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Abstract: Problem statement: The major weaknesses of Newton method for nonlinear equations 
entail computation of Jacobian matrix and solving systems of n linear equations in each of the 
iterations. Approach: In some extent function derivatives are quit costly and Jacobian is 
computationally expensive which requires evaluation (storage) of n×n matrix in every iteration. 
Results: This storage requirement became unrealistic when n becomes large. We proposed a new 
method that approximates Jacobian into diagonal matrix which aims at reducing the storage 
requirement, computational cost and CPU time, as well as avoiding solving n linear equations in each 
iterations. Conclusion/Recommendations: The proposed method is significantly cheaper than 
Newton’s method and very much faster than fixed Newton’s method also suitable for small, medium 
and large scale nonlinear systems with dense or sparse Jacobian. Numerical experiments were carried 
out which shows that, the proposed method is very encouraging. 
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INTRODUCTION 
 
 Consider the system of nonlinear equations: 
 
F(x) = 0 (1) 
 
where, F(x) : Rn → Rn with the following properties: 
 
• There exist x* with F(x*) = 0 
• F is continuously differentiable in a neighbourhood 

of x* 
• FF'(x*) = J  (x*)   0≠  

 
 The most well-known method for solving (1), is the 
classical Newton’s method. However, the Newton’s 
method for nonlinear equations has the following 
general form: Given an initial point x0, we compute a 
sequence of corrections {sk} and iterates {xk} as 
follows: 
 
Algorithm CN (Newton’s method): where, k = 0, 1, 
2... and  JF (xk) is the Jacobian matrix of F, then: 
 
Stage 1: Solve F kJ  (x )sk = -F(xk) 

Stage 2: Update xk+1 = xk + sk 
Stage 3: Repeat 1-2 until converges. 

 The convergence of Algorithm CN is attractive. 
However, the method depends on a good starting point 
(Dennis, 1983). Newton’s method will converges to x* 
provided the initial guess x0 is sufficiently close to the 
x* and JF (x*) ≠ 0 with JF (x) Lipchitz continuous and 
the rate is quadratic (Dennis, 1983), i.e.: 
 

k 1 kx x * h x x *+ − ≤ −  (2) 

 
For some h. 
 Even though it has good qualities, CN method has 
some major shortfalls as the dimension of the systems 
increases which includes (Dennis, 1983) for details): 
 
• Computation and storage of Jacobian in each 

iteration 
• Solving system of n linear equations in each 

iteration 
• More CPU time consumption as the equations 

dimension increases 
 
 There are several strategies to overcome the above 
drawbacks. The first is fixed Newton method, i.e., by 
setting JF (xk) ≡ JF (x0) for k>0. Fixed Newton is the 
easiest and simplest strategy to overcome the shortfalls 
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for systems of nonlinear equations and it follows the 
following steps: 
 
Algorithm FN (fixed Newton): Let x0 be given: 
 
Step 1:  Solve JF  (x0)sk = -F(xk) 
Step 2: Set xk+1 = xk + sk for k = 0, 1, 2... 
 
 FN method diminishes both the computation of the 
Jacobian (except for the first iteration) as well as avoiding 
solving n linear system in each iteration but is significantly 
slower (Natasa and Zorna, 2001). The second strategy is 
inexact Newton method. This method avoids solving 
Newton equation (Stage 1 of Algorithm CN) by taking the 
correction {sk} satisfying (Dembo et al., 1982; Eisenstat 
and Walker, 1985): 
   

rk = JF (xk)sk + F(xk) 
 
 Inexact Newton method is given by the following 
algorithm: 
 
Algorithm INM (Inexact Newton): Let x0 be given: 
 
Step 1: Find some sk which satisfies: 
  

