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Exterior Differential Systemsfor Higher Order
Partial Differential Equations

Paul Bracken
Department of Mathematics, University of Texas,nbdirg, TX 78541-2999

Abstract: The theory of exterior differential systems is agglto study integrability of a set of related
partial differential equations expressed in thenteof differential forms using Cartan's method. The
Camassa-Holm equation and the Degasperis-Proceatiens are special cases that are described by
these exterior differential systems. Some consemvadaws are obtained in the cases of the more
relevant equations. A closed differential ideatasmstructed for each case studied.
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INTRODUCTION type of approach which was begun by Wahlquist and
Estabrook has been applied to this generalizedtiequa
It has been known for a while that the simplestas far as determining some prolongations is comrckrn
nonlinear evolution equations which have solitagver  (Bracken, 2007).
solutions or solitons are known to have an infinite It is the intention here to review some of the
number of conservation laws. This in turn is redate = mathematical background which will let us study som
the concept of integrability of a particular pdrtia interrelated equations which have been of interest
differential equation or system of such equationsrecently. These ideas are finally applied to asclef
(Estabrook and Wabhlquist, 1975). There are manyequations that includes the Camassa-Holm and
implications and applications of the idea of Degasperis-Procesi equations. These equationsfare o
integrability. For example, a Lax pair can usudlly the form:
determined and a Backlund or auto-Backlund
transformation might be written down. (U-Ue) U (U-Ugdx HB(U-Ue U = 0 1)
It was shown by Wahlquist and Estabrook (1975; o .
1976) that by applying results from the theory Offor specific chmce_s of the_ constéht .
, . : . An exterior differential system which reproduces
exterior differential systems, as well as proloigat

techniques, it is possible to determine integrabidf a the given equation on the transverse manifold is
related partial  differential system. The use c)fdeveloped for each case. The derivatives of thedadn

prolongation results can often lead to a Lax pair 0th|s set are shown to be expressible in termseoéme

Backlund transformation for the given nonlinearforms’. SO th? integrability qf each equation is
system established. Finally, conservation laws for the two

The equation which was studied by Wahlquist anaequations will be written down developed from the
Estabrook is the classical Korteweg-de Vries eguati original set of one-forms.

which has been known to describe the long timeDifferentiaI systems and their equations. Consider
evolution of finite amplitude waves. The equaticas h . . o .
the spaceM =R"(x,t,u,p,q,...) in which there is defined

many applications which extend beyond the original A ’ _ k X
applications to solitary surface waves. It seembdo 2 _closed exterior differential system which will be
that nonlinear dispersion can act to compatifytagli ~ Written:

waves and generate solitons with a finite wavelengt = _ 0 020 @)
Recently a generalized Korteweg-de Vries equation >~ — =" 'm
(Rosenau and Hyman, 1993; Sivers and Takens, 1988; | gt | pe the ideal generated by the &et™, in (2).
Bracken, 2005) has been studied. The symmetry group
has been determined for this equation and several
classes of solutions have been obtained, whichudiecl N
both soliton solutions and solutions which have | :{m:zci Oa, : o D/\(M)} (3)
compact support (Pikorsky and Rosenau, 2006). The =1
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his is given explicitly as:
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If the ideal in (3) is closed, it follows that dl |

and so we may say that (2) is integrable. It isartgmt
to stress that system (2) is chosen in such a hatythe
solutions u = u(x, t) of a specific equation:

U =

F(X, t, U, W, Uy, ...) (4)

correspond with the two-dimensional integral madigo
of (2). These are the integral manifolds given by
sections S of the projection:

mM - R?

S:R? . M,

X, tu,p.g,..F (Xt ©)
These sections S are given by a mapping:
S(x,t)= (x,t,u(x,t),p(x,1),q(x,t),...  (6) .

Due to the required transversality, we haveltx

dtl = Te(dx D dt) # 0.

discussed here.

