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Abstract: Problem statement: Earlier Researchers developed algorithms for solving quadratic control 
problems, but did not address the quadratic convergence ratio profile. Approach: Hence, the objective of 
this work is using our developed scheme, Discretized Continuous Algorithm (DCA), to examine both 
convergence profile and quadratic ratio profile demonstrating the effectiveness and efficiency of the 
scheme. Methodologically, we obtained generalized unconstrained formulation of the constrained 
problem. Using Conjugate Gradient Method (CGM) and linear ratio of the deviation of the generated 
iterates from the exact solution, we obtained respectively the objective values and the quadratic ratio 
values.  Results: If these quadratic ratio values fall within the interval [1, ∞], then the convergence is 
quadratically convergent. Two examples were examined and satisfied the condition for quadratic 
convergence. Conclusion: Thus, we can conclude that the algorithm is optimally effective and efficient. 
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INTRODUCTION 
 
 In (Olorunsola and Olotu, 2004; Olotu and 
Olorunsola, 2005), we presented the development of the 
discretized algorithm for the solution of a class of 
constrained optimal control problems with real 
coefficients. As in (Balakrishman and Neustadt, 1964; 
Bertsekas, 1996), we resort to a finite approximation of 
it by discretizing the time interval and using finite 
difference method for its differential constraint. By 
(Bertsekas, 1996), a penalty function method was used 
to obtain the unconstrained formulation of the given 
constrained problem. Using (Fletcher and Reeves, 
1964; Gutknecht and Rozloznik, 2002), reviewed by 
(Ibiejugba, 1984), with the bilinear form expression, an 
associated operator as in (Ibiejugba, 1984) 
circumventing the rigorous calculations inherent in the 
Function Space Algorithm (FSA) (Balakrishman and 
Neustadt, 1964; Olorunsola, 1996) was stated as a 
theorem which aided the numerical method as a tool for 
solving the problems and for investigating quadratic 
convergence ratio profile. 
 

MATERIALS AND METHODS 
 
Generalized problem (P): 
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 We now provide the ingredients for the 
development of the disretized scheme which gives the 
framework for the construction of the associated 
operator A. 
 
Discretization: Using discretization, finite difference 
method as in (Olorunsola and Olotu, 2004; Olotu and 
Olorunsola, 2005) and applying the penalty function 
method, we obtain the equivalent unconstrained and 
discretized formulation of the penalized problem: 
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 Simplifying (2), we have: 
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 Now using (3 and 4) becomes: 
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 For a full detail of the construction of operator A, 
we refer to (Olorunsola and Olotu, 2004; Olotu and 
Olorunsola, 2005), while we state below the contents of 
theorem 1, establishing the operator A. 

 
Theorem 1 (Operator A): Let the initial guess of the 
conjugate algorithm be Z0 (t0) so that:  
 

0 0 0 k 0 kz (t ) (x (t ),u (t ))=  

 
 Then the control operator A associated with 
problem 1 is given by: 
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 Further Olorunsola (1996) simplifying (6) and 
using (Gutknecht and Rozloznik, 2002), we have: 
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Proof: Setting uk2 (t) = 0, in (9) and by (Olorunsola, 
1996) we have: 
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Define: 
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 From (15), obtain a second order bounded value 
problem (Olorunsola, 1996):  
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 Obtain the Laplace transform of the ordinary 
differential equation, with: 
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 Now, using inverse Laplace transform with the 
convolution theorem, we have: 
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 And following the same steps as from Eq. 10-18, 
we have: 
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 Having constructed operator A, written as: 
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where, v11 (18), v12  is (20),  v21 is (14), v22 is  (19). 
 The discretized algorithm was now applied to the 
following hypothetical problems P1 and P2 whose 
quadratic convergence ratios were examined and found 
to satisfy the definition of quadratic convergence stated 
as follows: 
 
Definition 1: Let the sequence {xk} in the normed 
linear space:  
 

n{R , . } converge to x
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 Then the order of convergence is p, if: 
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where, R is a positive constant not necessarily less than 
one. If p = 2, then the convergence of {xk} is called 
quadratic. 
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Examples: 
Example problem P1: 
 