JF (xk) sk = -F(xk) + kγ  

 
Where: 
 

k k kF(x )γ ≤ η  

 
Step 2: Set: 
 

xk+1 = xk + sk 

 
where, {ηk} is a forcing sequence. Letting ηk ≡ 0 it 
gives Newton method.  
     Another modification is quasi-Newton’s method, the 
method is the famous method that replaces derivatives 
computation with direct function computation and also 
replaces Jacobian or its inverse with an approximation 
which can be updated at each iterations (Lam, 1978; 
Denis, 1971). There are quite many modifications 
introduced to conquer some of the shortfalls 
(Drangoslav and Natasa, 1996; Hao and Qin, 2008; 
Natasa and Zorna, 2001), but most of the modifications 
requires to computes and store an n×n matrix 
(Jacobian) in each iterations (Natasa and Zorna, 2001). 
In some cases when the number of equations is 
sufficiently large it becomes computationally expensive 
and requires evaluation (and storage) of  generally fully 
populated JF(xk) of dimension n×n which requires more 

CPU time, that is why Newton method cannot handle 
large-scale system of nonlinear equations. In this study 
we propose a method that reduces computational cost, 
storage requirement, CPU time and also eliminates the 
need for solving n linear system in each iteration. This 
is made possible by approximating the Jacobian into 
diagonal matrix. The proposed method is significantly 
cheaper than Newton method, so much faster than 
Fixed Newton’s method and is suitable for both small, 
medium and large scale systems of equations. 
 

MATERIALS AND METHODS 
 
A new Newton method with diagonal Jacobian: 
Consider the Taylor expansion of F(x) about xk: 
 

2

k k k kF(x) F(x ) F'(x )(x x ) o( x x )= + − + −  (3) 

 
 Then the incomplete Taylor series expansion of 
F(x) is given by: 
 

2

k k k kF̂(x) F(x ) F'(x )(x x ) o( x x )= + − + −  (4) 

 
where, F'(xk) is the Jacobian of F at xk. 
 In order to incorporate correct information on the 
Jacobian matrix to the updating matrix, from (4) we 
impose the following condition (Albert and Snyman, 
2007): 
 

k 1 k 1F̂(x ) F(x )+ +=  (5) 

 
where, k 1F̂(x )+ is an approximated F evaluates at k 1x + . 

 Then (4) turns into: 
 

k 1 k k k 1 kF(x ) F(x ) F'(x )(x x )+ +≈ + −  (6) 

 
 Hence we have: 
 

k 1 k k k 1F'(x)(x x ) F(x ) F(x )+ +− ≈ −  (7) 

 
 We propose the approximation of kF'(x )by a 

diagonal matrix. i.e.: 
 

k kF'(x ) D≈   (8) 

 
where kD is a given diagonal matrix,  updated at each 

iteration. Then (7) turns to: 
 

k 1 k 1 k k 1 kD (x x ) F(x ) F(x )+ + +− ≈ −  (9) 
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 Since we require D to   be  a   diagonal matrix, says  
D = diag(d1, d2,..., dn), we consider to let components of 

the vector k k 1

k 1 k

F(x ) F(x )
x x

+

+

−
−

as the diagonal elements of Dk, 

from (9) it follows that: 
 

(i) i k 1 i k
k 1 (i) (i)

k 1 k

F (x ) F (x )
d

x x
+

+
+

−=
−

 (10) 

 
Hence: 
 

(i)
k 1 k 1D diag(d )+ +=  (11) 

 
for i = 1, 2, . . ., n   and    k = 0, 1, 2, . . ., n. 
 
Where: 

i k 1F (x )+  = The ith component of the vector F(xk+1) 

i kF (x )  = The  ith component of the vector F(xk)  
(i)
k 1x +  = The  ith component of the vector xk+1  
(i)
kx    = The  ith component of the vector xk  
(i)
k 1d +  = The  ith diagonal element of Dk+1 respectively  

 
 We use (14) (to safeguard very small (i) (i)

k 1 kx x+ − if 

only denominator is not equal to zero 
(i) (i) 8
k 1 kx x 10−

+ − > for i = 1, 2,..., else set (i)kd = (i)
k 1d − . 

