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Abstract: Integral dissipativity arises over a period of time. This dissipativity for multivalued maps 
has some intrinsic properties together with their convexification. The space of Aumann integrable 
maps endowed  with Hausdorff topology having this dissipativity condition is a complete metric space.   
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INTRODUCTION 

 
There are different forms of dissipativity as considered 
in [1], [4], [5], [7] and [8].These dissipativity conditions 
have their relationships with monotonicity in the sense 
of Minty [6], if a map A is maximal dissipative then -A 
is maximal monotone.However, there exists some 
multifunctions that are integral dissipative,but not 
necessarily dissipative. Such multifunctions exist on the 
attainable trajectories of neutral functional differential 
inclusions. Integrals of set-valued 
maps (multivalued maps, multifunctions) were 
considered by Aumann in [2], the properties of these 
integrals and their convex hull were established. In [5] 
Kisielewicz considered some further properties of the 
space of Aumann integrable set-valued maps. He also 
considered integral dissipative set-valued maps. This 
dissipativity condition is applicable in the case where 
the dissipativity of a system is on the average over a 
(continuous) period of time. 
In this work, we shall consider some properties of these 
integral dissipative set-valued maps, and show that their 
convex hull is also integral dissipative. We proved that 
the space of these maps is a complete metric space with 
respect to Hausdorff topology. 
 
Preliminaries 
Set-Valued Maps 
Let X, Y be sets , a map YXF →: is said to be a set-
valued map(multi-valued map, or multifunction) if for 
every Xx ∈ , YxF ⊂)( . By a selection of a set-
valued map F, we mean a single-valued map f, such that  

)()( xFxf ∈ for every Xx ∈ . The basic properties 
of set-valued maps have been extensively considered in 
[1] and [5].  
 
Convex Hull 
 Let YXF →:  be a set-valued map, the intersection 
of  all the convex sets in Y containing F is called the 
convex hull of F, it is denoted by co(F). 
 
The Space (Comp(X), h) 
Let Comp(X) be the family of all non-empty compact 
subsets of a metric space ),( ρX  

Given )(, XCompBA ∈ , the Hausdorff distance, h, 
on Comp(X), is defined as: 
 

{ }),(),,(max),( ABhBAhBAh =  

Where, ),.(sup),( BadistBAh
Aa∈

=      

             ),.(sup),( AbdistABh
Bb∈

=  

This distance function defines a metric on Comp(X) 
which induce a topology called the Hausdorff topology 
on Comp(X). Given a measurable set-valued map  
 

)(: nCompIF ℜ→  
 
 the set )(Fℑ  of all L-integrable selections of F is said 
to be subtrajectory integrals of F. 

 A measurable set-valued map )(: nCompIF ℜ→ , 

is said to be Aumann integrable on I if φ≠ℑ )(F . 
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The Aumann integral of F over I is defined by 
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ℑ∈∈=
I I

FFFfdttfdttF )(,:)()(  

The family of all Aumann integrable maps from I to 
nℜ , shall be denoted by ),( nI ℜΛ . A metric is 

defined on ),( nI ℜΛ  as follows: 
+ℜ→ℜΛ×ℜΛ′ ),(),(: nn IId , 

( )dttGtFhGFd
I

)(),(),( �=′  , for every 

),(, nIGF ℜΛ∈ . Let ( )dIX n ′ℜΛ= ),,(  and 

)(Xcl  , the space of all closed and bounded subsets of  
X. X is a complete metric space , and hence 
( )HXcl τ),( , where Hτ  is a Hausdorff metric on 

)(Xcl  is complete (Theorem 1.1, [5]). In sequel by 

)(Xcl , we mean the space. ( )HXcl τ),( .  
 
Integral dissipativity 
Let XK ⊂ , and ],[ aI += σσ  , 0>a . A set-

valued map , )(: XclKF →  , is said to be integral 

dissipative if for any Kx ∈ , there exists 00 >δ , such 

that for every ),0( 0δδ ∈  , ),0( δ∈h , 

)(, xFgf ∈  and 0>λ . The following inequality is 
satisfied : 
 

dsdtsxtx
a hs
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δσ

σ
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RESULTS AND DISCUSSION 

 
  The following results due to Aumann [2] shall 
be used to prove our main results.  
Lemma 1 
 Let ℜ⊂I ,if )(: ncompIF ℜ→ is measurable  
and integrably bounded , then  

               �
I

dttF )(  

is a non-empty convex subset of nℜ . 
 

Theorem (Aumann) 
Let )(: ncompIF ℜ→  be measurable and 
integrably bounded . Then  
 

                 �� =
II

dttcoFdttF )()(  

and both intervals are non-empty, convex compact 

subsets of  nℜ . 
 
