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Abstract: Problem statement: For square contingency tables with ordered categories, if the Marginal 
Homogeneity (MH) model holds, then the probability that X selected at random from the row marginal 
distribution is less than Y selected independently at random from the column marginal distribution 
equals the probability that X is greater than Y. However, the converse does not hold. We are interested 
in the condition in order that the converse holds. Approach: This study gave a decomposition theorem 
that the MH model holds if and only if both the marginal cumulative logistic model and the model of 
equality of mean ridits for the row and column marginal distributions hold. Examples are given. 
Results: For the data of cross-classification of ewes according to number of lambs born in consecutive 
years and cross-classification of unaided distance vision of women in British, the decomposition of the 
MH model is applied and the detailed analysis is given. Conclusion: When the MH model fits the data 
poorly, this decomposition is useful for seeing which of decomposed two models influences stronger. 
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INTRODUCTION 
 
 Consider an R×R square contingency table with the 
same row and column ordinal classifications. Let X and 
Y denote the row and column variables, respectively 
and let ijPr(X i Y j) p= , = = (i 1 R j 1 R).= , , ; = , ,… … The 

Marginal Homogeneity (MH) model is defined by 
(Stuart, 1955; Bhapkar, 1966; Bishop et al., 1975; 
Caussinus, 1965): 
 

i ip p (i 1 R )⋅ ⋅= = , ,…  

 
Where: 

R

i itt 1
p p⋅ =

=∑  
R

i sis 1
p p⋅ =

=∑  

 
 This indicates that the row marginal distribution is 
identical to the column marginal distribution. The MH 
model also may be expressed as: 

 
X Y
i iF F (i 1 R 1)= = , , −…  

 
Where: 
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 Let X

iL  and Y
iL  denote the marginal cumulative 

logit of X and Y, respectively. These are given as: 
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for i 1 R 1= , , −… . 
 The MH model may be further expressed as: 
 

X Y
i iL L (i 1 R 1)= = , , −…  

 
 As an extension of the MH model, the Marginal 
cumulative Logistic (ML) model is defined by 
McCullagh (1977) and Agresti (1984): 
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X Y
i iL L (i 1 R 1)= + ∆ = , , −…  

 
 This model states that the odds that X is i or 
below instead of i+1 or above, is exp(∆) times higher 
than the odds that Y is i or below instead of i+1 or 
above, for i 1 R 1= , , −… . If ∆>0, X rather than Y tends 
to be i or below instead of i+1 or above, for 
i 1 R 1= , , −… . A special case of this model obtained by 
putting ∆ = 0 is the MH model.  
 Miyamoto et al. (2005) and Tahata et al. (2007) 
gave the theorem that the MH model holds if and only 
if both the ML model and the marginal mean equality 
model (i.e., E(X) E(Y)= ) hold (Tahata et al., 2008).  
 On the other hand, Agresti (1983; 1984) considered 
the comparison between the marginal distributions 
using the measure defined by: 
 

i j i j
i j i j

p p p p Pr(X Y) Pr(X Y)⋅ ⋅ ⋅ ⋅
< >

τ = − = < − >∑∑ ∑∑  

 
Where: 
X = Selected at random from the row marginal 

distribution 
Y = Selected independently at random from the column 

marginal distribution 
 
 This is a population value of the difference 
between discrete analogs of the Mann-Whitney 
statistics. This measure is positive when X is 
stochastically less than Y and negative when X is 
stochastically greater than Y. Note that τ can be 
expressed using the mean ridits; as described later. 
 We note that the MH model implies the structure 
of  τ = 0,  thus,  the  MH  model  is  not  equivalent  to 
τ = 0. We are now interested in what structure is 
necessary to obtain the MH model in addition to the 
structure of τ = 0. 
 The purpose of this study is to give a theorem that 
the MH model holds if and only if both the ML model 
and the structure of τ = 0 hold.  
 

