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Abstract: In this paper we investigate the breaking of long-waves propagating on shallow water with 
nonlinear friction on the sloping bottom. A complete set of equations is presented and a numerical 
method is developed to simulate the wave propagation. The method uses an up-wind difference 
scheme for the nonlinear convective term and the central difference scheme for other derivative terms. 
Various numerical examples have been conducted to investigate the effect of nonlinear friction and 
drag coefficient on wave propagation and breaking. By analyzing the numerical results, we find that in 
order to overcome wave breaking, nonlinear friction needs to be below certain level. 
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INTRODUCTION 

 
Tsunami waves are defined as long-period waves 

created by large scale short-term perturbations such as 
underwater earthquakes like the 2004 Indonesian 
earthquake [21], the 1969 Portuguese Tsunami [4], and 
the 1968 Tokachi-oki Earthquake [6], eruption of 
underwater volcanoes, for example, the 1883 Krakatau 
Volcano eruption [21], landslides, for instance, the 1929 
the Grand Banks landslide [3], rock falls, pyroclastic 
avalanche from land volcanoes entering the water, 
asteroid impact, underwater explosion, etc.  

The duration of a typical tsunami is 5 – 100 min, 
with wave length between 100 m and 1000 km, and 
propagation speed 1 – 200 m/s. Tsunami wave heights 
can be up to tens of meters [21]. The popular models to 
describe the tsunami wave propagation are based on the 
various approximations of a shallow water system. The 
shallow water theory in Cartesian coordinates, when no 
rotation is applied, is used to simulate long wave 
propagation. The governing equations are as follows 
[21]: 
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where η+= ),( yxhD  is the total water depth, η  is 
the water surface elevation, t is time, x and y are the 
horizontal coordinates in the zonal and meridional 
directions, M and N are the discharge fluxes in the 
horizontal plane along the x and y coordinates, ),( yxh  
is the undisturbed water level, g is the gravitational 
acceleration, and k is the drag coefficient. In this paper 
we will investigate the breaking of long-waves 
propagating on shallow water with nonlinear friction on 
the sloping bottom. 
 

GOVERNING EQUATIONS  
 

In the area which is far from the source of 
tsunamis, the variable depth as well as nonlinear 
friction will influence the wave evolution [21]. For the 
case where the undisturbed water depth is a linear 
function of the horizontal x coordinate as shown in 
Figure 1.  
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Fig. 1: Wave Profile and Coordinate System 
 

The governing equations in section 1 can be reduced as 
given below. 
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which are subject to the following initial conditions  

),()0,( xinx ηη =    .0)0,( =xu   (6) 

where all of the variables are as defined in section 1. 
  

NUMERICAL SCHEME 
 

For the case considered, the governing equations 
(4) and (5) can be written as follows: 
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For the following time derivatives, we use the forward 
difference scheme, 
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For the following spatial derivatives, we use the central 
difference scheme,  
 

x
uu

x
u ii

∆
−

≈
∂
∂ −+

2
11 ,                                      (9c) 

( )[ ] ( ) ( )
,

2
111111

x
uhuh

uh
x

iiiiii

∆
+−+

≈+
∂
∂ −−−+++ ηη

η     (9d) 

   ( ) .
2

11

xx
ii

∆
−

≈
∂
∂ −+ ηηη       (9e) 

 
Thus by substituting (9e) and (9d) into (8), we get, 
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For the nonlinear convective term 
x
u

u
∂
∂

, we use the 

upwind difference scheme. By using Taylor’s theorem, 
the forward and backward difference formulae can be 
obtained respectively as follows: 
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The upwind difference scheme is defined by: 
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where  
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where +u  and −u  are defined by (9g) and (9h). 
For convenience in presentation, we introduce the sign 
function as below 
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Therefore, the finite difference scheme can be written 
as follows: 
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where η  is the water surface elevation and all 

),( txuu =  is the horizontal component of water 
velocity, h representing undisturbed water depth, g 
denotes the gravitational acceleration, k is the drag 
coefficient, x and t are respectively horizontal 
coordinate and time. 
 

NUMERICAL RESULTS 
 

Letting 100 =h meters, we have mxxh −= 10)(   
where θtan=m  and the initial water level disturbance 
is chosen as [20]: 
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The numerical results are shown in figures 2 - 7. The 
vertical axis and the horizontal axis represent wave 
height (cm) and distance from the centre of the initial 
wave (m), respectively. 
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 Fig. 2. Numerical results of evolution of long-waves 

for  k =0.0 with different θ. 
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 Fig. 3. Numerical results of evolution of long-waves 
for  k =1.4  with different θ. 
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  Fig. 4. Numerical results of evolution of long-waves 
for  k =3.0  with different θ. 
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  Fig. 5. Numerical results of evolution of long-waves 
for  k =5.0  with different θ. 
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  Fig. 6. Numerical results of evolution of long-waves 
for  k =7.0  with different θ. 
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 Fig. 7. Numerical results of evolution of long-waves 
for  k =9.0  with different θ. 

 
From the results shown in the figures, it can be noted 
that the disturbed water level becomes lower and lower 
for small drag coefficients. That is due to the diffusion 
effect of nonlinear friction on the bottom. For large 
drag coefficients, the diffusion due to the bottom 
friction is predominant and the energy kinetic of long-
waves is gradually exhausted. Moreover, for small drag 
coefficients, with the increase in the slope of the 
bottom, the breaking time decreases. 
 

CONCLUSION 
 

We have attempted to investigate the effect of 
nonlinear friction on long wave propagation and 
breaking. For the case with an even bottom, an 
analytical solution to the problem has been derived (see 
[21]), while for the case with sloping bottom, a finite 
difference method has been developed for solving the 
problem numerically. The numerical technique has also 
been used to investigate the propagation of the long 
waves and the effect of nonlinear friction. The results 
show higher drag coefficient can pro-long or even can 
prevent the occurrence of wave breaking. 
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