
Journal of Mathematics and Statistics 6 (3): 246-252, 2010
ISSN 1549-3644
© 2010 Science Publications

Corresponding Author: M.Y. Waziri, Department of Mathematics, Faculty of Science,
 University Putra Malaysia 43400 Serdang, Malaysia

246

A New Newton’s Method with Diagonal Jacobian Approximation

for Systems of Nonlinear Equations

M.Y. Waziri, W.J. Leong, M.A. Hassan and M. Monsi
Department of Mathematics, Faculty of Science,

University Putra Malaysia 43400 Serdang, Malaysia

Abstract: Problem statement: The major weaknesses of Newton method for nonlinear equations
entail computation of Jacobian matrix and solving systems of n linear equations in each of the
iterations. Approach: In some extent function derivatives are quit costly and Jacobian is
computationally expensive which requires evaluation (storage) of n×n matrix in every iteration.
Results: This storage requirement became unrealistic when n becomes large. We proposed a new
method that approximates Jacobian into diagonal matrix which aims at reducing the storage
requirement, computational cost and CPU time, as well as avoiding solving n linear equations in each
iterations. Conclusion/Recommendations: The proposed method is significantly cheaper than
Newton’s method and very much faster than fixed Newton’s method also suitable for small, medium
and large scale nonlinear systems with dense or sparse Jacobian. Numerical experiments were carried
out which shows that, the proposed method is very encouraging.

Key words: Nonlinear equations, large scale systems, Newton’s method, diagonal updating, Jacobian

approximation

INTRODUCTION

 Consider the system of nonlinear equations:

F(x) = 0 (1)

where, F(x) : Rn → Rn with the following properties:

• There exist x* with F(x*) = 0
• F is continuously differentiable in a neighbourhood

of x*
• FF'(x*) = J (x*) 0≠

 The most well-known method for solving (1), is the
classical Newton’s method. However, the Newton’s
method for nonlinear equations has the following
general form: Given an initial point x0, we compute a
sequence of corrections {sk} and iterates {xk} as
follows:

Algorithm CN (Newton’s method): where, k = 0, 1,
2... and JF (xk) is the Jacobian matrix of F, then:

Stage 1: Solve F kJ (x)sk = -F(xk)

Stage 2: Update xk+1 = xk + sk
Stage 3: Repeat 1-2 until converges.

 The convergence of Algorithm CN is attractive.
However, the method depends on a good starting point
(Dennis, 1983). Newton’s method will converges to x*
provided the initial guess x0 is sufficiently close to the
x* and JF (x*) ≠ 0 with JF (x) Lipchitz continuous and
the rate is quadratic (Dennis, 1983), i.e.:

k 1 kx x * h x x *+ − ≤ − (2)

For some h.
 Even though it has good qualities, CN method has
some major shortfalls as the dimension of the systems
increases which includes (Dennis, 1983) for details):

• Computation and storage of Jacobian in each

iteration
• Solving system of n linear equations in each

iteration
• More CPU time consumption as the equations

dimension increases

 There are several strategies to overcome the above
drawbacks. The first is fixed Newton method, i.e., by
setting JF (xk) ≡ JF (x0) for k>0. Fixed Newton is the
easiest and simplest strategy to overcome the shortfalls

J. Math. & Stat., 6 (3): 246-252, 2010

247

for systems of nonlinear equations and it follows the
following steps:

Algorithm FN (fixed Newton): Let x0 be given:

Step 1: Solve JF (x0)sk = -F(xk)
Step 2: Set xk+1 = xk + sk for k = 0, 1, 2...