( )
1

2 2

0

Minimize x (t) u (t) dt+∫   

 
 Such that:  
 

x(t) 2.095x(t) 1.904u(t), 0 t 1
•

= + ≤ ≤  
 
 The analytic solution is 1.0647 given by 
(Olorunsola and Olotu, 2004). The numerical solution, 
in Table 1, to this problem is obtained by assuming the 
following initial values and parameters: 
 

X0 = 1, u0 = 0.5, a = b =1, c = 2.095 and d = 1.904 
 
Example problem P2: 
 

( )
1

2 2

0

Minimize x (t) u (t) dt+∫  

 
 
 Such that:  
 

x(t) u(t), x(0) 0, 0 t 1
•

= = ≤ ≤  
 
 The numerical solution to this problem is obtained 
by assuming the following initial values for the 
variables:  
  

X0 = 1, u0, = 1 
 
 The analytic solution is 0.7641. Applying the same 
algorithm to problem P2 and solving by extended 
conjugate gradient method, we have the following 
Table 2.  
 
Table 1: Numerical solution and quadratic ratio for problem P1 
Pamt Stpsize Itr Obj.V Csat Funct QR 
0.5 0.2 9 1.212418 5.280804 3.852670 6.7643290 
1.00 0.2 6 1.256018 4.345545 5.601494 0.6829638 
1.50 0.2 6 0.939635 3.605450 6.347810 2.7583200 
2.00 0.2 5 1.728642 4.195213 10.11907 1.5061560 
2.50 0.2 3 1.428916 3.642317 10.53471 2.7456270 
Where: Pamt: µ, penalty parameter, Stp: Step size for the 
discretization, Itr: Number of iterations, Obj.V: Objective Value, 
Csat: Constraint satisfaction, Funct: Obj.V+µ*(Csat), QR: Quadratic 
ratio 
 
Table 2: Numerical solution and quadratic ratio for problem P2 
Pamt Itr Stps Obj.V Csat Funct QR 
0.50 1 0.2 1.0347120 5.691094E0-2 1.063167 0 
1.00 3 0.2 0.8676740 6.353983E-02 0.8938423 1 
1.50 7 0.2 0.8769342 6.53919E0-2 0.9657592 1 
2.00 2 0.2 0.8769342 0.0489593 0.9748530 1 
2.50 3 0.2 0.8747541 3.892236E-02 0.9720601 1 

RESULTS AND DISCUSSION 
 

 For example problem P1 in Table 1, the analytic 
solution is 1.0647 at the optimum. The initial objective 
functional value is 1.212418 with corresponding 
constraint 5.280804, 9 iterations, step size 2 and 
quadratic ratio 6.7643290, for the first cycle. As the 
parameters increase to 1.00 and 1.50, particularly at 
1.50, the numerical solutions get closer to the analytic 
solution. We notice that as the parameters get beyond 
1.50, the objective values deviate much more from the 
analytic solution. However, for all cycles, the quadratic 
ratios, 6.7643290, 0.6829638, 2.7583200, 1.501560 and 
2.7456270, except 0.6829638 at the second cycle, 
obtained as the infimum per cycle of iterations, fall 
within the required interval [1, ∞]. 
 For example problem P2 in Table 2, the analytic 
solution is 0.7641 at the optimum. The initial objective 
functional value is 1.034712 with corresponding 
constraint 6.691094402, 2 iterations, step size 2 and 
zero quadratic ratio, for the first cycle. As the 
parameters increase to 1.00 and 2.50, the objective 
functional values 0.8676740, 0.8769342, 0.8769342, 
0.8769342 and 0.8774541 compare much more 
favorably to the analytic solution. We notice that in all 
cycles, except the first, the quadratic ratio profile is 1. 
Thus, this shows that the convergence is quadratic.  

 
CONCLUSION 

 
 In each cycle and for each example, the results 
obtained with Discredited Continuous Algorithm (DCA) 
show that the scheme confirms quadratic ratio profile.  
We notice, particularly in the second example, that the 
quadratic ratio value, 1, obtained per cycle, except at the 
first cycle, shows that the convergence is also linearly 
convergent. This is as a result of the closeness of the 
numerical solutions to the analytic solution.  
 Consequently, we can say that the scheme has 
demonstrated its effectiveness and efficiency, since its 
quadratic ratios fall within the specified interval [1, ∞]. 
It is recommended that the best guessed choices of 
initial values of the state and control variables and the 
choice of smaller step size can enhance faster quadratic 
convergence profile and quadratic ratio profile 
respectively.    
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