 We propose the update for our proposed method 
(NDJ) as below: 
 

1
k 1 k k kx x D F(x )−

+ = −  (12) 
 
where, kD  is defined by (11), provided 

(i) (i) 8
k 1 kx x 10−

+ − > . Else set (i)
kd = (i)

k 1d − for k = 1, 2, . . . . 

  
Algorithm NDJ: Consider F(x): ℜn→ℜn with the same 
property as (1): 
 
Step 1:  Given x0 and D0 = In, set k = 0 
Step 2:  Compute F(xk) 
Step 3: Compute xk+1 = 1

k 1 k k kx x D F(x )−
+ = − where Dk       

is defined by  (11), provided (i) (i) 8
k 1 kx x 10−

+ − >  

              else set (i)kd  = (i)
k 1d −  for k = 1, 2,...,n 

Step 4:  If 8
k 1 k kx x F(x ) 10−

+ − + ≤  stop else set 

            k = k + 1 and go to Step 2 
     

RESULTS 
 
 In order to demonstrate the performance method 
NDJ, four prominent methods are compared and the 
comparison was based upon the following criterion: 

Number of iterations, CPU time in seconds, storage 
requirement and robustness index. The methods are 
namely: 
 
• NDJ stands for method proposed in this study 
• The Newton method (CN) 
• The Fixed Newton method (FN) 
• The Incomplete Jacobian Newton method (IJN) 
• MRVF denotes Newton-like method with the 

modification of right-hand side vector 
 
 The MRVF was proposed in (Natasa and Zorna, 
2001) and IJN proposed by (Hao and Qin, 2008). The 
stopping criterion used is ||xk+1-xk||+||F(xk)||≤10−8. We 
implemented the five methods (CN, FN, MRVF, IJN 
and NDJ) using MATLAB 7.0. All the calculations 
were carried out in double precision computer. We 
introduced the following notations: N: number of 
iterations and CPU: CPU time in seconds. Problem 1-3 
is to show the fitness of our method (NDJ) to small 
scale and Problem 4-11 are for large scale systems with 
dense or sparse Jacobian. 
 
Problem 1: Consider the system of two nonlinear 
equations (Dennis, 1983): 
 

1 2

2 2
1 2 0

x x 3
F(x)

x x 9 x (1,5)

 + −= 
+ − =

 

 
Problem 2: Consider the system of three nonlinear 
equations (Hao and Qin, 2008): 
 

2 2 2
1 2 3 1 1 2 3

2 2 2
1 2 3 2 2 1 3

2 2 2
1 2 3 3 3 1 2

0

(x x x 1)(x 1) x (x x ) 2

(x x x 1)(x 1) x (x x ) 2
F(x)

(x x x 1)(x 1) x (x x ) 2

x (3, 3,3)

 + + + − + + −


+ + + − + + −= 
+ + + − + + −

 = −

 

 
Problem 3: Consider the system of five nonlinear 
equations (Hao and Qin, 2008): 
 

2 2 2 2 2
1 2 3 4 5 1

1 2 3 4

2 2 2 2 2
1 2 3 4 5 2

2 1 3 4

2 2 2 2 2
1 2 3 4 5 3

3 1 2 4

2 2 2 2 2
1 2 3 4 5 4

4 1 2 3

2 2 2 2 2
1 2 3 4 5

(x x x x x 1)(x 1)

x (x x x ) 4

(x x x x x 1)(x 1)

x (x x x ) 4

F(x) (x x x x x 1)(x 1)

x (x x x ) 4

(x x x x x 1)(x 1)

x (x x x ) 4

(x x x x x 1)(

+ + + + −

+ + + −

+ + + + −

+ + + −

= + + + + −

+ + + −

+ + + + −

+ + + −

+ + + + 5

0

x 1)

x ( 1.5,3.5, 1.5,3.5, 1.5)
