Main Results 
We first showed that if a set-valued map F  is integral 
dissipative, so is its convex hull. We  then showed that 
the space of all integral dissipative maps is complete. 
 
Theorem 1 
Let XK ⊂ , if )(: XclKF →  is integral 

dissipative, then its convex hull coF  is also integral 
dissipative.  
 
Proof 
From Aumann Theorem above, coF is Aumann 
integrable, since F is Aumann integrable Therefore, it 
suffces to show that coF satisfies the integral 
dissipativity condition. Since F is Aumann integrable, 
then for any )(, xFgf ∈  and 0>λ ,  00 >δ ,  
 
 

),0( 0δδ ∈  ; dsdtsxtx
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s
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But for any selection )(1 xcoFf ∈ , there exists 

selection )(2 xFf ∈  such that dttfdttf
II

)()( 21 �� =  

, which follows from the fact that 

dttcoFdttF
II

)()( �� = . Suppose dttcoFy
I

)(�∈ , 

then dttfy
I

)(�= , for some coFf ∈ . By 

Caratheodory ‘s theorem , for each It ∈ , the point 
)()( tcoFtf ∈ , may be written as a convex 

combination of n+1 points of )(tF , i.e. 
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)()()(
0

tfttf i
n

i
i�

=

= ξ  , )()( tFtf i ∈ , 

1)(0 ≤≤ tξ , 1)(
0
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=

t
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iξ  

Similarly, if  )()( tcoFtg ∈ , )()()(
0

tgttg i
n

i
i�

=

= ω ,  

)()( tFtg i ∈ , 1)(0 ≤≤ tω , 1)(
0

=�
=

t
n

i
iω . 

Therefore for every Kx ∈  , there exists 00 >δ  , such 

that for every ),0( 0δδ ∈ ,  ),0( δ∈h )(xFgf ii ∈  

and 0>λ the inequality for each i, holds since F is 
integral dissipative. Then for  )(, xcoFgf ∈   
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for a suitable λ >0. 
 
Theorem 2 
Let )( nF  be a Cauchy sequence of integral dissipative 
maps, which converges to F. Then F is also integral 
dissipative.  
 
Proof 
We have to show that F is Aumann integrable and 
integral dissipative. Let ng  be a selection of nF , 

suppose ( )ng  is a Cauchy sequence. Then for 

every 0>ε , there exists a positive integer N such that 

for every Nnm >,  , we have ( ) ε<mn ggd ,  

Take k−= 3ε  we can define an increasing sequence kn  

of positive integers such that ( ) k
nn k

ggd −< 3,  for 

knm ≥ and k=1, 2, 3,… . In particular, we have  

( ) k
nkn k

ggd −
+ < 3,1 , for k=1,2,3… 

We shall show that there is a measurable function 
nIg ℜ→:  so that ( ) 0)(),( →tgtgh nnk

 for a.e. 

It ∈  as ∞→k Indeed, let 

{ }k
nnk tgtghItA

kk

−≥∈=
+

2))(),((:
1

. Then 

� +
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for every m = 1, 2, 3, .. Then )(Aµ = 0. Hence 

{ })(tg
kn  is a cauchy sequence of  measurable 

selections of some set-valued maps { })(tG
kn  in a 

complete space )( ncomp ℜ and by its completeness 

there exists )()(
~

ncomptG ℜ∈ , )()(
~~

tGtg ∈  , such 

that 0)(),(
~

→�
	



�
�


 tgtgh
kn  as ∞→k  

Taking this )()(
~

tgtg =  we conclude that the cauchy 

sequence ))(( tgn  converges to g. 
Moreover, by Fatou’s Lemma,    
 

               dttgdttg
I

iii
I

i
)(lim)(lim �� ∞→∞→

≤  

                          k
ni

ggd
k

−

∞→
≤= 3),(inflim  

since ki nn ≥  Then 0),(lim =
∞→

ggd
knk

 

),(),(),( ggdggdggd
kk nnnn +≤  

  as ∞→n , 0),( →ggd n . 
 
 Then the limit F of nF  is the family of the limits G 

of the sequence )( nG  . From the above, this family is 
Aumann integrable. Also, 
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for any )(, xFgf ∈ , such that 

ggff nnnn
==

∞→∞→
limlim , nnn Fgf ∈,  

By Fatou’s Lemma, 
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for each n. Hence F is integral dissipative. 
 

CONCLUSION 
 
The space of Aumann integrable maps is sequentially 
complete with respect to Hausdorff toplogy. A subspace 
of this space with the property of integral dissipativity 
is also complete. Furthermore, the convex hull of 
integral dissipative multivalued map is also integral 
dissipative. This can be used to establish a relaxation 
theorem for integral inclusions having such 
multifunctions. 
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