 FN method diminishes both the computation of the
Jacobian (except for the first iteration) as well as avoiding
solving n linear system in each iteration but is significantly
slower (Natasa and Zorna, 2001). The second strategy is
inexact Newton method. This method avoids solving
Newton equation (Stage 1 of Algorithm CN) by taking the
correction {sk} satisfying (Dembo et al., 1982; Eisenstat
and Walker, 1985):

rk = JF (xk)sk + F(xk)

 Inexact Newton method is given by the following
algorithm:

Algorithm INM (Inexact Newton): Let x0 be given:

Step 1: Find some sk which satisfies:

JF (xk) sk = -F(xk) + kγ

Where:

k k kF(x)γ ≤ η

Step 2: Set:

xk+1 = xk + sk

where, {ηk} is a forcing sequence. Letting ηk ≡ 0 it
gives Newton method.
 Another modification is quasi-Newton’s method, the
method is the famous method that replaces derivatives
computation with direct function computation and also
replaces Jacobian or its inverse with an approximation
which can be updated at each iterations (Lam, 1978;
Denis, 1971). There are quite many modifications
introduced to conquer some of the shortfalls
(Drangoslav and Natasa, 1996; Hao and Qin, 2008;
Natasa and Zorna, 2001), but most of the modifications
requires to computes and store an n×n matrix
(Jacobian) in each iterations (Natasa and Zorna, 2001).
In some cases when the number of equations is
sufficiently large it becomes computationally expensive
and requires evaluation (and storage) of generally fully
populated JF(xk) of dimension n×n which requires more

CPU time, that is why Newton method cannot handle
large-scale system of nonlinear equations. In this study
we propose a method that reduces computational cost,
storage requirement, CPU time and also eliminates the
need for solving n linear system in each iteration. This
is made possible by approximating the Jacobian into
diagonal matrix. The proposed method is significantly
cheaper than Newton method, so much faster than
Fixed Newton’s method and is suitable for both small,
medium and large scale systems of equations.

MATERIALS AND METHODS

A new Newton method with diagonal Jacobian:
Consider the Taylor expansion of F(x) about xk:

2

k k k kF(x) F(x) F'(x)(x x) o(x x)= + − + − (3)

 Then the incomplete Taylor series expansion of
F(x) is given by:

2

k k k kF̂(x) F(x) F'(x)(x x) o(x x)= + − + − (4)

where, F'(xk) is the Jacobian of F at xk.
 In order to incorporate correct information on the
Jacobian matrix to the updating matrix, from (4) we
impose the following condition (Albert and Snyman,
2007):

k 1 k 1F̂(x) F(x)+ += (5)

where, k 1F̂(x)+ is an approximated F evaluates at k 1x + .

 Then (4) turns into:

k 1 k k k 1 kF(x) F(x) F'(x)(x x)+ +≈ + − (6)

 Hence we have:

k 1 k k k 1F'(x)(x x) F(x) F(x)+ +− ≈ − (7)

 We propose the approximation of kF'(x)by a

diagonal matrix. i.e.:

k kF'(x) D≈ (8)

where kD is a given diagonal matrix, updated at each

iteration. Then (7) turns to:

k 1 k 1 k k 1 kD (x x) F(x) F(x)+ + +− ≈ − (9)

J. Math. & Stat., 6 (3): 246-252, 2010

248

 Since we require D to be a diagonal matrix, says
D = diag(d1, d2,..., dn), we consider to let components of

the vector k k 1

k 1 k

F(x) F(x)
x x

+

+

−
−

as the diagonal elements of Dk,

from (9) it follows that:

(i) i k 1 i k
k 1 (i) (i)

k 1 k

F (x) F (x)
d

x x
+

+
+

−=
−

 (10)

Hence:

(i)
k 1 k 1D diag(d)+ += (11)

for i = 1, 2, . . ., n and k = 0, 1, 2, . . ., n.

Where:

i k 1F (x)+ = The ith component of the vector F(xk+1)

i kF (x) = The ith component of the vector F(xk)
(i)
k 1x + = The ith component of the vector xk+1
(i)
kx = The ith component of the vector xk
(i)
k 1d + = The ith diagonal element of Dk+1 respectively

 We use (14) (to safeguard very small (i) (i)

k 1 kx x+ − if

only denominator is not equal to zero
(i) (i) 8
k 1 kx x 10−

+ − > for i = 1, 2,..., else set (i)kd = (i)
k 1d − .

