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Abstract: The main objectives of this study were to introduce a maximum principle for second order 
elliptic equations in nondivergence form and to use a nondivergence technique called the ABP method 

to establish the maximum principles in small domains. The advantage of this work was that we obtain 
a maximum principle for equations with discontinuous coefficients of the leading terms and the ABP 
estimate was a bound for solutions of uniformly elliptic equations written in nondivergence form with 
measurable coefficients. It was an essential tool in the regularity theory for fully nonlinear equations. 
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INTRODUCTION 

 
 The great usefulness of a priori bounds for 
solutions of second order elliptic partial differential 
equations is well known[1,8]. Maximum principles are 
particular priori bounds. We introduce a maximum 
principle for second order elliptic equations in 
nondivergence form when the coefficients of the 
leading terms are discontinuous[5,7,10], then we describe 
in detail a nondivergence technique called the ABP 
method. It was introduced by Alexandroff in the sixties 
to study the curvature of manifolds and the solutions of 
elliptic equations. We use the ABP method to develop 
the maximum principles established by Berestycki and 
Nirenberg[12] near 1991. 
 The ABP estimate also plays a crucial role in the 
Krylov and Safonov theory from 1979, which 
established the Harnack inequality for linear uniformly 
elliptic equations with measurable coefficients, written 
in nondivergence form. This important result allowed 
the development of a regularity theory for fully 
nonlinear equations.  

MATERIALS AND METHODS 
       Let Ω be a domain (bounded connected open set) 
of Rn we consider the Dirichlet problem 
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 Where the following conditions are fulfilled by the 
coefficients and the known term, 
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with λ, � positive constants. We look for 
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if Ω is regular) and (1) is verified a.e. A current 
classical result of Alexandrov, Pucci and Talenti[1,8] 
states that 
 
Theorem 1: If �� �	��� �  then any solution of (1) the 
following bound (maximum principle) holds, 
 
 �� 	� �	�� ��� � �	  (3) 

 
 Where K is a positive constant depending only on 
λ, �, Ω, n. 
 In theorem 1, �� �	��� � where n is the dimension of 
the space is fundamental. Nevertheless in many cases 
obtaining bounds like (3) with some power p less than n 
can be useful. 
 In this study we construct a physical case in which 
the hypothesis p<n is interesting. Then we state a result 
like Theorem 1 for p<n[3,5] and prove a bound for this p 
(when λ→0+). Let n = 2. We derive the equation from 
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the displacement of a structure covering Ω and clamped 
on ∂Ω. 
  
The structure is a net of steel cables with rectangular 
mesh with edges parallel to the coordinate axes. The 
draught of the net can be realized with turnbuckles or 
with weights and is assigned. The cables parallel to the 
y-axes are stretched by a draught � �� � 	
�� that we can 
suppose is defined in the first projection of Ω, Ω1 and 
belongs to ��	 ��� �  in general continuous a.e or a step 
function. Analogously the cables parallel to the x-axes 
are stretched by a draught � �� � 	���  belonging to 

��	 ��� � where Ω2 is the second projection. 
 The structure must support a load ��	
��� given by 
the sum of the dead load and of an accidental load like 
wind pressure or weight of snow and a load ��	
��� 
given by some assigned, distributed, or concentrated 
loads. 
 We emphasize here that in the case of concentrated 
loads it is very natural to expect ��	
���, like 

� 	�	������ where �	
���is a fixed point in ��	����� is 

the Euclidean distance from p(x,y) to � and σ is a 
positive constant depending on the load. 
 In this case, easily arising from the applications, 
 

f(x,y )= � ��	
��� �	
���
  

does not belong to ��	��� for any �� � . 
 We call u(x,y) the displacements along the z-axes 
orthogonal to the plane of Ω. The equation that we 
derive expresses the balance in the vertical translation 
of the element dxdy of Ω. 
 We consider displacements belonging to 
� 
�	� �	�� � �  and call Cx the intersection of the graph 

of u restricted to dxdy with the plane y, z. If dx is small 
we can suppose that the angle α formed by the tangent 
in dx to Cx and the y-axes is constant. Then the 
contribution of �� 	
�to the balance is 
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 We use the small displacement hypothesis[6] and 
then we can replace α with sin α or with tgα, from 
which 
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 Analogously, on the edges parallel to the y-axes the 

contribution of )(2 ya to the balance is 
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 To obtain the balance, the sum of f (x, y) dxdy, (4) 
and (5) must be zero. We deduce 
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 Equation (6) is of type (1) but f (x, y) in many 
cases does not belong to Ln (Ω), as we have pointed 
out. Then we are interested in the case in which (3) 
holds with some power less than n in the right member. 
 

