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Abstract: Problem statement: As a complement of the periodogram study the asyticpproperties

of the spectral density using data window for etary stochastic process are investigated. Some
statistical properties of covariance estimation cfiom with missing observations are studied.
Approach: The asymptotic normality was discussed. A numéreeample was discussed by
using computer programmindresults: The study of time series with missed observatiand
with the modified periodogram had the same resaoftgshe study of the classic time series.
Conclusion: Modified periodogram with expanded finite Fourieartsformation for time series with
missed observation has improved the results ofltesic time series.
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INTRODUCTION V(N (-o<A<w), the matrix of second order

Our method of proceeding is to derive the Smoothing modified periodogramss) (A), which is
asymptotic moments of: the matrix of sample messur the matrix of second order spectral measufég(a)

FX (), the matrix of sample covariancex (u) and  the xr matrix of second order spectral densities and
the matrix of sample spectral densififq}) , including  C{) (u)(u= 0x 1,... are the matrix of sample covariance.

necessary uniform error terms. Our work is mainly Suppose that:

based on the properties of the data windows and the _
matrix of second order smoothing modified Cu (U) = E{X(t + u) X (t)}
periodogram, Ghazal (2005). The properties of the

smoothing periodogram using a weight function dada and:

window were discussed in Brillinger (196®)ahlhaus, .

1985. We see that the idea of smoothing the pegiagios > |C,, (u)|< e

using data window is an important tool in the spact uv=—
analysis of time series. Our purpose is to complage

classic results in the spectral analysis of r-aeealued  Where,
strictly stationary time series, where all obsdorat are  the bar denotes the complex conjugate. We defined
available and the case where some of the obsamgai®  f,,(\) the ~r matrix of second order spectral densities

C, (u) denotes the matrix of absolute values,

randomly missed, using data window. by:

Related works: Dahlhaus (1985) considered the N

estimation of spectral measure of stationary padde  f, (A)=(2m)" > ¢, (u) exg(— A U (- <A <) (1)
discussed the case where X(t), t is a strictlyictatry u=-e

Gaussian time series with real valued componerds an .
mean zero. He defined the periodograms, as iignd Kx(A) the matrix of second order spectral measures

Brillinger (1969); Ghazal (2001; 2005) and Ghazad a PY (Brillinger, 1969):
Farag (2000). \

Let X(t); (t =0, 1, ...,T-1) are be some randomly ()\):J'fxx (a)da(0<A<m)
missing observations. We construct the statistics 0

Corresponding Author: G.S. Mokaddis, Department of Mathematics, Facultgaence, Ain Shams University, Cairo, Egypt
10



J. Math. & Stat., 6 (1):10-16, 2010

We construct estimatesC) (u), f{(\) and T 1 —
wx (U) o (N) _ ljdf)dtDJﬂwD—»Ida(U)dU.&‘ 1
FP Q) of Cy (u), f,(A) and F, (A). These estimates Ty R

(T) i i k Tl k
base_q oni{) (%\) , the matrix gf secor_1d ord_er smoothing uo, (Z)‘J:I I_lld(? (© lex{—in } ot
modified periodograms. This last is derived frone th ™™\ 4 ol 1=

finite Fourier transform of an observed stretchdafa,

X(®) (t=0, 1, ...,T-1) that have some randomly rinigs Let Byt) (t = 0,%1,...) be a process independent of
observations (Ghazal, 2005). We determine the;((t) such that for every t: P{Ba (t) = 1} =50
asymptotic expressions for the cumulates A, _ 1

ymplotic. exp BEA). cumge, 1.8, ()}=p, ,.a=Lr
C{o)(u) and f)()) . Let the r-vector valued time series The success of recording an observation not
X(t) have real componentsx (t), (a=1r). All depends on the fail of another and so it is inddpah
moments are assumed to exist and we set: We may then define the modified series:

Cy g (tyeent )= UM X, (4T )y, (G #7 )%, () Y(O=BOX®)