−

= − − −
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Problem 4: Singular Broyden (Gomes-Ruggiero et al., 
1982; Broyden, 1965): 
 

2
1 1 1 2

2
i i i i 1 i 1

2
n n n n 1

0
i

f (x) ((3 hx )x 2x 1)

f (x) ((3 hx )x x 2x 1)

f (x) ((3 hx )x x 1)

x 1 and h  2

− +

−

= − − +

= − − − +

= − − +

= − =

 

 
Problem 5: Generalized function of Rosenbrock 
(Luksan, 1994): 
 

2
1 2 1 1 1

2
i i i 1 i 1 i i

i

2 0
n n n 1 i

f (x) 4c(x x )x 1 2(1 x )

f (x) 2c(x x ) 4c(x x )x

2(1 x ), i 2,...,n 1

f 2c(x x ) , x 1.2. and c 2

− +

−

= − − − − −

= − − −

− − = −

= − = =

 

 
 
Problem 6: Extend Rosenbrock (Hao and Qin, 2008): 
 

n2
1 1 2 1 1 1 jj 2

2 2
j i i 1 i i 1 i i

n

i jj 1

n2
n n n 1 n jj i

T
0

f (x) 400x (x x ) 2(1 x ) x ( x ) n 1

f (x) 200(x x ) 400x (x x ) 2(1 x )

x ( x ) n 1, i 2,...,n 1

f 200(x x ) x ( x ) n 1

x (1.2,1,1.2,1,1.2,...)

=

− +

≠

− ≠

= − − − − + − +

= − − − −

+ − + = −

= − + − +

=

∑

∑

∑

 

 
Problem 7: Trigonometric-Exponential system 
(Luksan, 1994): 
 

2
1 1 2 1 2 1 2

2
j i i 1 i i 1 i i 1

i i 1 i 1 i

n n n 1 i 1 i

0
i

f (x) 3x 2x 5 sin(x x )sin(x x )

f (x) 3x 2x 5 sin(x x )sin(x x )

4x x exp(x x ) 3

f (x) 4x x exp(x x ) 3

x 0, i 2,...,n 1

+ + +

− −

− −

= + − + − +

= + − + − +

+ − −

= − − −

= = −

 

 
Problem 8: System of n linear equation (Hao and Qin, 
2008): 
 

n 2
j i j j ii 1 i j

n 2
n i ni 1

T
0

F (x) ( x 1)(x 1) x x n 1,

F (x) ( x 1)(x 1)

j 1,2,...,n 1

x ( 1.53.5, 1.5,3.5,...)

= ≠

=

= + − + − +

= + −

= −
= − −

∑ ∑

∑  

 
Problem 9: Structured Jacobian problem (Luksan, 
1994): 

2
1 1 1 2 n 4 n 3 n 2

n 1 n

2
i i i i 1 i 1 n 4 n 3 n 2

n 1 n

2
n n n n 1 n 4 n 3 n 2

n 1 n

0
i

f (x) 2x 3x 2x 3x x x

0.5x x 1

f (x) 2x 3x x 2x 3x x x

0.5x x 1

f (x) 2x 3x x 3x x x

0.5x x 1

x 1, i 2,...,n

− − −

−

− + − − −

−

− − − −

−

= − + − + − −

+ − +

= − + − − + − −

+ − +

= − + − + − −

+ − +

= − =

 

 
Problem 10: Broyden tridiagonal (More et al., 1981):  
 

1 1 1 2

i i i i 1 i 1

n n n n 1

0
i

f (x) (3 2x )x 2x 1

f (x) (3 2x )x x 2x 1

f (x) (3 2x )x x 1

x 0

− +

−

= − − +

= − − − +

= − − +

=

 

 
Problem 11: Spedicato4 (More et al., 1981): 
 

i
i

i i 1

T
0

1 x if i oddF (x) {10(x x ) if i even

x ( 1.2,..., 1.2,1)