THE RESULTS  
 
 In this section we first deduce some results 
concerning the estimate (in L∞ norm) of the 
displacement of a structure when the load is function f 
not belonging to Ln (Ω), e.g., the inverse of a distance 
from an assigned point of � . We return to (1) with 
hypotheses (2). In a first step we suppose 
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Related to the operator  
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we consider its adjoint operator  
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 A function v belonging to L1
loc (Ω) is a 

nonnegative weak solution of L*v = 0 if v≥0 
��� 


�
��  for all u≥0, 
� � 	���� �  

  
The following theorem is crucial for our considerations. 

Let v be a nonnegative weak solution of 0* =vL . 
 
Theorem 2: For any 	
�� ��� �  there exists 


� 	���� �� �� such that 
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 With c = c(n), for any ball Br such that 
	� � ��� 
 � �� . Here Br, 	� � � 	� ��� ��
 � ��  are concentric 

balls with radii ��	� � ���	� ���
 � ��  Moreover there 
exists a positive constant K such that ��� �	 for any 

	
�� ��� � . 

 
Proof: From now on we denote with c a generic 
positive constant depending only on n and suppose that 
Br is centered at the origin. Fix 
 �����  There exists 

�
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 �� such that 
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for some positive constants k1, k2 depending on g. 
 As g depends on δ we obtain 
� � � �� � 	��! ! 	��� � � � �  If we choose 	�����  it is easy 

to verify that we can pick δ such that 
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 For example, we can choose 
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 From (8), as v is a nonnegative weak solution we 
deduce 
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from which, using (9), 
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and the theorem is proved. 
 From theorem 2, using the same arguments as 
those of[3,5] and the well known Gehring theorem[4,9,11] it 
is easy to deduce the estimate 
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if u is a solution of problem (1) with Lu in place of f, 
for some q<n, where k = k(λ, Ω, q).  
 The following theorem is a maximum principle for 
solutions of second order nondivergence form elliptic 
equations with discontinuous coefficients. Let us 
consider the operator 
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a.e. in Ω, for any �$��� We prove the following 
 
Theorem 3: There exists q<n and k = k(λ, Ω, q). Such 
that, under hypotheses (11) only, (10) holds for any 
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 Proof :  Let ( �
�� �� 	
�� be a sequence of C∞ functions 

tending to aij (x) in Lnq/(n-q), for any 1≤I, j≤n. We note 
also that we can choose �

���  in such a way that for any 

of them (11) holds, with the same λ. We fix 
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and note that by (10), 
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With k = k(λ, Ω, q), independent on d. We have, using 
H�lder�s inequality, 
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From (13) we deduce that ���  tends to Lu in Lq (Ω). 
Then, from (12) and (13), letting d go to infinity we 
obtain the theorem. 

DISCUSSION 
        Now we consider a maximum principle in small 
domains. During the sixties, Alexandroff, Bakelman 
and Pucci introduced a method which we call the ABP 
method to prove the ABP estimate, Theorem 4 below. 
The ABP estimate is an L. bound for solutions of 
uniformly elliptic equations Lu = f(x) written in 
nondivergence form and with measurable coefficients. 
It plays a key role in the regularity theory for fully 
nonlinear elliptic equations. 
 Let L denotes an operator of the form 
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 � 
  
 
in a bounded domain Ω⊂Rn. We assume that L is 
uniformly elliptic and has bounded measurable 
coefficients: 
 

 � �� ��
�% %	�  and � %	  in Ω (14) 

 
for some nonnegative constants b and % . 
 The following theorem, called ABP estimate, was 
proved by Alexandroff, Bakelman and Pucci in the 
sixties. It is an essential tool in the regularity theory for 
fully nonlinear equations. In its statement, 
���
�&�� 	�� denotes the Sobolev space of functions that, 

together with their second derivatives, belong to 
�
�&�� 	�� . 

