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Abstract: Problem statement: In many applications two or more dependent vaemlalre observed at
several values of the independent variables, ssieth tme points. The statistical problems arestorate
functions that model their dependences on the mufignt variables and to investigate relationships
between these functions. Nonparametric regressamehespecially smoothing splines provide powerful
tools to model the functions which draw associatibthese variableApproach: Penalized weighted
least-squares was used to jointly estimate nonpatranfunctions from contemporaneously correlated
data. We apply Generalized Maximum Likelihood (GMBeneralized Cross Validation (GCV) and
leaving-out-one-pair Cross Validation (CV) for estiting the smoothing parameters, the weighting
parameters and the correlation param&esults. In this study we formulated the multi-response
nonparametric regression model with unequal caiogleof errors and give a theoretical method for
both obtaining distribution of the response andhesing the nonparametric function in the model. We
also estimate the smoothing parameters, the wamghtarameters and the correlation parameter
simultaneously by applying three methods GML, GG@M &V. Conclusion: Distribution of responses

is normal. With multiple correlated responses ibéter to estimate these functions jointly using t
penalized weighted least-squares.

Key words: Multi-response nonparametric regression model,alimed weighted least-squares,
generalized maximum likelihood, generalized crosdidation, leaving-out-one-pair
cross validation

INTRODUCTION (1994) introduced relaxed spline and quantile splin
respectively. Budiantaret al. (1997) studied weighted
The functions which draw association of two orspline estimator in  nonparametric regression rhode
more dependent variables are observed at sevdualsva with different variance. Wahba (1992) introducedheo
of the independent variables, such as at multiple t techniques for spline statistical model buildingusjing
points, can be modeled by using smoothing splineteproducing kernel Hilbert spaces. Cardbal. (2007)
There are many writers who have studied splinestudied asymptotic property of smoothing splines
estimators for estimating regression curve ofestimators in functional linear regression withoesrin-
nonparametric regression models. Kimeldorf andvariables. Liuet al. (2007) proposed smoothing spline
Wahba (1971); Craven and Wahba (1979) and Wahbastimation of variance functions. Aydin (2007) sleaw
(1985) proposed original spline estimator to estima goodness of spline estimator rather than kernel
regression curve of smooth data. Cox (1983) and Cogstimator in estimating nonparametric regressiodeho
and O’Sullivan (1996) used M-type spline to overeom for gross national product data. All these writgrgdied
outliers in nonparametric regression. Wahba (1983%pline estimators in case of single response
proposed polynomial spline to obtain confidencenonparametric models only.
interval based on posterior covariance functionhldéa In the real cases, we are frequently faced to the
(2000) compared between GCV and GML for choosingoroblem in which two or more dependent variables ar
the smoothing parameter in the generalized splin@bserved at several values of the independentblasia
smoothing problem. Oehlert (1992) and Koenéteal. such as at multiple time points. Multi-response
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nonparametric regression model provide powerfulstoo vy, =f,(t,) +¢&, (1)
to model the functions which draw association @sth
variables. Where:
Many authors have considered nonparametrig =1 2 . p
models for multi-response data. Wegman (1981);évlill j =1 2

and Wegman (1987) and Flessler (1991) proposed

algorithms  for spline smoothing. Wahba (1990) |t means that thé"iresponse of the'kvariable y;
developed the theory of general smoothing splinegg generated by thekfunction { evaluated at the

using reproducing kernel Hilbert spaces. Goodteal. design point ¢ plus a random errogg. Assume
(1991) and Francisco-Fernandez and Opsomer (2005) ;4

proposed methods of estimating nonparametrices ~ N(0.07) for fixed k = 1, 2,...,p and the correlation
regression models with serially and spatially catel  of errors are different for every i = 1, 2,.,,ri.e.,

errors, respectively. Wargg al. (2000) proposed spline Corrle &) = pi for k # | and zero otherwise. This

smoothing for estimating nonparametric functiom®fr  qrrelation assumption means that correlation wrer
bivariate data. Lestari (2008a) developed spling e the same for every response.