−

−= −

= − −
 

 
DISCUSSION 

 
 In Table 10, the robustness index is given by 
(Natasa and Zorna, 2001): 
 

j
j

j

t
V

n
=  

 
where, tj number of success by method j and nj is the 
number of problem   attempted by method j and the 
large value of index shows better result and the best 
possible result is 1.   
 From Table 1, it can be seen that our proposed 
method (NDJ) is Cheaper than Newton method (CN), 
Fixed Newton method (FN) and better than (IJN) and 
(MRVF). However our method is slower than Newton 
method (CN) but much faster than Fixed Newton 
method (FN). In addition CN, MRVF and IJN required 
to computes and stores the Jacobian in each iteration 
where as NDJ only vector storage. 
 
Table 1: Results of problems 1-3 (number of iteration/CPU time) 
Problems  CN  FN  MRVF  IJN  NDJ 

Problem 1 4/0.0001 16/0.0002 52(α = −0.5)  *  6/0.00010 
Problem 2 7/0.0003 22/0.0002 *(α = −0.08)  *  11/0.0002 
Problem 3 6/0.0008 59/0.0004 *(α = −0.08)  *  8/0.00020 
*: Means that particular method fails to converge 
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Table 2: Computational results for solving problem 4 (number of iteration/CPU time) 
n CN  FN  MRVF(α = −0.08)  IJN  NDJ 
25  10/0.0045  609/6.71600  398/3.12650  21/0.0041  12/0.0032 
50  10/0.0078  864/15.9725  467/6.98610  21/0.0046  12/0.0040 
80  10/0.0162  968/24.8130  608/16.4521  22/0.0083  13/0.0051 
100  13/0.0290  * 789/20.9741  23/0.0093  14/0.0072 
200  13/0.0310 *  912/25.3170  23/0.0120  16/0.0094 
500  13/0.0456  * 978/28.8672  32/0.0169  20/0.0108 
1000  13/0.1981  *  * 35/0.0328  24/0.0142 
5000  * * *  35/0.0526  24/0.0266 
10000  *  * * 35/0.0919  25/0.0695 
50000 * * * 64/14.0945 36/1.3085 
*: Means that particular method fails to converge 
 
Table 3: Computational results for solving problem 5 (number of iteration/CPU time) 
n CN  FN  MRVF (α = −0.08) IJN  NDJ 
25  4/0.0037  14/0.0026  7/0.0036  12/0.0023  11/0.0019 
50  4/0.0042  14/0.0031  7/0.0040  15/0.0028  13/0.0021 
80  4/0.0048  14/0.0035  7/0.0043  17/0.0030  13/0.0023 
100  4/0.0067  14/0.0059  7/0.0054  17/0.0036  16/0.0025 
200  4/0.0218  14/0.0145  7/0.0200  20/0.0059  17/0.0032 
500 4/0.9934  17/0.0921  7/0.8132  21/0.0086  17/0.0059 
1000  4/5.4910  18/0.1246  9/4.3292  22/0.0989  19/0.0899 
5000 * * * 24/0.1460  20/0.0982 
10000 * * * 25/0.2981 22/0.1284 
50000 * * * 37/10.5629 27/2.0956 
*: Means that particular method fails to converge 
 
Table 4: Computational results for solving problem 6 (Number of iteration/CPU time) 

n  CN  FN  MRVF (α = −0.08) IJN  NDJ 
25  6/0.024000  45/0.02300  42/0.02400  7/0.00130  14/0.0013 
50  6/0.031000  69/0.02800  47/0.03000  9/0.00201 6/0.00190 
80  6/0.049700 73/0.03100 50/0.03540  18/0.0024  21/0.0021 
100  6/1.043100 73/0.98010  51/1.00090  22/0.0041  27/0.0034 
200  6/54.45500  78/21.8710  51/34.7210  26/0.0064  34/0.0045 
500  6/106.7143  78/55.0377  64/87.5410  43/0.0176  54/0.0099 
1000  6/109.6140  90/68.6521  87/95.9642  84/0.0487  85/0.0224 
5000 * * *  91/0.1348  98/0.0943 
10000 * * *  92/0.9610  98/0.5887 
50000 * * * 108/20.3108 140/5.0612 
*: Means that particular method fails to converge 
 
