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Quadratic Convergence Ratio of Constrained Optimal Control Problems
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Abgtract: Problem statement: Earlier Researchers developed algorithms for sglgnadratic control
problems, but did not address the quadratic coevergratio profileApproach: Hence, the objective of
this work is using our developed scheme, DiscrdtiZentinuous Algorithm (DCA), to examine both
convergence profile and quadratic ratio profile destrating the effectiveness and efficiency of the
scheme. Methodologically, we obtained generalizedonstrained formulation of the constrained
problem. Using Conjugate Gradient Method (CGM) éindar ratio of the deviation of the generated
iterates from the exact solution, we obtained retbgely the objective values and the quadraticorati
values. Results: If these quadratic ratio values fall within theeirval [1, ], then the convergence is
quadratically convergent. Two examples were exathinad satisfied the condition for quadratic
convergenceConclusion: Thus, we can conclude that the algorithm is ogtinedfective and efficient.
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INTRODUCTION We now provide the ingredients for the
development of the disretized scheme which gives th

In (Olorunsola and Olotu, 2004; Olotu and framework for the construction of the associated
Olorunsola, 2005), we presented the developmetiteof operator A.

discretized algorithm for the solution of a clask o
constrained optimal control problems with real
coefficients. As in (Balakrishman and Neustadt, 4,96
Bertsekas, 1996), we resort to a finite approxioratf

Discretization: Using discretization, finite difference
method as in (Olorunsola and Olotu, 2004; Olotu and
it by discretizing the time interval and using feni gt:)tr#gc?m\?v’ezgggina?ﬁe aep pllj)il\lll?a?er:?eur?ceonne:gai;u;; tlgr?d
difference method for its differential constraiy di . df lati f r? lized problem:
(Bertsekas, 1996), a penalty function method wasl us Iscretized formulation of the penalized problem:
to obtain the unconstrained formulation of the give
constrained problem. Using (Fletcher and Reeves, B (ax2(t)+bu2( 1))
1964; Gutknecht and Rozloznik, 2002), reviewed by n

) , - . _ C O X (K +1)
(Ibiejugba, 1984), with the bilinear form expressian ~ MinJ(x,up)=>"

associated operator as in (Ibiejugba, 1984) =0 | =X, (t) = Ayox, (1)
circumventing the rigorous calculations inherentha -db,u, ()P
Function Space Algorithm (FSA) (Balakrishman and
Neustadt, 1964; Olorunsola, 1996) was stated as a (axk (t)+bu(t ))
theorem which aided the numerical method as aftwol AU (1) +x,2(t)
solving the problems and for investigating quadrati DR )
convergence ratio profile. +8,7¢*x,*(t) @)
d’Au,? 2\
MATERIALSAND METHODS L [FIBIU () + 2855 (1)
Aised orobi =3 1 +2dd x, () u(t)
. k=0
Generalized problem (P): +200,2%, () u (1)
T -2X t
MinimizeJ'(ax2 (H)+ bt (tj dt (b x(8)
0 _Z(Akxk+1xk(tk)
subject to (1) =20, X (i) U, ()]
X(t) = cx(t) + du(t), 0< t< T
x(0)=0and a,b,c,d are real numb Simplifying (2), we have:
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(8)

X2 (t,)[a0, +H+HA S Further Olorunsola (1996) simplifying (6) and
w2, 1+ 47 (1) [, +uA] using (Gutknecht and Rozloznik, 2002), we have:
nn 2
Z N O (tk)+xk(tk)uk(tk) ©) <ZK1(tk),AZK2(tk)>H =
7| [20,p+ 200, 31 ] b
+xk+1( ) ( )[_ZU_ZUOQ ] ;){at?( Kl(tk)x K2 (tk)+Bku Kl(tk)uKZ
+Xk+1( ) ( )[ a'ICﬂk]] (tk)+p[(AKXK1 +XK1)(AKXK21 +XK2)]
+)\KXK1UK2 +)\K Ut %2 + 6K (AK X<1 + X(l)X(Z
X (t ) +6KXK1 (AKXKZ +XK2)+pK (AK XKl +XK1)UK2
Let z =| X d = X%
et 2=(0)) a9 x(0= et (Bt %))
Let a, =a), +U+pA C+uU2d,
Bk = bAk +Hd2Ak2 (4) Z{al?( Kl( )X K2 (tk)+Bku Kl(tk)uKZ(tk)

A =2udA, + ey,

+“AK XKl( k)XKZ( )+,’1A XKl (tk)XKZ (tk)
6k:_2U(1+ (Ak)l"'pk:_a’l(nk t

+HA XKl( )KZ( )sz( )
+HXK1( k) ( )+)‘ XKl( )UKZ(tk)