MATERIALS AND METHODS 
 
 Let: 
 

X X
X i 1 i
i

F F
r

2
− +=  

 
and 
 

Y Y
Y i 1 i
i

F F
r

2
− +=  

for, i 1 R,= , ,… where X Y
0 0F F 0= = , X Y

R RF F 1= = . The 

{ X
ir } and { Y

ir } are the marginal ridits; Bross (1958). 

The mean ridit for the distribution of Y when the 
distribution of X is the identified distribution for 
calculating the ridits is:  
 

R
X

X j j
j 1

R (Y) r p⋅
=

=∑  

 
 Similarly, we have: 
 

R
Y

Y i i
i 1

R (X) r p ⋅
=

=∑  

 
and also X YR (X) R (Y) 0 5= = . , where: 

 
R R

X Y
X i i Y j j

i 1 j 1

R (X) r p R (Y) r p⋅ ⋅
= =

= , = .∑ ∑  

 
 Then, τ is expressed as Agresti (1984): 
 

X YR (Y) R (X)τ = −  

 
 We shall refer to the structure of τ = 0 as the 
marginal Mean Ridits equality (MR) model. 
 We see: 
 

i R R i
X Y
i i s t s t

s 1 t 1 s 1 t 1

i R R i

s t s t
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F F p p p p
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for i 1 R 1= , , −… . Therefore, the MH model may be 
expressed as: 
 

1(i) 2(i)H H (i 1 R 1)= = , , −…  

 
Where: 

i R
X Y

1(i) s t i i
s 1 t i 1

R i
X Y

2(i) s t i i
s i 1 t 1

H p p F (1 F )

H p p (1 F )F
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= = −

∑ ∑

∑ ∑

 

 
 This indicates that the probability that the row 
variable X selected at random from the row marginal 
distribution is in category i or below and the column 
variable Y selected independently at random from the 
column marginal distribution is in category i+1 or 
above is equal to the probability that such X is in 
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category i+1 or above and such Y  is in category i  or 
below. Using {H1(i)} and {H2(i)}, the ML model may 
also be expressed as: 
 

1(i) 2(i)H H (i 1 R 1)= θ = , , −…  
 
 This model with θ = 1 is the MH model. 
We obtain the following theorem.  
 
Theorem 1: The MH model holds if and only if both 
the ML and MR models hold. 
 
Proof: If the MH model holds, then the ML and MR 
models hold. Assuming that both the ML and MR 
models hold, then we shall show that the MH model 
holds. 
 Since the ML model holds, we have: 
 

X Y
i i 1(i) 2(i) 2(i)F F H H ( 1)H (i 1, ,R 1)− = − = θ − = −…  

 
 If θ = 1, we see that the MH model holds. If θ>1, 
we have: 
 

X Y
i iF F (i 1 R 1)> = , , −…  

 
 Noting that X YR (Y) R (X) 1+ = , if θ>1, we have: 
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 Since YR (Y) 0 5= . , we have τ>0. Similarly, if θ<1, 

we have: 
 

X Y
i iF F (i 1 R 1)< = , , −…  

 
 Thus, if θ<1, we have τ<0. Since the MR model 
holds, i.e., τ = 0, we obtain θ = 1. Namely, the MH 
model holds. The proof is completed.  
 Assume that a multinomial distribution is applied 
to the R×R table. The maximum likelihood estimates of 
expected frequencies under the MH, ML and MR 
models could be obtained using the Newton-Raphson 
method in the log-likelihood equation. The numbers of 
degrees of freedom for testing the goodness-of-fit of the 
MH, ML and MR models are R-1, R-2 and 1, 
respectively.  

