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Abstract: Problem statement: The most important character within optimizatiorolgem is the
uncertainty of the future returné&pproach: To handle such problems, we utilized probabilistic
methods alongside with optimization techniques. deeloped single stage and two stage stochastic
programming with recourse. The models were develdperisk adverse investors and the objective of
the stochastic programming models is to minimize aximum downside semi deviation. We used
the so-called “Here-and-Now” approach where theisime-maker makes decision “now” before
observing the actual outcome for the stochastiarpater Results: We compared the optimal portfolios
between the single stage and two stage modelsthéttincorporation of the deviation measure. The
models were applied to the optimal selection otlsdisted in Bursa Malaysia and the return of the
optimal portfolio was compared between the twolsstic modelsConclusion: The results showed that
the two stage model outperforms the single stag#ehin the optimal and in-sample analysis.

Key words: Portfolio optimization, maximum semi deviation meas downside risk, stochastic
linear programming

INTRODUCTION random outcome from a spa€® leads to situation
where instead of just f(x) and @) one has to deal with
f(x,§(w)) and g(x,&(w)). Traditionally, the probability
distribution of & is assumed to known or can be
problem is the uncertainty of the future returnm T estimated and is unaffected by the decision vextor

handle such problems, we utilize probabilistic roeh 1€ _Problem becomes —decision making under
alongside with optimization techniques. Stochasticincertainty where decision vector x has to be afose
programming is our approach to deal with unceraint before the outcome from the distribution&géo) can be
This approach can deal the management of portfoli@oserved.
risk and the identification of optimal portfolio MarkowitZ"*? used the concept of risk into the
simultaneously.  Stochastic programming modelsproblem and introduced mean-risk approach that
explicitly consider uncertainty in some of the mbde identifies risk with the volatility (variance) ofhe
parameters and provide optimal decisions which arg¢andom objective. Since 1952, mean-risk optimizatio
hedged against such uncertainty. paradigm received extensive development both
Stochastic programming is a branch of mathematicatheoretically and computationally. Konno and
programming where the parameters are random. Théamazaki® proposed mean absolute deviation from
objective of stochastic programming is to find thethe mean as the risk measure to estimate the eanlin
optimum solution to problems with uncertain data. variance-covariance of the stocks in the mean-naea
In  the deterministic framework, a typical model. It transforms the portfolio selection prahle
mathematical programming problem could be stated asfrom a quadratic programming into a linear
_ programming problem. At the same time, the poptyari
min - f(x) (1) of downside risk among investors is growing and mea
st g(x< 0, i=1,..m return-downside risk portfolio selection modelsraee
oppress the familiar mean-variance approach. The
where, x is from R or Z'. Uncertainty, usually reason for the success of the former models isthiest
described by a random elemef(tw), where w is a  separate return fluctuations into downside risk and