(& =1rt=0f1..k 23.1= & 1. Where:
Assumption I: X(t) is a strictly stationary continuous ()= 1 if x (t) isobserved
time series and all its moments exiSbr each A o otherwise

j=1,...k-1 and k- tuple;aa,...a we have:
Then Y(t) is a strictly stationary r- vector vatlie
[ tl[Caa (e ) dtyp it <o ) time series all of whose moments exist.
k=23, @ In this study Nr(p,,>",,) denote the multivariate
normal distribution with meanu, and covariance
because cumulants are measures of the joint . % _
dependence of random variables, (2) is seen to be rpatrix ZZV\_/here Z is an rvector valued random
form of mixing or asymptotic independence variable having real- valued components. o
requirement for values of X(t) well separated indi If Let N;(u.>.). be the complex multivariate
X(t) satisfies assumption | we may define its cuaml normal distribution with meany, and covariance
spectral densities by:

matrixZ z where Z is of complex- valued components.
Structure of the paper would be as following,

for g )= 2yt x .
construct the moments statistics g A), C{) (u) and

T k-1
jcai _____ o (Lot )X ex;{— DA jtJ dt...dt , 3) f(A) by deriving their mean, covariance and
R ~ = cumulate. We construct the expanded finite Fourier
ADR, g Lrk= 2,3,... transform with data window with missed observations
as:
Assumption II: Let d(t)=d t ,a=1r be a 1 T
AT h () =—— [ ()Ya(x
function which is bounded and has bounded variation an[dm (t)]z 0 (5)
and equal zero outside the interval [0,T]. o
exp(iAt)dt

jd(a)ob(= 1Given B>0 we then set that:
where, A=Rd" (t)= da[i) then the expanded

d? (@)=B;'d(B;'a) (4) T
smoothing modified periodogram is defined by:
Assumption Ill: Let U(T) is bounded variation and .

. . . T
vamshe; fort<O0,t >T.-1.. The functiaty” () is called |0 () {Zﬂpabj(d(: (t))2:| am 0\)07(? S ©6)
a data window and satisfies: 0
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The bar denotes the complex conjugate and:

;

o (M) =[dP (O () expt-tydt (7
0

AOR; a, b =1,r and d(t) is a data window function

equal zero outside the interval [0, T].

Asymptotic moments of spectral measure
autocovariance and spectral density function:

Theorem 1: Let Ya(t) = Xa(t) Ha(t), (a=1r) are
missed observations on a strictly stationary camtirs
time series Xa(t),(a=1,r), (t=0,+1,...) which satisfies
Assumption | with mean zero and IEf) (\) is defined
then:

E{FY O} =PuRud 2+ A T') 8)
with O(T™Y) uniform inA.

Cov{ EL Q)R & } ) P, R,X

[UR©@UZL O] [Uzmwﬂx

Tfalaz(aj)f%(—a)da 1+.[f”(a)lf p,g(—a)pla} ©
+:;(T‘1) h
and

cum{ ED &,),..E, X, )= I_J R, @ ™) .k 23,(10)

where the error terms are uniform in each case.

Lemma 1: Let Ya(t) = Xa(t) Ha(t),(a=1,r)are missed
observations on the strictly stationary continuseses
Xa(t), (a=1,r), (t=0,+1,...) which satisfies assumption |

. .. (T)
with mean zero under the condition of Theorem 1 we E{ Map (“)} ODpE-R

have:

E{F”(A)}Dp D~ PRl ),

co{ KL 0).ED &} 0P D= 0,
Cum{ E7) rJyopg- o

ForallaQ-lr-OsA<w EL..kk=12 ..,
as an estimate of CXX (u) we conS|der.

’%Q

12

m{0) (u)= j I (@) exp(ior Yabx (11)
we have the following theorem.
Theorem 2: Let Ya(t) = Xa(t) Ha(t), (a=1r) are

missed observations on a strictly stationary camtirs
time series Xa(t)(a=1,r), (t=0,1,...) which satisfies
assumption | with mean zero then:

E{m{ (u} = Rym, (uy 4 T) (12)
cof ml) (u).nD, (u) = 2( W, O], (@)
Ug s, (0)% Faa Phbz.[ exf o (U= w)f, €)fy,

(-a,)da (13)

P P [ X @ (Ut w) 1§, €y, b )mx}

()

and:
k
Cum{nily W)y @P=T] £ €77)
k=2,3,...
for all a,b=1ry= Ot 1...§ 1| The error terms are

uniform in each case.
From the previous theorem we have the following
lemma:

Lemma 2: Let Ya(t) = Xa(t) Ha(t),(a=1,r) are missed
observations on a strictly stationary continuouseti
series Xa(t), (a=1r)), (t=0,+1..) which satisfies
assumption | with mean zero then we have:

R my, (u)
cov{ 7 (u).nfl), (uz}Dp 0- 0
Cum{ m ()., (L&})DQD—’ (

forall a,b =1r,j= Lk

Let f)(u) be defined as:

(00 = [ YO0 -a)ID(a)da (15)
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Assumption 1V: Let W(a),adR is a weight function

which is bounded and has bonded first derivativehsu asymptotically unbiased estimate fQf\)

that:
j W(o)da =1

Given BT>0, we then set:

W (a) = B7W (B a)

Theorem 3: Let Ya(t) = Xa(t) Ha(t), (a=1r) are
missed observations on the strictly
Continuous series Xa(t)(a=1r), (t=0,+1,...) which
satisfies assumption | with mean zero, then:

E(i0 W) = Pabf W @)f A-aBda+O(TY)  (16)

Cov{f(T LHRINN 2)} U, ,,(0)

(U(T) (O)U(T) (0))

{Paiazpmajwqq@‘waw@‘ A Fa)f 0 Tax  (17)
fblbz(a—xl)dmpwpmjw @ LA FA o)X
fon (A= 0)f, (a=A)da} +O(T?), when B = 1
Co{ 11} (1), 1D, (A )} = 2mBTUT, , , (0)

(UR U, () {J-qu(a)‘l)é,a(a)d}}x

(18)
[6()‘ —A,)P ag kalz qa(}‘ of p(_)‘ )+
BN+ A,)P, 4 Pua fay O ) 4, (A )]+ o( Bl{l’z)
when B; - 0,B,T - » as T « . Also:
cum{ £ )., @} =
(J_ PCJdJ]O( 'rk+1) . B =1k 2, (19)
BT — O,BTT — 00

(Ij chd, ] O( B}k+1-|—k+l) ,

asT - oo k= 2.

13

The following lemma indicates that’()) is an
, if A#0
andB; - 0as T «.

Lemma 3: Under the conditions of Theorem 3, if
BT — O, BT -0 asT- o ,then
E{fQ M} D0 0= Puf ),
Cov{ 1D (1), ¢ Q()\ JO0po-o,
cum{ D A,)....50 & } oA D= 0

forall a,h=1rAADFrm]j=1kk= 1,2,...,

Stat'OnaryAsymptot|c normality: Now, turning to finding the

asymptotic distributions of K A\), m{) A),f ()
which are based on the asymptotic distribution of
IO\, a,b=1,r,A0Fm,n]. We shall prove that the

asymptotic distribution of previous statistics isrmal

with mean zero the asymptotic normality has been
demonstrated, under various conditions, by (Ghazal,
2005; Dahlhaus, 1985; Ghazal and Farag, 2000; Ghaza
and Elhassanein, 2006).

Theorem 4: Let Ya(t) = Xa(t) Ha(t),(a=1r) are
missed observations on a strictly stationary comtirs
time series Xa(t), @=1r)), (t=0,%1,...)which satisfies
assumption | with mean zero. Then:

TR M)~ R O} o R{ ED B > B & )

are asymptotically jointly multivariate normal with
covariance structure:

{ OO~

T2{FD O ,) -

Fuy o)}
Fun )

L|m Cov

Too

= (2r[ U7, ©)UD, 0

(U200 PusPif st K10
)\l

+Po, Paij fan @ Jf (0 )(hl:|

for alla,b = 1,r,A, O[-nrd, j=1k, k=12,..

Theorem 5: Let Ya(t) = Xa(t) Ha(t),(a=1r) are
missed observations on a strictly stationary catirs
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time series Xa(t),(a=1r), (t=0,+1,...) which satisfies

assumption | with mean zero. Then:

T2 (u)-my, (U} B () m,

are asymptotically jointly multivariate normal wito-

variance structure given by:

T%{m”) (u)-my, (U},

LimCov
T-o0

TE{m‘Ti12 (uy)-m,, (UZ}

( UZ, OV, (O)) aany (0

Paiazpwj‘ exf @ (u- W) f,, € ), ca Ja

Poo Poo | €4 & (Ut W) T, € )y, Ca,)da,

-0

for alla,h = 1rA, 0 Fruml,j= Lk k= 1,2,.. Theorem 4
Let Ya(t) = Xa(t) Ha(t), (a=1r) are missed
observations on a strictly stationary continuouseti
series Xa(t), (a=1r), (t=0+1,..) which satisfies
assumption I with mean zero.