Table 5: Computational results for solving problem 7 (number of iteration/CPU time) 
n  CN  FN  MRVF (α = −0.08) IJN  NDJ 
25  4/0.0434 *  10/0.0342  41/0.0215  20/0.0191 
50  4/0.0480 *  10/0.0040  17/0.0362  20/0.0294 
80  4/0.0973 *  12/0.0830  17/0.0749  21/0.0610 
100  4/0.1516 *  12/0.0967  20/0.0841  21/0.0630 
200  5/0.7898  *  12/0.4712  23/0.2654  25/0.0956 
500  5/1.3091  *  14/0.7823  25/0.5134  28/0.1720 
1000  5/6.1698  *  15/1.3514  28/0.8135  32/0.2561 
5000 * * * 32/0.9104  35/0.4942 
10000 *  * * 33/0.9671  35/0.5261 
50000 * * * 52/8.0160 58/1.0086 
*: Means that particular method fails to converge 
 
      Moreover from Table 2-9, our method (NDJ) also uses 
less computational cost and less CPU time than other four 
methods (FN, MRVF, CN and IJN), that is why our 
method (NDJ) is significantly cheaper than CN, MRVF 
and IJN and also much faster than FN and MRVF, this is 
more noticeable when the dimension increases. In all the 

test problem, our method (NDJ) shows a promising 
result. We can observe that as the dimension of the 
systems increases, global cost for FN, MRVF, CN and 
IJN methods  increases exponentially where as our 
method (NDJ) growths linearly. This is because they all 
require to compute Jacobian matrix in each iterations.
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Table 6: Computational results for solving problem 8 (number of iteration/CPU time) 
n  CN  FN  MRVF (α = −0.01) IJN  NDJ 
25  8/0.0034  43/0.0029  58/0.0031  26/0.0014  28/0.0012 
50  9/0.0054 49/0.0052  62/0.0050  28/0.0018 30/0.0014 
80  9/0.0672  53/0.0583 79/0.0602  30/0.0024 32/0.0020 
100  9/5.6500  56/5.1280 86/5.407  30/0.0099  33/0.0073 
200  9/8.6590  60/7.6420 *  31/0.0157  34/0.0093 
500  9/19.2550  62/16.8163 *  32/0.0263  36/0.0137 
1000  9/196.1002  69/188.5926 *  34/0.0481  38/0.0210 
5000 * * *  34/0.0319  38/0.0221 
10000 * * * 34/0.2564  38/0.1486 
50000 * * * 44/5.7020 52/0.9126 
*: Means that particular method fails to converge 
 
Table 7: Computational results for solving problem 9 (number of iteration/CPU time) 

n  CN  FN  MRVF (α = −0.3) IJN  NDJ 
25  5/0.0024  12/0.0021  6/0.0023  18/0.0017  12/0.0011 
50  5/0.0025  14/0.0022  6/0.0024  18/0.0018  16/0.0012 
80  5/0.0031 15/0.0026  7/0.0027  20/0.0020  18/0.0018 
100  5/0.0057  16/0.0048  8/0.0053  21/0.0026  18/0.0020 
200  5/0.0125  16/0.0102  8/0.0119 23/0.0059  21/0.0032 
500  5/2.9229  17/1.2160  8/1.3510 25/0.0495  23/0.0275 
1000  5/16.0154  17/13.7132  9/14.5723  25/0.7141  23/0.3974 
5000 * * * 27/1.1012  24/0.8623 
10000 * * *  30/2.5921  25/1.0045 
50000 * * * 39/29.0927 28/4.2741 
*: Means that particular method fails to converge 
 