Portfolio optimization has been one of the
important research fields in financial decision mak
The most important character within this optimiaati
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upside potential. This is especially relevant forresults show that the model outperforms the maaket
asymmetrical return distributions, for which mean-the MV and MAD model.
variance model punish the upside potential in taes In this study we develop single stage and twoestag
fashion as the downside risk. This led Markoffftzo  stochastic programming with recourse for portfolio
propose downside risk measures such as (downsidsglection problem and the objective is to mininiize
semi variance to replace variance as the risk measu maximum downside deviation measure of portfolio
Consequently, one observes growing popularity ofreturns from the expected return. We use the deetal
downside risk models for portfolio selectﬁﬁ‘ﬁ “Here-and-Now” approach where the decision-maker
Yound* introduced another linear programming makes decision “now” before observing the actual
model which maximize the minimum return or outcome for the stochastic parameter. The portfolio
minimize the maximum loss (minimax) over time optimization problem considered in this study falto
periods and applied to the stock indices from eighthe original Markowitz formulation and is based an
countries, from January 1991 until December 19%& T single period model of investment. At the beginnafg
analysis showed that the model performs similaibjhw a period, an investor allocates capital among wario
the classical mean-variance model. In addition, n"épu securities. Assuming that each security is reptesen
argues that, when data is log-normally distribueed by a variable, this is equivalent to assigning a
skewed, the minimax formulation might be more nonnegative weight to each variable. During the
appropriate method, compared to the classical mearinvestment period, a security generates a randtofa
variance formulation, which is optimal for normally return. The change of capital invested observethet
distributed data. end of the period is measured by the weighted geera
Dantzid® and independently Be&fesuggested an of the individual rates of return.
approach to stochastic programming and termed as The main objective of this study is to compare the
stochastic programming with recourse. Recourséds t optimal portfolio selected using two different dtastic
ability to take corrective action after a randonemv programming models. We compare the optimal
has taken place. The main innovation is to amemrd thportfolios between the single stage and two stage
problem to allow the decision maker the opportutity models with the incorporation of deviation measure.
make corrective actions after a random event Hamta This method is applied to the optimal selection of
place. In the first stage a decision maker a heder@mw  stocks listed in Bursa Malaysia and the returnhef t
decision. In the second stage the decision malexr @e optimal portfolio from the two models is compared.
realization of the stochastic elements of the probbut
he is allowed to make further decisions to avoid th MATERIALSAND METHODS
constraints of the problem becoming infeasible. . e
Stochastic programming is becoming more popular Consider a set of securitids{i:i 4,2,...,n} for an
in finance as computing power increases. There hav@vestment. At the end of a certain holding peribe
been numerous applications of Stochastic Progragnminassets generate returrisz(f, f,,...T, )’ . The returns are
methodology to real life problems over the last twounknown at the beginning of the holding periodt iba
decades. The applicability of stochastic programs tat the time of the portfolio selection and are tedaas
financial planning problems was first recognized byrandom variables. Denote their mean value by,
Cranél. Worzelet al."” and Zenioset al.'” develop ~ v=g(r)=(;,..;;}. At the beginning of the holding
multistage stochastic programs with recourse toesid period the investor wishes to apportion his budget

portfo_lip management pr-obler.ns .With fixed-income these assets by deciding on a specific allocation
securities under uncertainty in interest rates. The _ " such thatx 20 (i.e., short sales are
models integrate stochastic programming modelter t X = 00Xz, Xi = T

selection of portfolios with Monte Carlo simulation not allowed) and} x =1 (budget constraint). We use
models of the term structure of interest ratesieHdnd h t'D' t0 denot ¢ d - to denot
Eckstein [9](1994), Zenios 16 (1995) and Consigid a oldface character o denote vecltors an 0 eeno
Zenios [6](2001) also apply stochastic programs torandom var|ab|e§. .
fixed-income portfolio management problems. Cheing The_uncert_am _r?turn of the portfo_llo_ at the erid o
al® modeled a portfolio selection problem with the holding period ik = R(x,T)= X'T. This is a random
transaction costs as a two-stage stochastic progiagn variable with a distribution function, say F, thet
problem and evaluated the model using historicéh da

obtained from the Taiwan Stock Exchange. Their F(x,p) = P{R(x,T)< p}
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We assume that the distribution function F dods noe
depend on the portfolio composition x. The expected
return of the portfolio is:

R =E[R]=E[R(X,H)] =R(x,F)

Suppose the uncertain returns of the asdetsre
represented by a finite set of discrete scendries{w:
w = 1,2,...,S, whereby the returns under a particulas
scenariowQ take the valuesws = (f, g --vr o)
with associated probability£0, > 'p, =1. The mean

olQ

return of the assets is=) p,r, . The portfolio return
o0Q

under a particular realization of asset retugn is
denoted by B = R(X, ,). The expected portfolio return
is expressed as:

R=R(x,1,)= E[RX[)=Y pRXL)

o0Q

Let M[R(x, r,)] be the minimum of the portfolio
return. The maximum (downside) semideviation
measure is defined as:

K(X) =MM[R(x,r )] =[E[R(X,r )] - Min [R(x,r )] (2)

Maximum downside deviation risMM[R(x,r)] iS
a very pessimistic risk measure related to the tvase
analysis. It does not take into account the distidin of
outcomes other than the worst one.