(9)

Now using (3 and 4) becomes: AU () Xz () * BBy Xy (&) %z ()
+8yXr (b ) iz (1)
. Gkaz(tk)+Bk K ( )+yk2( )p +6 A XKl(tk)XKZ (t )+5 XKl( )XKZ (tk)
Z +xk( k)uk ))\ +yk( ) (tk)ak (5) P By UKZ(k)XKl( )+p|< KZ( k)XKl(tk)
- +Yy (te) U () P Proof: Setting w, t) = 0, in (9) and by (Olorunsola,

1996)we have:

For a full detail of the construction of operatar Vv
( 1Y k2] ( 11]

A
we refer to (Olorunsola and Olotu, 2004; Olotu and X

A21X k2 V21

Olorunsola, 2005), while we state below the corsterft

theorem 1, establishing the operator A. and

Theorem 1 (Operator A): Let the initial guess of the (Zkl(tk),sz(tk»H =

conjugate algorithm beyZty) so that: 8, X, (6 )%, (6)+ HA 20 (6) %, (8
— n +uAkal(tk)Xk2(tk) +HAI<X kl(t k)XkZ(t k)

%)= Gl (0 S (01 + A0 (6K, (8,)

k=0 . .
Then the control operator A associated with +0,8, X1 (1) X2 (th) + 88 X ()X o)
problem 1 is given by: +0, X (1) X o(t)
<ZKl(tk)’AZK2 (tk)>H = =Z{X Kl(tklal?( kz(t k) THAX , (t k)
n k=0

Z{akx K1 (t k)x KZ(tk) +Bku Kl(tk) + HXKZ (tK) + 6|‘<XK2 (tk )
k=0
UKz( )+yk1( )ykz(tk)u+)\ xKl(tk)uKz(tk) (6) +§KAKXK2(tk)+6KXK2 (tk)]
+Ay Uy (tk) ( )+6Kyk1( )sz(tk) +XK1(tk)[|JAk2XK2(tk)+|JAKXK2 tk)

t ) + 6KAK XK2 (tk )] + uKl (tk )[)\KXKZ (tk )]}

0, Yz (1) Xt (1) + PYia () Ui
+pkukl(tk)yk2( )}

=200 Val ) Pl V)l 3
— All A12 X k2 | _ A 1?1( k2+A H k2 i
AZKZ (tk) _(Au A 22](” kZJ B [A 22( k2+A H KJ (7) i
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Q(t) = (o + 1+ 25 ) o () + (A +8cA )% (k) In Eq. 9, settingk,,(t,) =0 - ;(kz(tk): 0
And: And following the same steps as from Eq. 10-18,
we have:
f(t) = AR, (1) + (HAC +8¢ )Xz (1)
. sz(tk) =A2}' K2(t k) :BKU KZ(tk) (19)
Comparing and we have:
AL () = Vot ) =A X ft) (14)  Vi(t) =(Pidy)u.(0)sinh( t)
To obtain the component i&xi(td) = Via(tk), = [(PebJug; cost{ t - ) ds
where: N
- ()\ P )uK2(§<)sinI‘( - §) ds
Q(t) -V (t,) and f(t)-Vy(t,) l o
+ (A +p)uco (0) coshy
Are both continuous functions on [0, T] and sinht (20)
choosing: snh NP (T)

X1 (+) 0D[0, T] Dx,y (0) = x4y (T) = 0 ~(A*p)ug; (0) coshT
S

~(Pe) uicz (0) sinh( )

T

[t Q) Vit ) bt JF € *J (e s) costf ) ds
0 (15) TO
—Vyu(t, it , =0 +I (A +pe U, Sinh( T-§) ds }
From (15), obtain a second order bounded value
problem (Olorunsola, 1996): Having constructed operator A, written as:
v () ) =) = () () (16) 4 [ ]
v21 v22
With:

. where, y;(18), v, is (20), 1 is (14), v, is (19).
V,(0)=p, and \i(0)= g The discretized algorithm was now applied to the
following hypothetical problems P1 and P2 whose
quadratic convergence ratios were examined anddfoun
to satisfy the definition of quadratic convergestated
17) as follows:

Obtain the Laplace transform of the ordinary
differential equation, with:

LV{t )} & (s) and L{a(t )} =Q(s)
Definition 1: Let the sequence {k in the normed

Now, using inverse Laplace transform with theIinear space:

convolution theorem, we have:

Vi (t) =A,(t ) =T sinh(t,) {R", |y converge to x

+[(Gk +l“l+26kk)XK2 (0)
Then the order of convergence is p, if:

+(u+8,)A xxz(0)]cosht (18)

- sinh T2, k,, (0) .