B,T - wasT - «then:
1
(a7 o0 -0l

(BTT;J{&(P(AK) “Efrol

Example: In this example, we will comparison between
our results, spectral analysis of strictly statigntime
series with some missing observations and theiclass
results, where all observations are available. Dsta
available at www.egidegypt.com.

Let Xa(t), (t = 0,+1,...) be a strictly stationary r-
vector valued time series, we suppose know tha th
data Xaf(t), (t = 1,2,...T) Which is the trade volume
weakly of the Orascom Construction Industries since
1/1/2003 till 31/12/2008, where all observationg ar
available of the series is available with some mgss
observations. H = 1, Y(t) = X(t), which is the das
case and then suppose that there is some missing
observations in randomly way, i.e.,7#1, to compare
two cases shown in Fig. 6. The weakly trade volume
data, X(t), 2003-2008 and The auto correlation fiamc
of the weakly trade volume data are shown in Fignd
Fig. 2. The auto correlation and the partial auto
correlation functions of the weakly trade volumedada
before smoothing are discussed and showrigir3F

Autocerrelation function for TRADE VOLUME
104 (with 5% significance limits for the autocorrelations)

z: |H||H ﬂ"ﬂilTll'lﬂl'lmu|i|’|ﬁ.iu.............

Autocorrelation

1 5 10 15 20 25 30 35 40 45 S0 55 60
Lag

Fig. 2: The auto correlation function of the weakly
trade volume data

are asymptotically normal with mean zero and

covariance structure indicated in Theorem 5.

800000 Time series plot of TRADE_VOLUME

VOLUME
3
=

TRADE

0

1 35 70 105 140 175 210 245 280 315
Index

Fig. 1: The weakly trade volume data, X(t), 200320

Partial autocorrelation function for TRADE VOLUME
(with 5% significance limits for the partial autocorrelations)
101

081
067

Q4'h1
Q[-_.) fl_l_-_-_"iT-_‘-'_'-'I_l-,__,_d_,_l-,_'-l_'-,'_

021
044
064

b

Partial autocorrelation

-1.04

1 5 10 15 20 25 30 35 40 45 50 55 60
Lag

Fig. 3: The partial auto correlation function ofeth
weakly trade volume data
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Time series plot of trade value
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Fig. 4: The weakly trade volume data after adjusime
X(®)
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Fig. 5: The fO®), fP@A) Imaginary part and

imaginary part off "(A) . where p = 0.99

024 Time series plot of RE

014

014

105 10 155 200 245 280 315

Index

1 35 7

Fig. 6: Thef™), 1) real part and real part of
fM(\) . where p = 0.99

Figure 4 shows The weakly trade volume data after
adjustment X(t) (J; is used to smooth data before

Table 1: box -pierce (ljung-box) chi-square statist

Type Coef SE Coef T P
MA 1 0.6670 10.0522 12.78 0.000
MA 2 0.1167 0.0524 2.23 0.027

Table 2: Modified box-pierce (ljung-box) chi-squatatistic

Lag 12 24 36 48

Chi-square 7.100 12.300 26.300 30.900
DF 10.000 22.000 34.000 46.000
p-value 0.721 0.951 0.823 0.957

Table 1 shows the box-pierce (ljung-box) chi-square
statistic and Table 2 shows Modified box-piercar(g-
box) chi-square statistic.

Final estimates of parameters:
Differencing: 1 regular difference

Number of observations: Original series after

differencing 349

350,

Residuals: SS = 132.957 (back forecasts excluded)

MS = 0.383 DF = 347
MATERIALSAND METHODS

We used SPSS and matlab, the software
programming to solve our numerical example.

RESULTSAND DISCUSSION

The study of time series with missed observations
and with the modified periodogram had the samelteesu
of the study of the classical time series.

CONCLUSION

Modified periodogram with expanded finite
Fourier transformation for time series with missed
observation has improved the results of the cla#sie
series.
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