Properties of the MM[R(x,f)] measures: Since being
introduces iff!, the axiomatic approach to construction

of risk measures has been repeatedly employed by
many authors for development of other types of risl%i

measures, tailored to

specific
application&*2,

preferences an

Proposition 1. MM[R(x,f)] measure is a deviation

ngle
ptimization model with MM deviation measure:

We formulate the portfolio selection optimization
model as a single stage stochastic programming Imode

Positive homogeneity:

MM[0] =max(E[0] -0)=0

MM[AR(x, )] =max{E[AR (X, )] —AR(x,F)}
=Amax{E[R(x,T)]- R(x,T)}
=AMMI[R(x,F)], forall A >0

Translation invariancex (X +a) =k(X) —a, for all
real constangr:

MM[(R(x,F) +a] =max{E([R(x,T) +a]-[R(x,F) +a])}
=max{E[R(x,T)]+a — R(x,T)-a}
=max{E[R(x,T)] - R(X,T)}
=MM[(R(x, "]

Convexity:  «[AX; + (10X ] <Ac(X,) + (1-1)x(X )
for all A0[0,1]:

MM[AR (X, ) +(1 = A)R (X, T)]

=max{EAR, (X,T)+ (1-A)R, (X,7)]
“AR,(X, 1)+ (1-A)R, (x,1)]}

=max{(EAR, (x,T)]+ E[1-A)R, (x,T))]
-AR; (X,T)+ 1-A)R, (x,1)}

=max{A (B[R, (x,T)] - Ry (x,T))
+(1=A)(E[R, (x,1)]- R, (x, 1)}

s Amax{(E[R, (x,1)]- R, (x,T))}
+(1L-A)max{E[R, (x,1)]- R, (x,1))}

SAMM[R (x,7)] +1 - NMM[R (X, 1)]

stage stochastic programming portfolio

as follows:

measure.

Pr oof:

Definition 1:

S MM: The stochastic portfolio

optimization problem where the difference betwe®n t

»  Subadditivity: x(X, +X,) <x(X,) + k(X)) :

expected portfolio

return and the maximum of

i minimum  portfolio returns is minimized and
MMIR 6D ¥R constraining the expected portfolio return is:

= max{E[R, (x,7)+ R, (x,1)]

“R.0GT)+ R, (DY Minimize max [R(X,f,) - R(X,f ) 3)
=max{(E[R1 (XvT)]_ Rl (X,T)) xOX o0Q

+(E[R, (x,F)]- R, (X, 1)} _ |
< max{E[R, (x,})]- R, (x,F) } Subject to:

+max{E[R, (x,7)]- R, (x,7)} "G = S I “

< MM[R ,(x,7)] +MM[R {x,1)]
381
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R(x.r) => p,RX.L) (5) Minimize n (11)
wdQ
Subject to:

R(xr)za (6)

R(X, )= X1, (12)
2% =1 (7) %:
il

R(x.5,)=2 p,R(X.1) (13)
L, <x, €U, gi i (8) wzus:z

Model S MM minimizes the maximum semi R(X.[,)2a (14)

deviation of portfolio returns from the expected
portfolio return at the end of the investment honiz ~ R(x,r,)- R(x,r, )<n (15)
Equation 4 defines the total portfolio return undach
scenariow. Equation 5 defines the expected return ofzx_ -1 (16)

the portfolio at the end of the horizon, while B. 5

constraints the expected return by the target medur

Equation 7 insures that the total weights of allL, <x, <U, 0i OI a7)

investments sum to one, that is, budget constraints

ensuring full investment of available budget. Ayal Thegrem 1: If x* is an optimal solution to (3), then

Eq. 8 insures that the weights on assets purchased (x)n’) is an optimal solution to (11), where

nonnegative, disallowing short sales and place ruppen =max R(x[)- R )l On the other hand, if

bound on the weights. ol ' e '
Solving the parametric programs (3) for different(x’,n") where n = max [R(x,[) - R ) is an

values of the expected portfolio retum yields the  ima) solution to (11), then'sis an optimal solution
MM-efficient frontier. to (3)