RESULTS 
 
Example 1: The data in Table 1, are taken directly 
from Bishop et al. (1975). These data indicate that ewes 
are cross-classified by the number of lambs born to 
them in two consecutive years, 1952 and 1953. 
 The MH model fits these data poorly, yielding the 
likelihood ratio chi-squared statistic G2 = 18.65 with 2 
degrees of freedom. Also, the ML model fits these data 
poorly, yielding G2 = 18.55 with 1 degree of freedom. 
However, the MR model fits these data well, yielding 
G2 = 0.78 with 1 degree of freedom.  
 From Theorem 1, we see that the poor fit of the 
MH model is caused by the influence of the lack of 
structure of the ML model rather than the MR model.  

 
Example 2: The data in Table 2, taken from Stuart 
(1955), are constructed from unaided distance vision of 
7477 women aged 30-39 employed in royal ordnance 
factories in Britain from 1943-1946. These data have 
been analyzed by many statisticians, for example, 
including Stuart (1955), Caussinus (1965), Bishop et al. 
(1975), Agresti (1984).  
 The MH model fits these data poorly, yielding the 
likelihood ratio chi-squared statistic G2 = 11.99 with 3 
degrees of freedom. Also, the MR model fits these data 
poorly, yielding G2 = 11.94 with 1 degree of freedom. 
However, the ML model fits these data well, yielding 
G2 = 0.39 with 2 degrees of freedom.  
 We see from Theorem 1 that the poor fit of the MH 
model is caused by the influence of the lack of structure 
of the MR model rather than the ML model.  

 
Table 1: Cross-classification of ewes according to number of lambs 

born in consecutive years; from Bishop et al. (1975)   
 Number of lambs 1952  
Number of --------------------------------------------------- 
lambs 1953  0  1  2  Total  
0  58 (57.73) 52 (47.94)  1 (0.88)  111 
1  26 (28.35)  58 (58.17) 3 (2.87)  87 
2  8 (9.27)  12 (12.72) 9 (9.07) 29 
Total  92  122  13  227 
Note: The parenthesized values are the maximum likelihood 
estimates of expected frequencies under the MR model 

 
Table 2: Unaided distance vision of 7477 women aged 30-39 

employed in Royal Ordnance factories in Britain from 
1943-1946; from Stuart (1955) 

 Left eye grade   
Right eye ----------------------------------------------------------  
grade  Best (1) Second (2) Third (3) Worst (4) Total  
Best (1)  1520 266 124 66 1976 
Second (2)  234  1512 432 78 2256 
Third (3)  117 362 1772 205 2456 
Worst (4)  36 82  179 492 789 
Total  1907 2222 2507 841 7477 
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DISCUSSION 
 
 In Example 1, we have seen that the MR model fits 
well, however, the MH model fits poorly. The readers 
may be interested in why this situation arises. We point 
out that testing the MR model is not equivalent to 
testing the MH model. From Theorem 1, the structure 
of uniformity of ratio 1(i) 2(i){H H }/ is necessary to obtain 

the MH model in addition to the MR model. Under the 
MR model, the maximum likelihood estimates of 

1(i){H } and 2(i){H } are 1(1)Ĥ 0 272,= . 1(2)Ĥ 0 049,= .  

2(1)ˆ 0 223H = .  and 2(2)Ĥ 0 129= .  and thus 

1(1) 2(1)ˆ ˆ 1 221H H/ = .  and 1(2) 2(2)ˆ ˆ 0 378;H H/ = . so these 

indicate that there is not the structure of uniformity of 
ratio 1(i) 2(i){H H }/ in these data. Therefore it would be 

natural that the MH model does not fit the data in 
Table 1 well. 
 

CONCLUSION 
 
 This study gave the theorem that the MH model 
holds if and only if both the ML and MR models hold. 
When the MH model fits the data poorly, this theorem 
would be useful for seeing which of the lack of the MR 
model and the lack of the ML model influences 
stronger. Indeed, for the data in Table 1, the poor fit of 
the MH model is caused by the poor fit of the ML 
model rather than the MR model (Example 1). For the 
data in Table 2, the poor fit of the MH model is caused 
by the poor fit of the MR model rather than the ML 
model (Example 2).  
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