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Abstract: Problem statement: Develop a new formula which describes the magriietid induced by

a lightning strike’s indirect effect double expotiahcurrent waveform Approach: A novel approach

for developing a closed-form solution for the magndield from the indirect effect double
exponential current waveform will be presented.tha literature, models typically employ the pulse
waveform to derive the corresponding electromagnfitids. However, given the Department of
Defense (DoD) has incorporated the double expoamerturrent waveform as part of their
“Electromagnetic Environmental Effects Requiremdfas Systems”, we felt it important to develop a
solution for the magnetic field which utilized thigaveform. In order to facilitate the integration
required for deriving the field, Taylor series erpi@n was used for all variable dependent expoakenti
terms. In many publications, the dipole and monegethniques have been used when solving for the
magnetic field. However, for this study the diptéehnique was deemed the preferred method for
evaluating the field. A derivation of the magnetield will be presented along with a graphical
illustration of the field’s distribution over timeResults: The equation presented utilized Taylor series
to augment the integration required to solve far mhagnetic field. Conclusion: A new method for
deriving the magnetic field induced by a lightnistgike’s indirect effect double exponential hasrbee
presented. By approximating the variable dependgpbnential terms, we were able to minimize the
complexity of the mathematics required to solvetfar magnetic field in closed-form.
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INTRODUCTION For the purposes of this study we will be
utilizing the severe stroke current waveform

; . . . “parameters given in (MIL-STD-464, 1997). The
exponential to describe the wave shape a lightnin
current waveform may have. What he found were alues for 4, « andﬁ_are 218,810 A, 11,354 s-1 and
measurements obtained in both the field and lagetyo  647:265 s-1 respectively. o
matched wave shapes obtained by analysis. This Given this waveform's usage in literature, a
discovery gave rise to an empirica' equation WhichVa.I|da.t|on Of the pal‘ameters Used was Warrantad. J
closely resembled lightning’s characteristic shape. and Xiaoging (2006) used numerical trial and etwor

Currently, the Department of Defense (DoD) solve the double exponential parameteesdf. Upon

utilizes the double exponential current waveform assubstituting these values into the equation theyndo
part of their Electromagnetic Environmental Effectsthat the resulting waveform closely models the one
document MIL-STD-464 to describe the lightning’s which utilized the fixed parameters. Karwowski and
indirect effect waveform. The parameters ¢ andB)  Zeddam (1995) developed a method that utilized the
which make up the waveform are contingent upon thenixed-potential Electric Field Integral EquationH(E)
type and severity of the lightning strike. The bieu i, the frequency domain to solve for the electiéddf
exponential current waveform i(t) described in (MIL merically using method of moments. However, this
STD-464, 1997) is shown by: study will introduce a closed-form solution for the
N (et magnetic field which is induced by the double
i(t)=1o(e7 —e®) @) exponential current waveform.

Bewley (1929) proposed using the double
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MATERIALS AND METHODS This Retarded time, t' is used as a means of daagri
the time delay that exists between a photon being

Retarded time: In differential form Maxwell's emitted and when it is perceived by an observea at
equations for a homogeneous, time variant and flineadistance R some R/c time later. The Retarded &ime
medium can be written (Jackson, 1999), where Dds t time delay is defined as:
electric displacement, E is the electric field, Bthe
magnetic field, H is the magnetic field strengths she t'=t-R/c (10)
current density,p is the charge distribution per unit
volume, | the magnetic permeability ang) is the  Where:

electric permittivity: t' = The actually time of photon emission
t = The time it's perceived by an observer
OE=p/g, 2 R/c = The time it took to travel
Oxg=-y 90 3) The inclusion of the retarded time is used to
Ho ot account for the delay that exists between the tiigigt
channel and observer. By differentiating both sidé
_ 9E (7) and inserting (10) to account for the Retartieut,
OxH=J+e o 4 one could now describe the potential A with:
du,H=0 (5) dAZ(rS't)=£|(I’S,t—R/C)dZ' (11)

41 R

Given Eq. 5, one can solve for the magnetic field
terms of the vector potential alone. Upon utiligin
some substitutions and vector identities one woul

Note: By canceling out the areas we can write the
urrent density per unit area J in terms of | andid
erms of dz'.