Linear programming formulation for S MM: ] . _ . N
Models S_MM have a non linear objective functiod an Proof: If x is an optimal solution to (3), then ()
a feasible solution to (11), where

a set of linear constraints. Thus the models amne no'S ) : O
linear stochastic programming. However the models = max [R(X )~ RG,g). If (x,n) is not an
can be transformed to linear model as discussexhbel optimal solution to (11), then there exists a felesi

For every scenariaJQ, let an auxiliary variable, ggjution (), to (11) where
let: n = max R(x.f, > R(x.r ). such thah<n’.
n = max [R(x,[,) - R(x ) (9) Noticing that max [R(x,[,)- R(x,;)] < n, then we
Subject to: have:

max [R(x,[,)= R(x.f )l<n<n’

nx max [R(X,[, )~ R(x, )] for Ow O Q ~
< max R(X,1,)- R .1 )]

Then, we have:

which contradicts that s an optimal solution to (3).
MM[R(X,r)] =N (10) On the other hand, if ;") is an optimal solution
to (11), wheren =max [R(x,[,)- R(x,[ )] then X is an
Subject to: (11) n=max [R(x,, )= R )]
optimal solution to (3). Otherwise, there exists a
n> max R(x.[,)- Rx.p )] for Do O Q feasible solution x to (3), such that:

R(X,[, )~ RO, ) R(k, R
Substituting (10) in portfolio optimization models max [R(x,[,)~ R(,f )l max [R(x ,f ) xJ)

(3) resulting in the following stochastic linear
programming model: Denote by:
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n =max R, )~ RO )] Letk (R(Y,,,t,))= MM[R(Y,,.1,)]

= ncLaEfo Vi )= RO, 5] (18)

then we have:

_ For every scenaria]Q, let the auxiliary variable:
n=max [R(x,f, )~ R(x,; )]

< max RO L)~ R L) n=max(R(y,.f,)~ R, ., )] (19)

<n’
Subject to:
which contradicts that (3n’) is an optimal solution

to (11). n= rrégx[ﬁ(yw L)~ R(y, )] for DO Q (20)

Two stage stochastic programming model with

recourse; We now introduce dynamic model where not ~ Then, we have:

only the uncertainty of the returns is includedtlie

model but future changes, recourse, to the initiaIMM[R(X,rw)] =n (21)
compositions are allowed. We formulate the portfoli
optimization by assuming the investor can make
corrective action after the realization of randoatues

by changing the composition of the optimal portioli _
This can be done by formulating the single period n 2 max [R(y,.f ) R(y )] forbe O Q
stochastic linear programming models with the mean

absolute negative deviation measure as a two-stagg, stage stochastic linear  programming

stochastic programming problem with recourse. Th&q,mjation of 25 MM: We formulate the two stage
two-stagedstqqhastm dprogf;ammmg p_robler];n hallows &tochastic linear programming model for portfolio
recourse decision made after uncertainty of thermst iz ation problem that hedge against secondestag

is realized. . . . MM as follows:
Now, consider the case when the investor is

interested in a first stage decision x that hedggsnst
the risk of the second-stage action. At the begipmf
the investment period, the investor selects th&alni
composition of the portfolio, x. The first stagectdon,
x is made when there is a known distribution otifat . .
returns. At the end of the planning horizon, once aportfollo return Is:
particular scenario of return is realized, the Bige L
rebalances the composition by either purchasing oflinimizen
selling the selected stocks. In addition to thé&ahior )

first stage, decision variables x, let a set obsecstage  Subject to:
variables, Y, to represent the composition of stock i in =1 (23)
after rebalancing is done, i.ej,y= X+Pi, O Vi = X- -

Subject to:

Definition 2: 2S MM: The stochastic portfolio
optimization problem where the downside maximum
semideviation of portfolio returns from the expekcte
return is minimized and constraining the expected

(22)

Q. Where P, and Q, are the quantity purchased and zy 1 oo (24)
sold respectively.y, is selected after the uncertainty of &~
returns is realized.