Several exterior differential systems will be

It will be seen that we end with a

particular differential system which leads to some
partial differential equations of interest, in pewtar, an
equation of the form (1):

Let us introduce the differential system defined to
be:

o, = duldt— p dxd dt
a, = dpOdt- g dxO dt (7
o, = duddx- dqOd dx+ ddd dt-( u ¥ d& ¢

The exterior derivatives of tHad can be calculated
and we obtain:

da, =—-dpOdxO dtzlo(2 Odp
q

da, =-dqO dxO dt=a, O dx (8)
do, = dul dxO dt- do) oD dta, O d

Therefore, it can be seen that all of these exteri
derivatives vanish modulda}>, . Any regular

two-dimensional solution manifold in the five-
dimensional space ,$ {u(x, t), u = p(x, t),
p«(x, 1) = q(x, t)} satisfying a specific partial
differential equation of the form (4) will annulish
set of forms. The exact form of this equation which
corresponds to (5) can be found explicitly by
sectioning the forms into the solution manifold. On
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S,, we must have g&= u, d,+u, dt, and similarly for
both p and g. It follows that:

0=0a,[S=(y - g o dt
0=a,|S=(p - g dxJ dt (9)
O:a3|S:(q—q—(u— q- q) do d:

Therefore, p = wand g = y with the equation
given by:

(U'L&x)t'(u'L&x)'uxxx =0 (10)

This is the specific equation whose integrabiiity
implied by system (7)
Consider the differential system:

o, = duddt- p dxd dt
a, =dpOdt- g dxO dt

(11)
o, =dudx- dqd dx+ dud dt
dqOdt+(u- g dxO dt
Differentiating each of these, we obtain:
da, =-dpO dxO dt= dxOa,
do, =-dgO dxO dt= dxd €a, +a, ) (12)

do, =-dxOa,

Upon sectioning these forms, we again obtain that
p = U, q = Yy and the equation which pertains to
(11) arises from the sectiam|s = 0 and is given
by:

(U-Us)t-(U-Ue)x-(U-Uy) = 0 (13)
The final two cases which will be introduced
include equations which are being actively studied
at the moment

Let B be a real, nonzero constant. Define the

exterior differential system as the collection of
two-forms

o, =duldt- p dxO dt
a, =dpOdt- g dxO dt
o, =-dul dx+ dqQ dx-
BudqO dt+B( 2u- g dud d

(14)

The exterior derivatives of thog are given by:
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da, =dxOdpO dt=
da, = dxOdqgO dt=

dxda,

B—tdxm(—aswmﬁﬁ(u- 9a,) (19)

0

da,

These vanish modulo the set @ffrom (16) and
carrying out the sectioning, the equation
obtained from the restriction of:

is

0als = (U-gr+Buu-Bug,+B(u-g)u)dx O dt

Using p = yand g = y from sectioningx; anda,,
we have finally:

(U-Uet+B(U(U-Ue))x = 0 (16)

The following system leads to an important class of

partial differential equations which are of much
current interestt The Camassa-Holm and

1):52-55, 2010

These results imply the partial differential
equation:
(u-g)tu(u-gq)+p(u-g)u =0 19)

Substituting g = 4 into (19), an equation of the
form (1) is obtained:

(U'L&x)t"'u(u'ka)x"'B(u'uxx)ux =0 (20)

If we introducep = u-u, then for the casp = 3,
Eq. 20 becomes the Degasperis-Procesi equation;

PrHPxU+3pUy = 0,p = U-Ux (21)

Finally, for = 2, (20) is the Camassa-Holm
equation:

pt+pXU+2pux = Oa p = U-Uy (22)

Degasperis-Procesi equations are two particular ) ) )
examples which appear. Define the system ofconservation laws: Consider now the related subject

forms:

o, =duldt- p dxO dt

a, =dpOdt- q dxO dt

o, =-duOdx+ dqQd dx- udd? dt
udub dt+B( u- g dud dt

17

The quantity3 which appears in; is a real,

of conservation laws for these systems. Consemvatio
laws associated with the equations of the lastdages
correspond to the existence of exact two-forms
contained in the ring of the forms}. Let us suppose
that we can find a set of functionéxf t, u, p, q) such
that the two-form:

o= f1c11+f20(2+f30(3 (23)

nonzero constant. Differentiating each of these wesatisfies @ = 0, the condition for exactness. This is the

have:

da, =—-dp0OdxO dt= dxOa,
da, =1dx0 (a,+ u((+B )u- i, )
do, = (1-B)dq0 dud dt
=@-B)dgla, + (I-B)p ddgd dXd dt
=(1-B)dgOa, + (1-B)pf, + dul dxJ d
=(1-B)dgqOa, + (1-B) pdtJa,
-(1-B)p dxd dud dt
=(1-P)dg0a, + p dtla, - pdxda, ]