Table 8: Computational results for solving problem 10 (number of iteration/CPU time) 

n CN  FN  MRVF (α = −0.08) IJN  NDJ 
25  9/0.0040  43/0.0271  12/0.0035  21/0.0034  24/0.0028 
50  9/0.0063  54/0.1753  14/0.0052  24/0.0042  24/0.0036 
80  11/0.0141 68/1.0642 15/0.0099  24/0.0067  26/0.0043 
100  12/0.0197  79/1.9843  15/0.0132  26/0.0084  28/0.0069 
200  12/0.0264  82/4.8164  16/0.0207 27/0.0106  35/0.0083 
500  12/0.0319 *  18/0.0297 27/0.0129  35/0.0094 
1000  12/0.1279 * 22/0.0942  30/0.0281 35/0.0101 
5000 * * *  31/0.0438  35/0.0185 
10000 * * *  33/0.0818  38/0.0371 
50000 * * * 51/9.0713 59/0.8410 
*: Means that particular method fails to converge 
 
Table 9: Computational results for solving problem 11 (number of iteration/CPU time) 
n  CN  FN  MRVF (α = −0.5) IJN  NDJ 
25  8/0.0037  28/0.0027  38/0.0054  40/0.0023  34/0.0016 
50  8/0.0042  35/0.0031  49/0.0096  43/0.0035  36/0.0023 
80  8/0.0210 39/0.0194 63/0.0358 45/0.0130  38/0.0089 
100  8/0.0279  42/0.0204 *  45/0.0167  38/0.0106 
200  8/0.0514  47/0.4632 * 48/0.0268  39/0.0153 
500  8/0.1826  54/0.4835 * 50/0.0618  43/0.0449 
1000  8/1.2915  62/1.8165 *  54/0.0917  45/0.0615 
5000 * * *  60/0.5041  48/0.3103 
10000 * * *  68/1.3612  48/0.5190 
50000 * * * 87/12.3091 54/1.7209 
*: Means that particular method fails to converge 
 
Table 10: Robustness index table 
 CN  FN  MRVF  IJN  NDJ 
V  0.7108  0.5542  0.5904  0.9639  1 

 
Another advantage of our method over FN, MRVF, CN 
and IJN methods is the storage requirement for the 

Jacobian matrix to only a vector storage. For instance 
when n = 1000,  CN, MRVF and IJN stores 1000×1000 
fully populated matrix which is equivalent to 106 
memory locations but NDJ stores1000 vectors 
equivalents to 1000 memory locations only, in general 
our method has reduced the matrix storage to some 
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vector storage only. These results indicated that NDJ is 
an improvement; with emphasis on eliminating matrix 
storage, reducing computational cost and CPU time, as 
well as avoiding solving n system of equations in each 
iteration only. 
 

CONCLUSION 
 
 In this study, a modification of classical Newton’s 
method for solving system of nonlinear equations is 
presented. This method (NDJ) approximates the 
Jacobian into a diagonal matrix, by replacing the 
derivative computation by a direct function 
computation. Hence it reduces the computational cost, 
storage requirements of a matrix, CPU time and avoids 
solving n linear system in each iteration. The numerical 
results of the proposed method (NDJ) are very 
encouraging and it shows that its global cost increases 
linearly as the dimension of the nonlinear systems 
increases whereas in CN, FN, MRVF and IJN methods 
it increases exponentially; furthermore it shows that 
NDJ can achieve good performance for large nonlinear 
systems. Therefore to this end we can say that our 
method (NDJ) is significantly cheaper than the four 
methods and much faster than FN and MRVF. Finally 
we can concludes that our method (NDJ) is suitable for 
small, medium and large scale systems especially when 
the function derivatives are costly or can’t be done 
precisely. 
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