. . _ R(.L,) +R(Y,.[) 20 Do0Q (25)
Linear representation of MM: Before formulating the
two stage stochastic programming models for paatfol L <x <U gig| (26)
optimization problem to minimize the second stagke r 7717
measure, let formulate mean absolute negative
deviation and maximum downside deviation of L SYa<Ua Oiol, DebQ (27)
portfolio returns from the expected return in terafs
the second stage variables y: R(y,.r) 2n DolQ (28)
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Model (22) minimizes the maximum downside month, which will be further be considered as ofie o
semi deviation of portfolio return from the expette the Ns scenarios for the future returns on the assets.
portfolio return of the second stage variablesatythe ~ Thus, for example, a scenaripfor the return on asset |
end of the investment period. Equation 23 insunes t is obtained as:
the total weights of all investments in the firsage

sum to one and Eq. 24 insures that the total weight |, - R({+1)~ P (1) (29)

all investments in the second stage under each’ R ()

scenariow sum to one that is, budget constraints

ensuring full investment of available budget. Edprat For each stock, we obtain 100 scenarios of the

25 constraints the expected return by the targatme  overlapping periods of length 1 month, i.eg, N

a, while Eq. 26 and 27 insures that the weights on  To evaluate the performance of the two models, we
assets purchased are nonnegative, disallowing shokamined the portfolio returns resulting from ajomdy
sales and place upper bound on the weights initste f the two stochastic optimization models. We make
stage and second stage respectively. Finally Eq. 280mparison between S_MM and 2S_MM models by
define the mean absolute negative deviation of"@lyzing the optimal portfolio returns in-sample

portfolio returns from the expected portfolio retun portfolio returr:]s a_ndd ?ut—of-sam/ple portfolic; ratar
the second stage and the auxiliary variables fer thOVer 60 month period from to 06/1998 to 05/2004. At

linear representation of the deviation measure. each_ month, we use the hISt.OI‘Ica| data fro_m the
previous 100 monthly observations as scenarios and
solve the resulting optimization models and recdtwe
return of the optimal portfolio. Then we calculdbe
in-sample realized portfolio return. The clock is
We tested our models on ten common stocks liste@dvanced one month and the out-of-sample realized
on the main board of Bursa Malaysia. These we destereturn of the portfolio is determined from the adtu
our models on ten common stocks listed on the maifeturn of the assets. The same procedure is then
board of Bursa Malaysia. These stocks were seleted repeated for the next period and the average return
random from a set of stocks that were alreadydiste ~Were computed for in-sample and out-of-sample
December 1989 and still in the list on May 2004eTh réalized portfolio return. We use the minimum
closing prices were obtained from Investors Digést. monthly required retura equals to one in the analysis
the beginning, sixty companies were selected af°r Poththe S_MM and 2S_MM models.
random. Then, ten stocks were selected and the

G - . Comparison of optimal portfolio returns between
criterion we use to select the ten stocks in owalyesis e
is described as follows: S MM and 2S MM: Figure 1 presents the graphs of

optimal portfolio returns resulting from solvingetitwo

* Those companies which do not have completemOdEIS; S_MMand 25_MM.

closing monthly price during the analysis period

RESULTS

1.032

are excluded _—

[+ bd
4

» Since the portfolios are examined on the basis of o

historical data, those with negative average return _ 122
over the analysis period are excluded 1017

1.012

Portfolio return

We use empirical distributions computed from past
returns as equiprobable scenarios. Observations o
returns over I overlapping periods of lengtht are
considered as the J\possible outcomes (or scenarios)

1.007

1.002

0.997 1

0.992

of the future returns and aprobabilityeli is assigned $ % 8 8 5 5 8 8 8 8

to each of them. Assume that we have T historical Time period

prices, B t = 1,2,.... T of the stocks under

consideration. For each point of time, we compbi t Fig. 1: Comparison of optimal portfolio returns SMM
realized return vector over the previous periodlof and 2S_MM models
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g Comparison of average in-sample portfolio returns

= 25 MM between S MM and 2S MM: We use average
realized returns to comparison In-Sample portfolio
returns between S_MM model and 2S_MM model and
the results are presented in Fig. 2.