estimator in biresponse nonparametric regressiageino There are four cases for this correlation
with unequal variances of errors, Lestari (2008b)assumption, ie., (i) case:;m<..<n, (i) case:
studied penalized weighted least-squares estinfator n>n,>...>n, (i) case: A= m, =...= n, and (iv) case:
bivariate nonparametric ~regression model  Withpot gl n<n,, (fori= 1, 2,...,p-1), not allpn., (for i =
correlated errors, Lesteei al. (2010a; 2010b) proposed 1 2 . 1) and not all; n (for i = 1, 2,..,p-1). In

spline approach for estimating regression funcén ihis study, we describe for the first case onlg,,i.
multi-response nonparametric regression model i <n<  <n. The three other cases can be verified
special cases, i.e., variances and correlationsmofs  gjmilarly. In addition, for simplicity of notationwe
are the same for every response. assume that the domain of the functions are [l]fa

All, except Wanget al. (2000); Lestari (2008a; is element of Sobolev space,W.e., t{0W, = {f: f, f
2008b) and Lesta®t al. (2010a; 2010b), assumed that

. 1

the covariance matrix is known, which is usuallyt no absolutely contmuous,.[o(f"(t))zdt<oo}. Our methods
the case in practice. When the covariance matrix igan be easily extended to the general smoothirigespl
unknown, it has to be estimated from the data &isl t models where th@ domains are arbitrary (thus could
can affect the estimates of the smoothing parasietebe different) and the observations are linear fonet
(Wang, 1998). instead of evaluations (Wahba, 1985; 1990).

In this study, we study mathematical statistics
methods for obtaining distribution of responses andistribution of the responses: Based on the model (1),
estimating the nonparametric functions and thesuyppose that we denote t, =(ty,..t, )';
parameters in the multi-response nonparametric . B o
regression model. Here, we assume that the cowarian Y« =~ Vi Y, )5 & = (B in )
parameters are unknown and errors of the same, =(f (t,,).f (t kz),__.,fk(tm))T ;tz(ﬂ,_,_,ﬂjf and
responses have the same variances. In additioorserr
have different correlation. Based on the multi-ese
nonparametric regression model given, we estimatganspose. Moreover, we may write model (1) in the
multi-response nonparametric regression function byector equation as follows:
using penalized weighted least-squares. Next, we
describe three methods: Generalized Maximumy=f +¢ 2
Likelihood (GML), Generalized Cross Validation ~
(GCV)_ and Ieaving-out-ope—pair Cross Validation .()C\( Next, for k=1, 2,....p.
to estimate the smoothing parameters, the weighting o .
parameters and the correlation parameter  Let r, :3, m=[]o;; 8=MNa,;
simultaneously. m =1 =

Xz(ﬂ,...,jp)ﬂ where the superscript T refers to

1, . L .
MATERIALSAND METHODS yij =?(I,J =1,2,...,p; k# i# J) anquS be a ans matrix

k
with (i, j)™ element equal tpi(i = 1, 2,...,n) if the "

Assume that data i} follows multi-response ; )
Wtk P element oqu and the § element ofy_is a pair and

nonparametric regression model:
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zero otherwise. Therefore, by takirﬁ;(y) and Var(y) (GTWG G'Wz ](d]
in (2), we obtain the distribution of responses,,i. \ ZWG XWZ+diagd.z,,..A 2, )\¢c ©)
Multivariate Normal with meari and variancesw™. It G'Wy
can be written ag ~ N(f , 6 W™), where: B TWy
o Vilde o Vifdy Note that =@t Fit)f L) e,

QL . R R
Vel Ty Vel 2 Fo(tan)snr ot To(t,g )V iS @lways unique when G is

wh=| - (3)  of full column rank, which are assumed to be tme i
' ' ' this study. We can be verified that a solution to:

Yl Vo5 - Ty oy
L J (Z+W dlag()\llan,...)\plnp))c+ Gd:)} %
RESULTSAND DISCUSSION Gc=0
Estimation nonparametric function of multi- is also a solution to (6). Thus we need to solve

response nonparametric regresson model: The  simultaneous Eq. 7 forc and d. In fact,
nonparametric funct|0r_15k fare_estlmated by carrying W—ldiag()\ll A ) is asymmetric i\, # A, # A, and
out the following penalized weighted least-squares: meene

pi # 0(i = 1, 2,...,R). To calculate the coefficients

fMianW{(y -f) W(y ) + and d, we use the following transformations:
$ =5diag( 1, Ay, by, Al /A ) and  &=diag

fy

M )+ A [0l +v @
)| I W . Then (7) is equivalent to:
SREORY (M2l Jo- Then (7)is equiv
The parameterk, (k = 1, 2,...,p) control the trade- (i+W_1)§+ Gd=y (8)
off between goodness-of-fit and the smoothnes$ef t G't=0

estimates and are referred to as smoothing paresnete

We extend method as in Wang (1998) (i.e., in case R
of single-response nonparametric regression madel) Let G, =(Q, ka)( Ok], k=1,2,..,p be the QR
multi-response nonparametric regression model with . )
unequal correlation of errors. Lef(t) = t"Y(v-1)! fory ~ decompositions.  Let Q =diag(Q, Q. Q. Q:;
=1, 2; R(s,t) = k(S)k(t)-ks(s-t) where k() = B,()V  Q,=diag(Q,.Q,.Q, ....Q, ; R=diag(R ,R ,...R and
and B() is the v" Bernoulli polynomial. Let pg=3.w". It can be shown that the solutions to (8)

G, ={. (t oy G = diag(G,....Gy);  are:
%, ={R (b 4 )}Inle“1 and :=diag(%, 5,...%,). By ¢=Q,(QBQ)" .y ©)
extending method as in both Wang (1998) and Wahba&d= Q' (y- Bt)
(1985) to the case of multi-response with unequal B
correlation of errors, we can show that for fixad v; Note thatf =Ay where:
andp;, the solution to (4) is: =
. 2 n, A=1-WTQ,(Q;BQ,)"Q; (10)
HOEDYXRNOEDWAICAN (5)
= = is the “hat matrix”. Here, A is not symmetric, whics
where K - 1 2,..p ang different from the usual independent case.

— T. —_
€= (CuriGy 1GrvnGy nfa Fg’ ' d=(dyondy Estimations of parameters. We have assumed that the
Aypreens Gy oy 4o, ) @re solutions to: parameterd, y; andp;, are fixed. In practice it is very
329



J. Math. & Sat., 6 (3

important to estimate these parameters from tha. dat

Since observations are correlated, popular methodsiethod based on
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In the following we propose a cross validation
leaving-out-one-pair procedure.

such as the usual Generalized Maximum Likelihoodsuppose there are a total of N>fNax{n, Mp,....TL})
(GML) method and the Generalized Cross Validationgjstinct time points and thus N pairs of observagio

(GCV) method may underestimate the smoothingany one observation in a pair may be missing. These

parameters (Wang, 1998). In this study we propbse t

pairs are numbered from 1 to N. We use the follgwin

following three methods to estimate the smoothing,,tation: superscripts (i) to denote the collectioi

parameters\,, the weighting parameterg andy; and
the correlation parametgp; simultaneously, i.e., an

elements corresponding to tHepiair; superscripts [i] to
denote the collection of elements after deleting th

extens'ion of the GML method based on a Bayesiapir- superscripts {i} to denote solution of Without
model; an extension of the GCV method and leavingyhe i\ pair. When one observation in a pair is missing,

out-one-pair cross validation.

Wang (1998) proposed the GML and GCV
methods for
smoothing parameter. Warmyal. (2000) proposed the

GML and GCV methods for correlated observations,
with two smoothing parameters. In multi-response L .
(with p responses) nonparametric regression model),\ljo(fl"(t))zdt+A2j0(fg(t))2dt+...+
there are p smoothing parameters which need to be

estimated simultaneously together with the covagan
parameters. Following an extension of derivatioe, w
extend the GML and GCV in Wang (1998); Was@.
(2000) and Lestast al. (2010a; 2010b), to the case of
multi-response with unequal correlation of erros a
follows.

The GML estimates ofA,, v, rk and p; are
minimizers of the following GML function:

:
y W(I-A)y
M, Vi b ) = —= 1
det” (W(l- A)) -4
[ det” (W(I- A)] 1)
__Z(QBQ)'z
e
[det(@ BQ )* |-
Where:
n =ttt
det” = The product of the nonzero eigen values
z =Qly

The minimizers of MXy, V;, Ik, pi) are called GML
estimates.