 We propose the update for our proposed method
(NDJ) as below:

1
k 1 k k kx x D F(x)−

+ = − (12)

where, kD is defined by (11), provided

(i) (i) 8
k 1 kx x 10−

+ − > . Else set (i)
kd = (i)

k 1d − for k = 1, 2,

Algorithm NDJ: Consider F(x): ℜn→ℜn with the same
property as (1):

Step 1: Given x0 and D0 = In, set k = 0
Step 2: Compute F(xk)
Step 3: Compute xk+1 = 1

k 1 k k kx x D F(x)−
+ = − where Dk

is defined by (11), provided (i) (i) 8
k 1 kx x 10−

+ − >

 else set (i)kd = (i)
k 1d − for k = 1, 2,...,n

Step 4: If 8
k 1 k kx x F(x) 10−

+ − + ≤ stop else set

 k = k + 1 and go to Step 2

RESULTS

 In order to demonstrate the performance method
NDJ, four prominent methods are compared and the
comparison was based upon the following criterion:

Number of iterations, CPU time in seconds, storage
requirement and robustness index. The methods are
namely:

• NDJ stands for method proposed in this study
• The Newton method (CN)
• The Fixed Newton method (FN)
• The Incomplete Jacobian Newton method (IJN)
• MRVF denotes Newton-like method with the

modification of right-hand side vector

 The MRVF was proposed in (Natasa and Zorna,
2001) and IJN proposed by (Hao and Qin, 2008). The
stopping criterion used is ||xk+1-xk||+||F(xk)||≤10−8. We
implemented the five methods (CN, FN, MRVF, IJN
and NDJ) using MATLAB 7.0. All the calculations
were carried out in double precision computer. We
introduced the following notations: N: number of
iterations and CPU: CPU time in seconds. Problem 1-3
is to show the fitness of our method (NDJ) to small
scale and Problem 4-11 are for large scale systems with
dense or sparse Jacobian.

Problem 1: Consider the system of two nonlinear
equations (Dennis, 1983):

1 2

2 2
1 2 0

x x 3
F(x)

x x 9 x (1,5)

 + −= 
+ − =

Problem 2: Consider the system of three nonlinear
equations (Hao and Qin, 2008):

2 2 2
1 2 3 1 1 2 3

2 2 2
1 2 3 2 2 1 3

2 2 2
1 2 3 3 3 1 2

0

(x x x 1)(x 1) x (x x) 2

(x x x 1)(x 1) x (x x) 2
F(x)

(x x x 1)(x 1) x (x x) 2

x (3, 3,3)

 + + + − + + −


+ + + − + + −= 
+ + + − + + −

 = −

Problem 3: Consider the system of five nonlinear
equations (Hao and Qin, 2008):

2 2 2 2 2
1 2 3 4 5 1

1 2 3 4

2 2 2 2 2
1 2 3 4 5 2

2 1 3 4

2 2 2 2 2
1 2 3 4 5 3

3 1 2 4

2 2 2 2 2
1 2 3 4 5 4

4 1 2 3

2 2 2 2 2
1 2 3 4 5

(x x x x x 1)(x 1)

x (x x x) 4

(x x x x x 1)(x 1)

x (x x x) 4

F(x) (x x x x x 1)(x 1)

x (x x x) 4

(x x x x x 1)(x 1)

x (x x x) 4

(x x x x x 1)(

+ + + + −

+ + + −

+ + + + −

+ + + −

= + + + + −

+ + + −

+ + + + −

+ + + −

+ + + + 5

0

x 1)

x (1.5,3.5, 1.5,3.5, 1.5)
















−

= − − −

J. Math. & Stat., 6 (3): 246-252, 2010

249

Problem 4: Singular Broyden (Gomes-Ruggiero et al.,
1982; Broyden, 1965):

2
1 1 1 2

2
i i i i 1 i 1

2
n n n n 1

0
i

f (x) ((3 hx)x 2x 1)

f (x) ((3 hx)x x 2x 1)

f (x) ((3 hx)x x 1)

x 1 and h 2

− +

−

= − − +

= − − − +

= − − +

= − =

Problem 5: Generalized function of Rosenbrock
(Luksan, 1994):