B, (1+3,)c; (O) I i
T " ke oo <P

+I{(HAK XKZ(Sk)) X, — X

+Ay (U+6K)XK2 (%)}COSh( L- §) d§_

‘}{(“K 28 ) (5,) where, R is a positive constant not necessarily flean
o one. If p = 2, then the convergence of{xs called

+0y (H+6K)).(K2(S()}Sinh(1;(k -5)ds quadratic.
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Examples: RESULTSAND DISCUSSION
Example problem P1:
For example problem P1 in Table 1, the analytic
T . solution is 1.0647 at the optimum. The initial attjee
Mmmzej(x (1) + U (1))t functional value is 1.212418 with corresponding
° constraint 5.280804, 9 iterations, step size 2 and
quadratic ratio 6.7643290, for the first cycle. the
parameters increase to 1.00 and 1.50, particularly
. 1.50, the numerical solutions get closer to thdyaica
X(t) =2.095x(t)+ 1.904u(t), & £ solution. We notice that as the parameters get rimkyo
1.50, the objective values deviate much more frben t

The analytic solution is 1.0647 given by analytic solution. However, for all cycles, the dretic
(Clorunsola and Olotu, 2004). The numerical sohutio ratios, 6.7643290, 0.6829638, 2.7583200, 1.501560 a
in Table 1, to this problem is obtained by assunthey 27456270, except 0.6829638 at the second cycle,
following initial values and parameters: obtained as the infimum per cycle of iterationd] fa
within the required interval [Lp].

For example problem P2 in Table 2, the analytic
solution is 0.7641 at the optimum. The initial atjee
functional value is 1.034712 with corresponding

b s constraint 6.691094402, 2 iterations, step sizen@ a
Minimize [(x*(t) + u* (1)) dt zero quadratic ratio, for the first cycle. As the
° parameters increase to 1.00 and 2.50, the objective
functional values 0.8676740, 0.8769342, 0.8769342,
Such that: 0.8769342 and 0.8774541 compare much more
favorably to the analytic solution. We notice thatall
X(t) = u(t), x(0)= 0, 0< t< 1 cycles, except the first, the quadratic ratio peois 1.
Thus, this shows that the convergence is quadratic.

The numerical solution to this problem is obtained
by assuming the following initial values for the CONCLUSION
variables:

Such that:

Xo=1,ub=05a=b=1,c=2.095and d = 1.904

Example problem P2

_ _ In each cycle and for each example, the results
Xo=1 b =1 obtained with Discredited Continuous Algorithm (DICA
The analytic solution is 0.7641. Applying the samesShow that the scheme confirms quadratic ratio lerofi

algorithm to problem P2 and solving by extendedVe noti_ce, particularly in the_ second example, that
conjugate gradient method, we have the foIIowingquadrat'C ratio value, 1, obtained per cycle, eke¢phe

Table 2. first cycle, shows that the convergence is alsealily
convergent. This is as a result of the closenesthef

Table 1: Nu_merical solu_tion and quadratic ratiogosblem P1 numerical solutions to the analytic solution.

(F))%mt (?tzpsmesaltr fzt)ié\/ztls (5:.52a§0804 F39§§t2670 %37643290 Consequently, we can say that the scheme has

1.00 0.2 6 1.256018 4.345545 5.601494 0.6829638 demonstrated its effectiveness and efficiency, esiite

320 02 5 0939035 3005000 S34r810 27583200 quadratic ratios fall within the specified interjal «].

250 0.2 3 1428916 3.642317 10.53471 2.74562701t is recommended that the best guessed choices of

Where: Pamt: y, penalty parameter, Stp: Step size for theinitial values of the state and control variablesl ghe

discretization,_ Itr: Numbgr of iterationg, Obj.V:bfective Valug, choice of smaller step size can enhance fasterrqtjrad
Csat: Constraint satisfaction, Funct: Objp#¢Csat), QR: Quadratic . . . .
convergence profile and quadratic ratio profile

ratio )
respectively
Table 2: Numerical solution and quadratic ratiogosblem P2

Pamt Itr Stps Obj.V Csat Funct QR REFERENCES

050 1 02 1.0347120 5.691094E0-2 1.063167 O

1.00 3 0.2 0.8676740 6.353983E-02 0.8938423 1 .

150 7 02 08769342 653919E0-2 09657592 1 Balakrlshma_n, A.V. anql I.V._ _Nel_Jstadt, 1964.
200 2 02 0.8769342 0.0489593 0.9748530 1 Computing Methods in Optimization Problems,
250 3 0.2 08747541 3.892236E-02 0.9720601 1

Academic press, Inc., New York.
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