obtain: Upon substituting (11) into (9), one can develop a

_ general expression for the magnetic field at anptgo
HoH = L1 A ©) (r, z) space such that:
where the potential A in terms of z’' equals: i(t -

g ! ah, = 1| ORI i Riglar 2
i 47| cR ot R
Az(rs,t):bjw @)
4. R Image theory: Since the conductivity of the earth’s

surface increases with frequency, it is logicahssume
Upon applying the Curl operator in cylindrical that above a certain frequency the conductivity
coordinates for (6), we can now re-write the maignet approaches infinity. Therefore, if we treat thetleas a

field such that: perfect conductor, we are able to use image theory
our analysis. These images, or virtual sourcesyat
1719A A for reflections which can then be added to the real
_ 'z zi 8 . .
AR T e (8) source constituents to form a general equation. An
0

illustration of this phenomenon is depicted in Fig.
which captures the lightning channel and its
corresponding image. In order to account for the
current waveform that moves upward at a velogijtye
now must include the term |z’|/v (Rubinstein anddum
1989). With this additional term we can now ddseri

iy (9) the current waveform (1) with the following:

Given the radial symmetry of the problem, it is
apparent that Acannot depend on the coordinatéhus
(8) simplifies to:

_10A,
by Or

H=

i(t-z/v)= Io(e"”(t_z'/") —e"B(t"Z'/V))m(t -ZIv) (13)
As pointed out by Nevels and Shin (2001), Lorenz
proposed that the standard Neumann potentialsrirstef ~ where, |z'| is written to include all points alotite z-
instantaneous charge, current density and positten axis both real and reflected while the Heaviside
modified to include the propagation of time frtma source.  function, u(t) is required to bound the currentvefarm.
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D = G St After some diligent algebraic manipulations, the
[ v & e o ey il height can now be expressed by:

d.2)
R
w| 1wk :/ (ct-p2)2 {z-pey +(1-")

o h - B 1- Bz (18)
J(:’,UI R, . . .
e where the quantity = v/c is the ratio of the current
M R propagation speed along the lightning channel &ed t
,mf,I speed of light. Given the formula is in quadrdtiom,
ot two possible solutions exist for h. One solutian i
= Causal while the other is non-Causal. Causal Egna

are zero for all negative values of t while non-&su
signals are zero for all positive values of t.tHis case,
only the Causal form of h will be considered as ohe
the participating parameters for evaluating the me#ig
field.

Perfect Image

Fig. 1: Application of image theory used for liging
channel

) : } Approximating the double exponential: Given the
As Rubinstein and Uman (1989) pointed out, bycomplexity of the integration required to solve foe
assuming no current flows above height h in thenagnetic field, we must separate the exponentiaige
lightning channel, allows one to set the Heavisideptg their constant and variable constituents. ethe
function equal to zero. The known absence of airre 4y, have been separated, Taylor series expansion ca
permits one to conclude that time at this point tnuspe ysed to approximate the exponential terms which

equal zero as well. Given the propagating currentontain the variable z. The expansion for the
waveform shifts in time along both the vertical a”dexponential terms can be approximated by:

horizontal axis, allows one to include both of #hes
conditions when defining the time at the top of the x2 X3

channel. With this in mind, one should now encosspa © ~ 1" X* 5+ 5+ (19)
the horizontal or “Retarded time” shift, along witne
waveform’s vertical movement |z’|/v, to developrag- In principle, there are two double exponential

based expression at the top of the channel. Imgded, waveforms that must be approximated. These include
we can expand Eg. 13 to include the Retarded timb s the original waveform and differentiated waveform.

that: Each of which will have been shifted in time by R/c
Z'lv. From (14), one can separate the exponentials
i(z' t_R/C)Z|0(e—a(t—R/c—z‘/v)_e—B(t—R/c—Z'IV)) terms of their constants and variables constituents

(14)  Doing so allows one to utilize Taylor series to @t

for the variable terms while constants can be sietea
) and incorporated at a later time. Therefore frdm)(
Given: we can distributer andp then regroup the exponential
terms shown by (20-21):

m(t—R/c—z'/v)

t-R/c-|z'|/v=C (15)
i(z\t-R/q)= || e* D&V 0& -~ @O 0%
and (20)
W(t-R/c-zV)
R= (Z— z)2+ r (16) i(Z',t—R /C): |O|:e-m Ce(RIe ) _ 5t Dglez‘/\)J
(21)

one can derive an equation in terms of some hdight w(t-R/c-z7y

Plugging (16) into (15), setting z’' equal to anitey

height h and solving for t one would obtain: Given (21), we can make the following

assignments:

(V@) b 17) xa:a(§+5j 22)

c v v
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[ouble exponential shilled by Kic + #'fv

3 Modified waveform
%, ——Modified waveform with correction |
Y= Unmodified waveform

Fig. 2:

15 2

Time (sec)

Modified and unmodified double exponential exponential waveform.
current waveforms shifted by t = R/c + z'/v

larger magnitude and takes longer to decay. Howeve
when this approximated waveform is modified witle th
seminal constituent 1.06*exp(-1&%, the resulting
solution reveals a waveform that closely models the
original double exponential shifted by R/c + 2’y
realizing the acquiescent similarities between the
original and approximated waveforms allows one to
leverage the latter to derive the magnetic field in
closed-form with a high level of confidence.

RESULTS

Calculating the fields: The methodology used in
deriving the magnetic field will forgo using the
standard square pulse presented in literature (Rteédin
and Uman, 1989) and replace it with the double
Let's first start off by re-
writing (12) such that:

dH, =

1| r di(t-R/c) r
- @7)

= T +R3i(t—R/c)}dz'

23
(23) Next, substitute (25, 26) into the second and firs

terms of (27) respectively. Upon doing so, onel wil

Therefore, one can leverage the first two termsrrive at:
from (19) where (22, 23) equal the variable x aggi

by:

R z

i(z,t-R/c)= [ e [élm(C*VID

Upon regrouping the “like” terms, (24) can now be

written as:

i(zt-R/

Mo

W(t-R/c-z7V)

J=h[e"-e"+(ae"-p &)
R z' ,
Eﬁ;"’v}m(t_R/C_Z/\a]

with differentiated form of (25) being:

i(z,t-R/¢)=,[Be”

sat

-0e +(B2 &Pt -2 é‘“)

E€§+%‘)m(t— R/c-2z'V)]

| Od z
41

2 —cxt)

dHg = -a‘e

[C_I;Z(Be—ﬁt —ge ot 4 (Bze—ﬁt

E€%+%D I]J(t— R/c—z‘/v)

+C_|-:>2(e_m —e Bty (Ge—at _ Be—Bt)

[€E+%D [6(t—R/c—z'/v)

C

(24)
(28)

LT (e—(xt_ o Bt +(ae—at _Be—Bt)

R3

[é% +%D |]J(t - R/c—z'/v)]

(25)
Note the additional term added to (28) is due in
part to the following product rule:
[F(t)m(t)]=f(t) m(t)+f(t)B(t) (29)
(26)

Although the terms bound by the delta function are
shown in (28), they vanish once the current wavaor

As the Fig. 2 shows, the modified waveform whichare evaluated at t = R/c + z'/v. Upon integratitiy 28

utilized Taylor series expansion tends to yieldightly

from -h to h along the z = 0 plane, we can obtain a
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closed-form solution for the magnetic field to indé
the correction factor as shown by the following:

H, (r.0,1)

_1p(1.06e17)
- 2n

T(Bzém—azém)
¢

|

vh?+r? h

+ —

r r

r(Bze—Bt _aze—m)
cv

(e—qt _ e—Bt)

r

(n

(n

[ (30)

|
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«/h2+r2
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CONCLUSION

A closed-form solution for the magnetic field
induced by the double exponential current waveform
has been presented. The approach proposed here is
unique in that it utilized Taylor series to approgie
the variable dependent exponential terms within the
current waveform. This greatly simplified the
mathematics which helped facilitate the integration
required to solve for the solution in a closed-form
However, this approximation caused the modified
current waveform to grow in both magnitude and geca
time. With this in mind, it is logical to presurtteat the
resulting fields would be subject to this same azlgm
Realizing a departure existed between the moddiedi
unmodified waveforms, warranted the use of a
correction factor to recapture its original forrmoing
so ensured the magnetic fields which followed, wloul

Figure 3 illustrates how the magnetic field’s tend to more closely model those from the original
magnitude is distributed as time varies from 0-I1x10 unmodified current waveform.

SecC.

Equation 30 used a methodology which greatly

DISCUSSION
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