2
1 2 1 1 1

2
i i i 1 i 1 i i

i

2 0
n n n 1 i

f (x) 4c(x x)x 1 2(1 x)

f (x) 2c(x x) 4c(x x)x

2(1 x), i 2,...,n 1

f 2c(x x) , x 1.2. and c 2

− +

−

= − − − − −

= − − −

− − = −

= − = =

Problem 6: Extend Rosenbrock (Hao and Qin, 2008):

n2
1 1 2 1 1 1 jj 2

2 2
j i i 1 i i 1 i i

n

i jj 1

n2
n n n 1 n jj i

T
0

f (x) 400x (x x) 2(1 x) x (x) n 1

f (x) 200(x x) 400x (x x) 2(1 x)

x (x) n 1, i 2,...,n 1

f 200(x x) x (x) n 1

x (1.2,1,1.2,1,1.2,...)

=

− +

≠

− ≠

= − − − − + − +

= − − − −

+ − + = −

= − + − +

=

∑

∑

∑

Problem 7: Trigonometric-Exponential system
(Luksan, 1994):

2
1 1 2 1 2 1 2

2
j i i 1 i i 1 i i 1

i i 1 i 1 i

n n n 1 i 1 i

0
i

f (x) 3x 2x 5 sin(x x)sin(x x)

f (x) 3x 2x 5 sin(x x)sin(x x)

4x x exp(x x) 3

f (x) 4x x exp(x x) 3

x 0, i 2,...,n 1

+ + +

− −

− −

= + − + − +

= + − + − +

+ − −

= − − −

= = −

Problem 8: System of n linear equation (Hao and Qin,
2008):

n 2
j i j j ii 1 i j

n 2
n i ni 1

T
0

F (x) (x 1)(x 1) x x n 1,

F (x) (x 1)(x 1)

j 1,2,...,n 1

x (1.53.5, 1.5,3.5,...)

= ≠

=

= + − + − +

= + −

= −
= − −

∑ ∑

∑

Problem 9: Structured Jacobian problem (Luksan,
1994):

2
1 1 1 2 n 4 n 3 n 2

n 1 n

2
i i i i 1 i 1 n 4 n 3 n 2

n 1 n

2
n n n n 1 n 4 n 3 n 2

n 1 n

0
i

f (x) 2x 3x 2x 3x x x

0.5x x 1

f (x) 2x 3x x 2x 3x x x

0.5x x 1

f (x) 2x 3x x 3x x x

0.5x x 1

x 1, i 2,...,n

− − −

−

− + − − −

−

− − − −

−

= − + − + − −

+ − +

= − + − − + − −

+ − +

= − + − + − −

+ − +

= − =

Problem 10: Broyden tridiagonal (More et al., 1981):

1 1 1 2

i i i i 1 i 1

n n n n 1

0
i

f (x) (3 2x)x 2x 1

f (x) (3 2x)x x 2x 1

f (x) (3 2x)x x 1

x 0

− +

−

= − − +

= − − − +

= − − +

=

Problem 11: Spedicato4 (More et al., 1981):

i
i

i i 1

T
0

1 x if i oddF (x) {10(x x) if i even

x (1.2,..., 1.2,1)

−

−= −

= − −

DISCUSSION

 In Table 10, the robustness index is given by
(Natasa and Zorna, 2001):

j
j

j

t
V

n
=

where, tj number of success by method j and nj is the
number of problem attempted by method j and the
large value of index shows better result and the best
possible result is 1.
 From Table 1, it can be seen that our proposed
method (NDJ) is Cheaper than Newton method (CN),
Fixed Newton method (FN) and better than (IJN) and
(MRVF). However our method is slower than Newton
method (CN) but much faster than Fixed Newton
method (FN). In addition CN, MRVF and IJN required
to computes and stores the Jacobian in each iteration
where as NDJ only vector storage.