(18)

All of the details for calculating a have been
shown here. Clearly all of theagvanish modulo
the set oft;. Sectioningn; anda;, gives p = yand

g = Uy as in the other cases and the equation resul
from evaluating the section as follows:

0 =a3ls = (U-0rtu(u-a)+B(u-g)u)dx O dt
54

integrability condition for the existence of a dioem w
such that:
o =dw (24)
which conversely implies thatod= 0. Only the final
two equations which were discussed in Section 2 wil
be considered now.

For case (iii), consider the one-fomgiven by:

O =03 (25)

It has already been shown by differentiatmghat
do = 0. In fact, can be derived from a single one-
form. Letw be defined to be:
® = (g-u) dx +Bu(u-q) dt (26)

By working out the exterior derivative @b, we
obtain:
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dw=-du dx+ dgd dx+p uddd dt3 udd dt
B(u—-g)dul dt

This is exactly the forro in (25).

With regard to case (iv), with theaft given by
(17), we can similarly define a fornw. To do
calculations here, the exterior derivatives of thiens
in (17) can be simplified to read:

da, =~dp0 dxO dt, di, = - ddJ dx dt, a,
=(1-B) dqO dul dt

In this case, consider the one-foftn which is
defined to be:

0 = 0z-(1-B)qoy+(1-B)pa (27)

Calculating the exterior derivatives of it is found
that it vanishes:

do = (1-B) dq0 du dt (B )dq d@d de
(1-B)pdqd dxJ dt+ (+B )qdf] dxI dt
(1-B)qdpl dx0 dt- (£ )pdd) d<l dt

Now it can be shown th§t can be derived from a
one-form, namelyo defined by:

w:(q—u)dx+%(|f—2uq+B d+ B )d (28)
Differentiatingw, it is obtained that:
dw=-dudx+ dg dxt udul dt udg ot (29)

Budul dt- gdul dt (£B )pdp dt

This is precisely the two-formi given in (27).

w=dv+(g- U) dx+% (- 2uqB G+ p)d 31)

such thato = dw. Now v may be regarded simply as a
coordinate in an extended six-dimensional space of
variables {x, t, u, p, q, v} and the one-fommmay be
included with the original set of forms. Sincevds
known to be in the ring of the original set, thevneet

of forms remains a closed ideal.

REFERENCES

Bracken, P., 2005. Symmetry properties of a
generalized Korteweg-de Vries equation and some
explicit solutions. Int. J. Math. Math. ci$
13: 2159-2173.

Bracken, P., 2007. An exterior differential systtma
generalized Korteweg-de Vries equation and its

associated integrability. Acta Applied Math.,
95; 223-231.
Estabrook, F.B. and H.D. Wahlquist, 1975. The

geometric approach to sets of ordinary differential
equations and Hamiltonian dynamics. SIAM Rev.,
17: 201-220.

Pikorsky, A. and P. Rosenau, 2006. Phase compactons
Phys. D., 218: 56-69.

Rosenau, P. and J. Hyman, 1993. Compactons: Seliton
with finite wavelength. Phys. Rev. Lett., 70: 568I¢5

Sivers, AJ. and S. Takens, 1988. Intrinsic loealiz

modes in anharmonic crystals. Phys. Rev. Lett.,
61: 970-973.
Wahlquist, H.D. and F.B. Estabrook, 1975.

Proplongation structures of nonlinear evolution
equations. J. Math. Phys., 16: 1-7.

Wahlquist, H.D. and F.B. Estabrook, 1976.
Prolongation structures of nonlinear evolution
equations Il. J. Math. Phys., 17: 1293-1297.

The associated conservation law results from an

application of Stokes theorem, which is:

% w=¢ dw (30)

M,

This has been written for any simply-connected,

two-dimensional manifold M with closed
onedimensional boundaryMThe notation implies that

w and dv are to be evaluated on their respective

manifolds.

Consideringw again, we can of course add to this

w any exact one-form dv, where v is an arbitrarg)ac
function. Thusw can be taken to be:
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