The GCV estimates of, V;, Ik and pi are
minimizers of the following GCV function:

VA Y, hop) = [tr(W(T-A) ]
_Z(QBQ,)’z
[tr(QIBQ,)*

12)
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correlated observations with one

superscripts indicate a single observation instefad
pair. The solutions to:

M

f

; 0 _g G Ry iyl gl
|rD1W2{(X f7) WHy" ) +

P

(13)

XL (£30) 7l

aref, 0, ..., f% . Assume that there are p elements

in the " pair (it is simple if there is only one). Denotes

i1, Iz, ..., iy @s the row numbers of this pair ﬂ Y,

Yo respectively. Define:

y*kj ={

that

Yig 1 £ 1,
flii) (tkik)vj =ik =12,..p

Suppose we

denotey, = (i, Vin, ) -
A ()=t
Nt P (o) £ (1)) (80,8, (1,)). Then
we have the following leaving-out-one-pair lemma.

y and
f

Lemma: For fixed Ay, vyj, I, pi and i, we have
f (t)=Ay*.
Proof: Let f(t)=ff {t )....,

i) F A8 oo Folton Do Fytdenf ot b and £ (1)

= (0 () f ()P, s 9 () By
(tp)- 1 (t,,, ) - Similarly definef(g[‘]) andf (g[‘]) as
f(t) and fU(t) respectively without the elements

corresponding to thd'ipair. For any functionf f,,...fp
in W, we have:
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(y*+ @)Wy + O))+n[ )
)\J- "t))zdt+ +)\.[(" )dt
)

)\1_[0 £2(t)) dt +.. +)\_[ o))" dt

> (XM _fl) (tm)) wll (ym _f{l (t[i])) +
Aj[( (t)) J dt+..+ A j[( )"jzdt
= (X* £ (t, m))TW fl (y* £ U])) +
Aj[( t)) ] dt+.. A j[( )njzdt

where, the first inequality holds because aftetching
rows and columns, we have:

(14)

The second inequality holds becau$k.... ! are
solutions to (13). The last equality holds becaafsihe
definition of y*
fi,..,i are solutions to (4) witly replaced byy*.

yoeey

Therefore, {1 (t) =Ay*

my,=1-a(n+ i, n+i);... :
m,, =-a( n+ i i)
my,=1-a(n,,+ .0, + i)
s =1 ty) - v s, =1 (t,) =y, 5o :
=10 (6, )= v =10 () v v =1 (1) -y

O up:f,{j}(tpip)—ypip and a(i, j) are elements of the

—a(n+iy.i);

My ==a( iy 0, + i) ..

My, ==a(n+ i) i
i

matrix A. If there is only one observation in tHepiair,
for exampley,, , we then have the following equation:

(16)

(l_ a( il'il))(ﬁi} (tli) - yl'h) = fAl(tl'h) Yy

Note that (16) is exactly the same as the “leaving
out-one” lemma in the independent case.

3 _ [ !
Let fy =(fikl}(tk1)'“-'fl{<t }(tknk))

A (FNY FYY) where .
o=t ], , where j; denotes the index of

and

the pair for observationy Define the cross validation
score as:
)=5wly-17)

Here, C estimates the Weighted Mean-Square
Errors (WMSE) (Wang, 1998; Wareg al., 2000). The
minimizers of C(A, Vj, f, p) are called cross

2

7)

C()\k !yu l;

. The inequality at (14) indicates that Vvalidation estimates of the parameters.

CONCLUSION

The distribution of vector of responseg is

As a consequence of this lemma, we do not need tRiultivariate Normal with mearf and variancéw™.
solve separate minimization problems (13) for eachseperal smoothing spline models provide flexibifity

deleting-one-pair set. All we need to do is to sadiie
following equations:

[y my o mylis]

m21 m22 mZp SZ UZ
=l (15)

_mpl mP2 mpp_ L SP_ L %_
for fii} ( klk) Yii, » where my, =1- a( iivil) ,
my, ==a(i,n+ i) ;...;my=—a(,,n+ i m,, =

estimating nonparametric functions and are widskydu
in many areas. With multiple correlated responsés i
better to estimate these functions jointly using th
penalized weighted least-squares.
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