Table 1: Results of problems 1-3 (number of iteration/CPU time)
Problems CN FN MRVF IJN NDJ

Problem 1 4/0.0001 16/0.0002 52(α = −0.5) * 6/0.00010
Problem 2 7/0.0003 22/0.0002 *(α = −0.08) * 11/0.0002
Problem 3 6/0.0008 59/0.0004 *(α = −0.08) * 8/0.00020
*: Means that particular method fails to converge

J. Math. & Stat., 6 (3): 246-252, 2010

250

Table 2: Computational results for solving problem 4 (number of iteration/CPU time)
n CN FN MRVF(α = −0.08) IJN NDJ
25 10/0.0045 609/6.71600 398/3.12650 21/0.0041 12/0.0032
50 10/0.0078 864/15.9725 467/6.98610 21/0.0046 12/0.0040
80 10/0.0162 968/24.8130 608/16.4521 22/0.0083 13/0.0051
100 13/0.0290 * 789/20.9741 23/0.0093 14/0.0072
200 13/0.0310 * 912/25.3170 23/0.0120 16/0.0094
500 13/0.0456 * 978/28.8672 32/0.0169 20/0.0108
1000 13/0.1981 * * 35/0.0328 24/0.0142
5000 * * * 35/0.0526 24/0.0266
10000 * * * 35/0.0919 25/0.0695
50000 * * * 64/14.0945 36/1.3085
*: Means that particular method fails to converge

Table 3: Computational results for solving problem 5 (number of iteration/CPU time)
n CN FN MRVF (α = −0.08) IJN NDJ
25 4/0.0037 14/0.0026 7/0.0036 12/0.0023 11/0.0019
50 4/0.0042 14/0.0031 7/0.0040 15/0.0028 13/0.0021
80 4/0.0048 14/0.0035 7/0.0043 17/0.0030 13/0.0023
100 4/0.0067 14/0.0059 7/0.0054 17/0.0036 16/0.0025
200 4/0.0218 14/0.0145 7/0.0200 20/0.0059 17/0.0032
500 4/0.9934 17/0.0921 7/0.8132 21/0.0086 17/0.0059
1000 4/5.4910 18/0.1246 9/4.3292 22/0.0989 19/0.0899
5000 * * * 24/0.1460 20/0.0982
10000 * * * 25/0.2981 22/0.1284
50000 * * * 37/10.5629 27/2.0956
*: Means that particular method fails to converge

Table 4: Computational results for solving problem 6 (Number of iteration/CPU time)

n CN FN MRVF (α = −0.08) IJN NDJ
25 6/0.024000 45/0.02300 42/0.02400 7/0.00130 14/0.0013
50 6/0.031000 69/0.02800 47/0.03000 9/0.00201 6/0.00190
80 6/0.049700 73/0.03100 50/0.03540 18/0.0024 21/0.0021
100 6/1.043100 73/0.98010 51/1.00090 22/0.0041 27/0.0034
200 6/54.45500 78/21.8710 51/34.7210 26/0.0064 34/0.0045
500 6/106.7143 78/55.0377 64/87.5410 43/0.0176 54/0.0099
1000 6/109.6140 90/68.6521 87/95.9642 84/0.0487 85/0.0224
5000 * * * 91/0.1348 98/0.0943
10000 * * * 92/0.9610 98/0.5887
50000 * * * 108/20.3108 140/5.0612
*: Means that particular method fails to converge

Table 5: Computational results for solving problem 7 (number of iteration/CPU time)
n CN FN MRVF (α = −0.08) IJN NDJ
25 4/0.0434 * 10/0.0342 41/0.0215 20/0.0191
50 4/0.0480 * 10/0.0040 17/0.0362 20/0.0294
80 4/0.0973 * 12/0.0830 17/0.0749 21/0.0610
100 4/0.1516 * 12/0.0967 20/0.0841 21/0.0630
200 5/0.7898 * 12/0.4712 23/0.2654 25/0.0956
500 5/1.3091 * 14/0.7823 25/0.5134 28/0.1720
1000 5/6.1698 * 15/1.3514 28/0.8135 32/0.2561
5000 * * * 32/0.9104 35/0.4942
10000 * * * 33/0.9671 35/0.5261
50000 * * * 52/8.0160 58/1.0086
*: Means that particular method fails to converge

 Moreover from Table 2-9, our method (NDJ) also uses
less computational cost and less CPU time than other four
methods (FN, MRVF, CN and IJN), that is why our
method (NDJ) is significantly cheaper than CN, MRVF
and IJN and also much faster than FN and MRVF, this is
more noticeable when the dimension increases. In all the

test problem, our method (NDJ) shows a promising
result. We can observe that as the dimension of the
systems increases, global cost for FN, MRVF, CN and
IJN methods increases exponentially where as our
method (NDJ) growths linearly. This is because they all
require to compute Jacobian matrix in each iterations.

