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Abstract: Problem statement: In many queuing situations the average arrival serdice rates vary
over time. In those situations a transient solutmrthe state probabilities and mean and varianast

be obtained Approach: The mean and the variance of a particular infisiégver model will be
obtained using the state differential-differencea@pns and the factorial moment generating fumctio
The average arrival and service rates will be takebe dependent on time. The individual customer
interarrival times and service time are assumebet@xponentially distributed. This is known as the
Markovian systemResults: The mean and variance of the system will be estadad as solutions to
two sequential linear ordinary differential equagoA comparison is also made to a previously known
result for the corresponding system with a finiteriber of serversConclusion: Simple closed-form
equations for the mean and variance of the systemrasented.
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INTRODUCTION MATERIALSAND METHODS

In a recent article in this journal, EI-Sherbiny The mean and variance of the MMsystem will
(2010) obtained the closed form state pro_babiliﬁnfs be developed here. The starting point will be ttzes
the M/M/lo system. He used the factorial moment yifrerential-difference equations, as was done Ity E

generating function and the underlying statégherpiny (2010). The classical moment generating
differential-difference equations to obtain theidual  ,nction Z(x,t) will be applied to the differential

state probabi_lities when the average arrival ratd a gjfference equations, first to obtain the mean, Lifggn
average service rate are not constant, but vary OVghe variance V(t). The mean and variance emerge fro
time. The approach also incorporated Bessel funstio tne moment generating function derivation as non-

in the expressions for the individual transienttesta homogeneous ordinary differential equations and are
probabilities. This study extends the EI-Sherb@§10)  ¢4ved sequentially.

contribution by also developing equations for theam
and variance of the same system.

Queuing systems are classified as *, /S, where
*, is the arrival discipline, ;*is the service discipline

The M/M /o system: Let the average customer arrival
rate be\(t) and the average service rate be p(t) at time t.

and S is the number of servers available in parditee Let the expecte_d number of customers in the syi;ngm
case of 1 and % being M is the presence of the lack-of- -(t) @nd the variance of the number of customerthen
memory or Markov property. That is, interarrivahis ~ SYStem be V(f) at time t. The number of customars i
and service times follow the negative exponentiathe system atany momentisn=0, 1,.... The fntiba
probability distribution. The M/M#é service system is of n customers being in the system at time t,(§ PThe
an extension of the M/M/S queuing system where@ th number of customers in the system is known asttte s
number of servers is infinite. This means that wlpe of the system.
arrived customer can always get directly into smrvi The M/Mko system does not involve customer
without having to wait in line. waiting time. All customers proceed directly into
Interested readers are referred to the above Ekervice upon arrival. Examples of application iniu
Sherbiny (2010) article for an excellent set ofrecreational facilities such as parks, runningksaand
references to the history of related research. Thgwimming pools. Large automobile parking lots the
M/M/x service system has received growing interest irsure to not totally fill up also could conform.
recent years because the insistence upon constant The state differential-difference equations foe th
arrival and service rates is overly restrictiventany  M/M/« system are given in El-Sherbiny (2010) study
real applications. as:
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() ==(A(9+nu(d) R(I+A() Ru( )+ 1) Z(x9)=Y" xR (1)
N+ R () &= m<oo
Then:
In (1), take R(t) to be zero in the equation for
P, (t). When(t) =2 and p(t) = p are both constant over 9Z(x.t) |
time, the steady-state solution to the system sy ¢a X =
obtain. Set all P(t) = 0 and solve recursively to obtain
P, as Poisson with parametefu. In this circumstance,
L(t) = V(t) = M. If either the arrival rate or the service

Also:

rate varies over time then the system will be azf(x't)zw n(n-1 x 2R (9
nonstationary (transient) and the steady-statdiealis Ox*x =1 “=n=0
not applicable. = V(t) + L*(t)- L(t)
The variance: It is formally true that L(t) and V(t) are Multiplying the state differential-difference
defined as: Equations of (1) by%and summing yields:
w 0Z(x, t o 0 )
L©=Y" e () Ul a3 xR (0-u() 3" meR()
. 2 F A0 xRL()+ W)
v(t) =Zn:0(n—L(t)) P.(1) Zw ()P
n=0 n+1
Through completing the squares and summing it isl_h ]
also easily seen that: en:
. 0°Z(x,t) O s
> R (9= V() (1) a2 R
=AY xR () +
That substitution will be used several times here. ( )Z”:O (9+u(9
We will obtain non-homogeneous first-order ordinary Z‘” n?x"*R, (1) +A (1) 2)
linear differential equations for L(t) and V(t). &hwo n=0
ordinary differential equations are solved seqadigti Z‘” nx" P, () +1( 9
n=0
Theorem: The variance of the distribution of state Z“’ n(n+1 xR, (3
probabilities in the non-stationary M/M/ system is n=0
given as. When x = 1, this becomes:
} 2
V(t)=L,exp (- fu(S) dsy 9 j(;t’t) =-A(OLE)-r(O(vR) +L2()
X
C : + AL+ A1) + u(Y
exp- ds)| A e r dr)d ©
e g oA e e o) (0493 (ne 9 2.}
t
+(V,-L,) exp (_2,[ W § ds) And since:
0 62
Proof: The proof proceeds from the state differential- axot 209 = L (1)

difference Equations of (1) and the factorial motnen

generating function, as done by El-Sherbiny (2010)We get:

The factorial moment generating function Z(x,t) is

established as: L'(t) = -p(t)L(t)+1(t) 3)
69



J. Math. & Stat., 6 (1): 68-71, 2010

Equation 3 is a first-order non-homogeneousSince:

ordinary differential equation. Its solution is:

t

L(t)=L,exp (—.[p(§ ds)

0

[exp(—j u(3 ds)j A ¥ (ex 4)

0 0

([u(r)an) as)
0
The partial derivative of (2) with respect to xeg:

V)5 nin-9R ()
= MO n(n=9 xR (Y- i}
> ne(n-1 R (+a(d
> n(n- xR (§+ i}
> (ne)(m)(n-9 Ba()

When this is evaluated at x = 1 we get:

P25 -9 R ()

ox?ot

2 D+ 3=9 ((m 3= Rk
=ML +rO] V() +L7 () | +A E)L ()
=3u( )] V(1) + (1) |+ 2u( 9 L(1)

;L;z(x,t) = V(D) + 2()-L()

Then:

O Zx )= V) w2 €L f)

So:

V) 2L 0 ERL ()2 AL () 2u bV E)
~2u() 2()+ 2§ 1()

The differential equation for L(t) is given in (83:

®)

L'(t) = -pu(OL(t)+2(t)
Therefore:
2L(H)L'(1) = -2p (D)Lt +2L(t) A(D)

This substitution is made on the left side of (®)
yield:

V(1) = MB-2uOVO)+u L) (6)

Subtracting (3) from (6) gives:

V'(1)-L'(t) = -2u() VO +2u(oL(t)

Or:
[V(t)-L(t)] =-=2u(t) [V(t)-L()]
Integration gives:
V(t)-L(t)=(V,-L,)exp (—Zju(s) ds)
Finally:

V(t)=L(t)+(V,-L,)exp (—Zju(s) ds)

Substitution from (4) completes the proof.
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A comparison to the M/M/S variance: Rothkopf and x = 1 in Z(x,t) leads first to a differential eqigat for
Oren (1979) studied some approximations for thermeathe mean L(t). Further appeal to Z(x,t) produces a
and the variance of the general M/M/S queuing syste differential equation for the variance V(t). That
In that research they showed the variance of thelifferential equation contains L(t) and L'(t), swetV/(t)
distribution of state probabilities to have thefeliéntial  differential equation is solved by using the santi
equation form: found for L(t). The expressions for L(t) and V(Ktend

the finding of Rothkopf and Oren (1979). That work

s presented the variance for the M/M/S system, wisere

1
V(t)=A()+u(t)s-u(y) ano(z'-( ) +1- 2n) <« is the finite number of servers available.
S-n)P
(S=mR() DISCUSSION
V(0) = Vo (7) The results found here show that L(t) and V(t) in

i , i the M/M/o system are related. In fact, V(t) is found
In (7), S is the number of servers p_rowded in thepacause [V®-LOT = -2u(t) [VO-LE®)]. It is sen that
system. The terms of the summation in (7) can bex L()>0 and is bounded away from zero, then \(t)

rearranged to yield: L(t) will approach zero as t approaches If A(t) and
K(t) are both constaitand p then L(t) = L and V(t) =
st V are both equal td/p since the state probabilities are
ZH:O(ZL(t)ﬂ) SR(Y ( 2(+ :) Poisson. It is left as an open research topic tavsthe
nP,(1)- 2nSP( }+ 2h K )t nature of V(t)-L(t) for all t>0. A particular queésh is

the nature of A(t) and p(t) that would result in L(t) =

Now, let S approacho and carry out the V() for all t>0.

expectations of the summation. Equation 7 redumes t

V() +2u LX)+ OLE)-2u (L) +V()

V(0) = Vo

CONCLUSION

In the M/Mko system it is known that the steady-
state probabilities are Poisson with paraméfgrThe
mean and variance are thereby equal to each otiter a
to M. The derivation of the general form of the mean
and variance of the nonstationary MM#Mkystem has
, _ been presented here. Two first-order and
V(O+2uOV(D) = AO+LOO nonhomogeneous ordinary differential equations are

o , . solved sequentially to obtain L(tf) and V(). The
This is identical to Eq. 6, the direct result bet derivation of the ordinary differential equatiorr fithe

derivation from the factorial moment generaﬁngvariance was shown to yield the same result as was
function. This new derivation thus serves as a y

. . . obtained from extending the M/M/S variance result
(p:)(r)en:érr?tzftligg of the Rothkopf and Oren (1979) vacian from Rothkopf and Oren (1979) to the case of an

infinite number of servers.

Consequently:
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