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Abstract: Problem statement: In many queuing situations the average arrival and service rates vary 
over time. In those situations a transient solution for the state probabilities and mean and variance must 
be obtained. Approach: The mean and the variance of a particular infinite server model will be 
obtained using the state differential-difference equations and the factorial moment generating function. 
The average arrival and service rates will be taken to be dependent on time. The individual customer 
interarrival times and service time are assumed to be exponentially distributed. This is known as the 
Markovian system. Results: The mean and variance of the system will be established as solutions to 
two sequential linear ordinary differential equations. A comparison is also made to a previously known 
result for the corresponding system with a finite number of servers. Conclusion: Simple closed-form 
equations for the mean and variance of the system are presented.  
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INTRODUCTION 

 
 In a recent article in this journal, El-Sherbiny 
(2010) obtained the closed form state probabilities for 
the M/M/∞ system. He used the factorial moment 
generating function and the underlying state 
differential-difference equations to obtain the individual 
state probabilities when the average arrival rate and 
average service rate are not constant, but vary over 
time. The approach also incorporated Bessel functions 
in the expressions for the individual transient state 
probabilities. This study extends the El-Sherbiny (2010) 
contribution by also developing equations for the mean 
and variance of the same system. 
 Queuing systems are classified as *1 / *2 /S, where 
*1 is the arrival discipline, *2 is the service discipline 
and S is the number of servers available in parallel. The 
case of *1 and *2 being M is the presence of the lack-of-
memory or Markov property. That is, interarrival times 
and service times follow the negative exponential 
probability distribution. The M/M/∞ service system is 
an extension of the M/M/S queuing system wherein the 
number of servers is infinite. This means that a newly 
arrived customer can always get directly into service 
without having to wait in line. 
 Interested readers are referred to the above El-
Sherbiny (2010) article for an excellent set of 
references to the history of related research. The 
M/M/∞ service system has received growing interest in 
recent years because the insistence upon constant 
arrival and service rates is overly restrictive in many 
real applications. 

MATERIALS AND METHODS 
 
 The mean and variance of the M/M/∞ system will 
be developed here. The starting point will be the state 
differential-difference equations, as was done by El-
Sherbiny (2010). The classical moment generating 
function Z(x,t) will be applied to the differential-
difference equations, first to obtain the mean L(t), then 
the variance V(t). The mean and variance emerge from 
the moment generating function derivation as non-
homogeneous ordinary differential equations and are 
solved sequentially.  
 
The M/M/∞ system: Let the average customer arrival 
rate be λ(t) and the average service rate be µ(t) at time t. 
Let the expected number of customers in the system be 
L(t) and the variance of the number of customers in the 
system be V(t) at time t. The number of customers in 
the system at any moment is n = 0, 1,.... The probability 
of n customers being in the system at time t is Pn(t). The 
number of customers in the system is known as the state 
of the system.  
 The M/M/∞ system does not involve customer 
waiting time. All customers proceed directly into 
service upon arrival. Examples of application include 
recreational facilities such as parks, running tracks and 
swimming pools. Large automobile parking lots that are 
sure to not totally fill up also could conform.  
 The state differential-difference equations for the 
M/M/∞ system are given in El-Sherbiny (2010) study 
as: 
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 In (1), take P-1(t) to be zero in the equation for 
Po

’(t). When λ(t) = λ and µ(t) = µ are both constant over 
time, the steady-state solution to the system is easy to 
obtain. Set all Pn

’(t) = 0 and solve recursively to obtain 
Pn as Poisson with parameter λ/µ. In this circumstance, 
L(t) = V(t) = λ/µ. If either the arrival rate or the service 
rate varies over time then the system will be 
nonstationary (transient) and the steady-state solution is 
not applicable. 
 
The variance: It is formally true that L(t) and V(t) are 
defined as: 
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 Through completing the squares and summing it is 
also easily seen that: 
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 That substitution will be used several times here. 
We will obtain non-homogeneous first-order ordinary 
linear differential equations for L(t) and V(t). The two 
ordinary differential equations are solved sequentially. 
 