J. Math. & Stat., 6 (3): 246-252, 2010

251

Table 6: Computational results for solving problem 8 (number of iteration/CPU time)
n CN FN MRVF (α = −0.01) IJN NDJ
25 8/0.0034 43/0.0029 58/0.0031 26/0.0014 28/0.0012
50 9/0.0054 49/0.0052 62/0.0050 28/0.0018 30/0.0014
80 9/0.0672 53/0.0583 79/0.0602 30/0.0024 32/0.0020
100 9/5.6500 56/5.1280 86/5.407 30/0.0099 33/0.0073
200 9/8.6590 60/7.6420 * 31/0.0157 34/0.0093
500 9/19.2550 62/16.8163 * 32/0.0263 36/0.0137
1000 9/196.1002 69/188.5926 * 34/0.0481 38/0.0210
5000 * * * 34/0.0319 38/0.0221
10000 * * * 34/0.2564 38/0.1486
50000 * * * 44/5.7020 52/0.9126
*: Means that particular method fails to converge

Table 7: Computational results for solving problem 9 (number of iteration/CPU time)

n CN FN MRVF (α = −0.3) IJN NDJ
25 5/0.0024 12/0.0021 6/0.0023 18/0.0017 12/0.0011
50 5/0.0025 14/0.0022 6/0.0024 18/0.0018 16/0.0012
80 5/0.0031 15/0.0026 7/0.0027 20/0.0020 18/0.0018
100 5/0.0057 16/0.0048 8/0.0053 21/0.0026 18/0.0020
200 5/0.0125 16/0.0102 8/0.0119 23/0.0059 21/0.0032
500 5/2.9229 17/1.2160 8/1.3510 25/0.0495 23/0.0275
1000 5/16.0154 17/13.7132 9/14.5723 25/0.7141 23/0.3974
5000 * * * 27/1.1012 24/0.8623
10000 * * * 30/2.5921 25/1.0045
50000 * * * 39/29.0927 28/4.2741
*: Means that particular method fails to converge

Table 8: Computational results for solving problem 10 (number of iteration/CPU time)

n CN FN MRVF (α = −0.08) IJN NDJ
25 9/0.0040 43/0.0271 12/0.0035 21/0.0034 24/0.0028
50 9/0.0063 54/0.1753 14/0.0052 24/0.0042 24/0.0036
80 11/0.0141 68/1.0642 15/0.0099 24/0.0067 26/0.0043
100 12/0.0197 79/1.9843 15/0.0132 26/0.0084 28/0.0069
200 12/0.0264 82/4.8164 16/0.0207 27/0.0106 35/0.0083
500 12/0.0319 * 18/0.0297 27/0.0129 35/0.0094
1000 12/0.1279 * 22/0.0942 30/0.0281 35/0.0101
5000 * * * 31/0.0438 35/0.0185
10000 * * * 33/0.0818 38/0.0371
50000 * * * 51/9.0713 59/0.8410
*: Means that particular method fails to converge

Table 9: Computational results for solving problem 11 (number of iteration/CPU time)
n CN FN MRVF (α = −0.5) IJN NDJ
25 8/0.0037 28/0.0027 38/0.0054 40/0.0023 34/0.0016
50 8/0.0042 35/0.0031 49/0.0096 43/0.0035 36/0.0023
80 8/0.0210 39/0.0194 63/0.0358 45/0.0130 38/0.0089
100 8/0.0279 42/0.0204 * 45/0.0167 38/0.0106
200 8/0.0514 47/0.4632 * 48/0.0268 39/0.0153
500 8/0.1826 54/0.4835 * 50/0.0618 43/0.0449
1000 8/1.2915 62/1.8165 * 54/0.0917 45/0.0615
5000 * * * 60/0.5041 48/0.3103
10000 * * * 68/1.3612 48/0.5190
50000 * * * 87/12.3091 54/1.7209
*: Means that particular method fails to converge