There is an increasing trend in the months from
December 1999 until April 2000, then decreasingdre
until June 2001. Starting from June 2001 until May
2004, both averages show an increasing trend. The
average in-sample portfolio returns of 2S MM are

1.15

—
(=

Averageportfoliorebun
SRS
o wn

0.95

2 2 T 2 = = 9 o4 = o higher than the average in-sample portfolio retums
§ 2 5 & § & 8 8 § & all testing periods.
Time period

Comparison of out-of-sample portfolio returns
between S MM and 2S MM modds. In real-life
environment, models comparisons is usually done by
means of ex-post analysis. Several approaches €an b
used in order to compare models. One of the most
commonly applied method is based on the represemtat
- 3 MM of the ex-post returns of the selected portfoliesroa

e 28 MM given period and on their comparison against airedu
level of return.

The comparison of out-of-sample portfolio returns
between the single stage stochastic programming
model, S MM and the two stage stochastic
programming with recourse model, 2S_MM is also
: ) done using the average return. The results of but-o
bl sample analysis are presented in Fig. 3.

Throughout the testing periods, the average return

Fig. 2: Comparison of average in-sample portfolio
return between S_MM and 2S_MM models

102 4 ....-...,'III....-'-'-I-..-
L

Average portfolio return

1.00 4

2 2 2 2 = = @ @ @ 5 from the two models show similar patterns. Theraris
£ ¢ £ ¢ § ¢ § ¢ § ¢4 increasing trend in the months from December 1999
= [} = [} = [} = [} = [} . . .

Time period until December 2000, then decreasing trend untieJu

2001. Starting from June 2001, both averages show a
i ) ) increasing trend. The average out-of-sample ofwloe
Fig. 3: C;ompanson of out-of-sample analysis betwee stage model, 25 MM is higher than those of single
single stage S_MM and two stage 2S_MM giage model, S_MM. Certainly, the models have been
models applied directly to the original historical datadted as
future returns scenarios thus loosing the trend
The optimal portfolio returns of the two models information. Possible application of some forecasti
exhibit the same pattern. There is a decreasimgltie  procedures prior to the portfolio optimization misde
the optimal returns in both models. However, in.Big we consider, seems to be an interesting direction f
it can be seen that the optimal portfolio retumesif the  future research. For references on scenarios gerera
two stage stochastic programming with recourse modeby Carinoet al.?l.
2S MM are higher than the optimal portfolio returns
from the single stage stochastic programming model, DISCUSSION
S MM in all testing periods. This shows that an
investor can make a better decision regarding the Uncertainty is an inseparable property in finahcia
selection of stocks in a portfolio when he taket® in decision making. To handle such problems, one needs
consideration both making decision facing theto utilize probabilistic methods alongside with
uncertainty and the ability of making correctiorii@es  optimization techniques. The models were developed
when the uncertain returns are realized compared tfor risk-averse investors and the objective of the
considers only making decision facing the uncetyain stochastic programming models was to minimize risk.
alone. The study more significant if involve the investrhén
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multi period where the optimal portfolio can be 6.

evaluated monthly and annual return is calculafédzh
return of the future portfolio can be further imped if
the future returns can be forecast more accurately.

CONCLUSION 7

In this study, a portfolio selection of stocks hwit

maximum downside semi deviation measure is modeled

as a single stage and a two stage stochasti

programming models. Single stage model incorporates:

uncertainty in the model and in the two stage mdikel
uncertainty is incorporated in the models and a& th
same considers rebalancing the portfolio compasio

the end of investment period. The comparison of the-

optimal portfolio returns, the in-sample portfolio
returns and the out-of-sample portfolio returnsveho
that the performance of the two stage model isebett

than that of the single stage model. Here, we use

10.
asset returns using appropriate scenario generation

historical data as scenarios of future returns.olm
future research we will generate scenarios of &utur

method before applying to our developed models.
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