr
pr r or

or 3r

1
2

n or 3rrhr
r 1 r 3rhr

rhr

c E(D ) 1 1 W
c E(D ) c

2c 1 1 W

2c 1 1 Wc E(D )min E(TC) 2 c E(D ) 1 1 W

c E(D )

⎡ ⎤
⎢ ⎥⎡ ⎤β+
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎛ ⎞
⎢ ⎥⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦⎢ ⎥
⎢ ⎥

β+⎢ ⎥
⎡ ⎤⎢ ⎥β+⎛ ⎞
⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

β+ +
+

− β+

− β+
= +∑

β+ +

+ α

 
 
 At the end of this paper, a special case of 
previously published work is added. Also a numerical 
illustrative example is added with some graphs by using 
Mathematica program. 
 

CONCLUSION 
 
 We have evaluated the optimal number of periods 

*
rN , r = 1, 2,…,n then we deduced the minimum 

expected total cost min E(TC) of the considered safety 
stock probabilistic multi-item inventory model. We 
draw the curves *

rN  and min E(TC) against β, which 
indicate the values of *

rN  and β that gives the minimum 
value of the expected total cost of our numerical 
example. 
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