Theorem: The variance of the distribution of state 
probabilities in the non-stationary M/M/∞ system is 
given as: 
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Proof: The proof proceeds from the state differential-
difference Equations of (1) and the factorial moment 
generating function, as done by El-Sherbiny (2010). 
The factorial moment generating function Z(x,t) is 
established as: 
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 Multiplying the state differential-difference 
Equations of (1) by xn and summing yields: 
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Then: 
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 When x = 1, this becomes: 
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And since: 
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We get: 
 
 L’(t) = -µ(t)L(t)+λ(t) (3) 
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 Equation 3 is a first-order non-homogeneous 
ordinary differential equation. Its solution is: 
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 The partial derivative of (2) with respect to x gives: 
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 When this is evaluated at x = 1 we get: 
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 The differential equation for L(t) is given in (3) as: 
 

L’(t) = -µ(t)L(t)+λ(t) 
 
Therefore: 
 

2L(t)L’(t) = -2µ(t)L2(t)+2L(t) λ(t) 
 
 This substitution is made on the left side of (5) to 
yield: 
 
 V’(t) = λ(t)-2µ(t)V(t)+µ(t)L(t) (6)
   
  
 Subtracting (3) from (6) gives: 
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 Integration gives: 
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 Substitution from (4) completes the proof. 
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A comparison to the M/M/S variance: Rothkopf and 
Oren (1979) studied some approximations for the mean 
and the variance of the general M/M/S queuing system. 
In that research they showed the variance of the 
distribution of state probabilities to have the differential 
equation form: 
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 In (7), S is the number of servers provided in the 
system. The terms of the summation in (7) can be 
rearranged to yield: 
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 Now, let S approach ∞ and carry out the 
expectations of the summation. Equation 7 reduces to: 
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Consequently: 
 

V’(t)+2µ(t)V(t) = λ(t)+L(t)µ(t) 
 
 This is identical to Eq. 6, the direct result of the 
derivation from the factorial moment generating 
function. This new derivation thus serves as a 
confirmation of the Rothkopf and Oren (1979) variance 
presentation. 
 

RESULTS 
 
 The state differential-difference equations of the 
M/M/∞ system are given in Eq. 1. If the system is 
stationary in time then each of the first derivatives in 
Eq. 1 is equal to zero. The resulting difference 
equations can be solved sequentially to yield 
consecutive state probabilities that are Poisson with 
mean and variance equal to λ/µ. The work done here 
extends that result to the case where the average arrival 
rate and the average service rate vary over time, being 
λ(t) and µ(t). The moment generating function is 
applied to Eq. 1. Summing the results over n and using 

x = 1 in Z(x,t) leads first to a differential equation for 
the mean L(t). Further appeal to Z(x,t) produces a 
differential equation for the variance V(t). That 
differential equation contains L(t) and L’(t), so the V(t) 
differential equation is solved by using the solution 
found for L(t). The expressions for L(t) and V(t) extend 
the finding of Rothkopf and Oren (1979). That work 
presented the variance for the M/M/S system, where S 
< ∞ is the finite number of servers available.   

 
DISCUSSION 

 
 The results found here show that L(t) and V(t) in 
the M/M/∞ system are related. In fact, V(t) is found 
because  [V(t)-L(t)]’ = -2µ(t) [V(t)-L(t)]. It is seen that 
if µ(t)>0 and is bounded away from zero, then V(t) - 
L(t) will approach zero as t approaches ∞. If λ(t) and 
µ(t) are both constant λ and µ  then L(t) = L and V(t) = 
V are both equal to λ/µ since the state probabilities are 
Poisson. It is left as an open research topic to show the 
nature of V(t)-L(t) for all t>0. A particular question is 
the nature of  λ(t) and µ(t) that would result in L(t) = 
V(t) for all t>0. 
 

CONCLUSION 
 
 In the M/M/∞ system it is known that the steady-
state probabilities are Poisson with parameter λ/µ.The 
mean and variance are thereby equal to each other and 
to λ/µ. The derivation of the general form of the mean 
and variance of the nonstationary M/M/∞ system has 
been presented here. Two first-order and 
nonhomogeneous ordinary differential equations are 
solved sequentially to obtain L(t) and V(t). The 
derivation of the ordinary differential equation for the 
variance was shown to yield the same result as was 
obtained from extending the M/M/S variance result 
from Rothkopf and Oren (1979) to the case of an 
infinite number of servers. 
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