Theorem 4: Assume that Ω⊂Rn is a bounded domain 
and that c≤0 in Ω. Let 
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is the upper contact set of u+: = max(u, 0) and C is a 
constant depending only on n, λ and b.diam (Ω). 
 An improved version of the ABP estimate, where 
the factor diam (Ω) is replaced by � �� , was found by 
the Cabre[14]. 
 
Proof: Let M: = 
��� �	
 � 
� � � be achieved at 



 � �  recall that u≤0 on ∂Ω. Let d = diam (Ω). We 
work with the function v: = -u+. Hence, 
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and v = 0 on ∂Ω. Consider the lower contact set Γv of v, 
defined by 
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for all � � � . 
Note that in this set we have v<0 and hence u>0. Let 
A(x): = [aij (x)] and note that 
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since c≤0. Now the statement that replaces 
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is * � �� �	 ��� �  This is proved, as before, using the 

Legendre transform 
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of v and checking that the minimum is achieved at an 
interior point 
 � � and not at the boundary ∂Ω. 
Indeed, for every � � �� . We have that 
 

v(y) . py = - p y> 
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We deduce the ABP estimate, 
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Next, we introduce a standard terminology in bounded 
domains. 
 
Definition : We say that the maximum principle holds 
for the operator L in Ω if, whenever 
 

���
3&�� � 	� �	�� � � �  

 �� 
�  in Ω and u≤0 on ∂Ω, then necessarily u≤0 
in Ω. The following corollary is an immediate 
consequence of Theorem 4. 
 
Corollary : Let Ω, be a bounded domain of Rn. If c≤0 
in Ω, then the maximum principle holds for L in Ω. The 
condition c≤0 in Ω is, however, too restrictive for some 
applications. The following maximum principle in 
domains of small measure does not make any 
assumption on the sign of c and it will be very useful. 
 
Proposition : Assume that Ω is a bounded domain of 
Rn. Then, there exists a constant δ>0 depending only on 

n, λ, b, %  and diam (Ω), such that the maximum 
principle holds for L in Ω if the measure of satisfies 
� �	� 

 This proposition is a consequence of the ABP 
estimate that was first noted by Bakelman, later by 
Varadhan and then extensively used by Berestycki and 
Nirenberg. Similar maximum principles in small  
 
 
domains can be obtained also for divergence form 
operators L, where 
 
 � �� ���( 	� 	
� �� �	
�� � � �  (19) 
 
For this, kone uses techniques from the variational 
theory which are clearly presented by Brezis[13]. 
  
Proof: Let u satisfy Lu≥0 in Ω and u≤0 on ∂Ω. Let d = 
diam(Ω)and c = c+−c−, where c+ = max(c, 0) and c− = 
max(−c, 0). Consider the 
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Writing Lu≥0 in the form 
 


	� � �� � � � �� 
 
 
� �� ��  
 
we may apply the ABP estimate to the operator L0−c 
and obtain 
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we conclude that u≤0 in Ω. 

 
REMARKS 

 
 We note that Theorem 3 holds for any 
 

 ),()( 0,2 Ω∩Ω∈ ↑ CWu  
0=Ω∂u

 (20) 
with 

# � �� 	  
 
 Using Theorem 2, in[5] the existence of a function 
α(λ) is proved such that (10) holds for 
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 	� # �� � � 	 and 	4� ��	� ��
� 	� !

� �
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for some positive constant k independent on �
�� �)� � *+

 

 From Theorem 3 and remarks (20) and (21) we 
deduce the following remark concerning the estimates a 
priori for the displacement of a structure subjected to 
concentrated loads. 
  
 
Consider the possibility of bounds like (10) when the 
coefficients are discontinuous and f(p), the known term, 
allows singularities like 
 
 � "�	5�5��� ��5� � � � �  (22) 

 
 Using Theorem 3 we note that we can obtain L∞ 
bounds for the displacements in terms of Lq norms, for 
some # �� �� , of the loads. We obtain these bounds 
for some �� �  and for displacements belonging to 
 

�� 
� � 	� �	�,� � � �  
for some 

# � �� � ��  
 
 By remark (22) we note that the bounds worsen if 
the draught tends to zero and we can estimate how q 
tends to ��� . 
 

CONCLUSION 
 
 This paper provides a larger picture of some 
techniques and results for maximum principles in 
elliptic PDEs in an informative way. We focus mainly 
on nondivergence form with discontinuous or 
measurable coefficients. 
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