Table 10: Robustness index table
 CN FN MRVF IJN NDJ
V 0.7108 0.5542 0.5904 0.9639 1

Another advantage of our method over FN, MRVF, CN
and IJN methods is the storage requirement for the

Jacobian matrix to only a vector storage. For instance
when n = 1000, CN, MRVF and IJN stores 1000×1000
fully populated matrix which is equivalent to 106
memory locations but NDJ stores1000 vectors
equivalents to 1000 memory locations only, in general
our method has reduced the matrix storage to some

J. Math. & Stat., 6 (3): 246-252, 2010

252

vector storage only. These results indicated that NDJ is
an improvement; with emphasis on eliminating matrix
storage, reducing computational cost and CPU time, as
well as avoiding solving n system of equations in each
iteration only.

CONCLUSION

 In this study, a modification of classical Newton’s
method for solving system of nonlinear equations is
presented. This method (NDJ) approximates the
Jacobian into a diagonal matrix, by replacing the
derivative computation by a direct function
computation. Hence it reduces the computational cost,
storage requirements of a matrix, CPU time and avoids
solving n linear system in each iteration. The numerical
results of the proposed method (NDJ) are very
encouraging and it shows that its global cost increases
linearly as the dimension of the nonlinear systems
increases whereas in CN, FN, MRVF and IJN methods
it increases exponentially; furthermore it shows that
NDJ can achieve good performance for large nonlinear
systems. Therefore to this end we can say that our
method (NDJ) is significantly cheaper than the four
methods and much faster than FN and MRVF. Finally
we can concludes that our method (NDJ) is suitable for
small, medium and large scale systems especially when
the function derivatives are costly or can’t be done
precisely.

REFERENCES

Hao, L. and N. Qin, 2008. Incomplete Jacobian Newton

method for nonlinear equation. Comput. Math.
Appli., 56: 218-227.

Albert, A. and J.E. Snyman, 2007. Incomplete series
expansion for function approximation. J. Struct.
Multdisc. Optim., 34: 21-40.

Broyden, C.G., 1965. A class of methods for solving
nonlinear simultaneous equations. Math. Comp.,
19: 577-593.

Dembo, R.S., S.C. Eisenstat and T. Steihaug, 1982.
Inexact Newton methods. SIAM J. Num. Anal.,
19: 400-408.

Denis, J.E., 971. On the convergence of Broydens
method for nonlinear systems of equations. J.
Math. Comput., 25: 559-567.

Dennis, J.E., 1983. Numerical Methods for
Unconstrained Optimization and Nonlinear
Equations. 3rd Edn., Prince-Hall, Inc., Englewood
Cliffs, New Jersey, pp: 378.

Drangoslav, H. and K. Natasa, 1996. Quasi-Newton’s
method with corrections. Novi Sad J. Math.,
26: 115-127.

Eisenstat, S.C. and Walker, 1985. Choosing the forcing
terms in inexact newton methos. SIAM J. Sci.
Comput., 17: 16-32.

Gomes-Ruggiero, M.A., J.M. Martinez and A.C. Moretti,
1982. Comparing algorithms for solving sparse
nonlinear systems of equations. SIAM J. Sci.
Comput., 13: 459-483.

Lam, B., 1978. On the convergence of a Quasi-Newtons
method for sparse nonlinear. Syst. Math. Comp.,
32: 447-451.

Luksan, 1994. Inexact trust region method for large
sparse systems of nonlinear equations. J. Optimiz.
Theory Appli., 81: 569-590.

More, J.J., B.S. Grabow and K.E. Hillstrom, 1981.
Testing unconstrained optimization software. ACM
Trans. Math. Software, 7: 17-41.

Natasa, K. and L. Zorna, 2001. Newton-like method
with modification of the righthand vector. J. Math.
Comp., 71: 237-250.

