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Abstract: For functions belonging to each of the subclasses S*
w (β) and C*

w (β) of normalized analytic 
functions in the open unit disk D, which are investigated in this paper when 0≤β<1, the authors derive 
several subordination results involving the Hadamard product (or convolution) of the associated 
functions. A number of interesting consequences of some of these subordination results are also 
discussed. 
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INTRODUCTION 
 
 Let A be the class of functions f normalized by: 
 

   nf (z) z a zn
n 1

∞
= + ∑

=
  (1) 

 
which are analytic in the open unit disk { }z C: z 1 .D ∈ ≤=  
 As usual, we denote by S he subclass of A, 
consisting of functions which are also univalent in D. 
We recall here the definitions of the well-known classes 
of starlike function and convex functions: 
 

  * zf (z)S f A : Re 0,z D ,
f (z)

 ′  = ∈ > ∈  
   

 

 

  * zf (z)C f A : Re 1 0,z D ,
f (z)

 ′′  = ∈ + > ∈  ′   
 

 
 Let w be a fixed point in D and A (w) = {f∈H (D): 
f(w) = f’(w)-1=0}. 
In[15], Kanas and Ronning  introduced the following 
classes Sw = {f∈A (w): f  is univalent in D} 

(z w)f (z)*C f A(w) : Re 1 0,z D .w f (z)
  
  

  

′′−= ∈ + > ∈
′

Late

r Acu and Owa[1] studied the classes extensively. 
 Let Sw denoted the subclass of A(w) consisting of 
the function of the form: 

  ( )nf (z) a z wnz w n 1

∞α= + −∑− =
 (2) 

 
( )a 0,z D .n≥ ∈ where α = Res (z,w), 0<α≤1 with  z ≠ w. 
 The class s*

w is defined by geometric property that 
the image of any circular arc centered at w is starlike 
with respect to f (w) and the corresponding class C*

w is 
defined by the property that the image of any circular 
arc centered at w is convex. 
 We observe that the definitions are somewhat 
similar to the ones introduced by Goodman in[13,14] for 
uniformly starlike and convex functions, except that in 
this case the point w is fixed. 
The functions f (z) in Sw is said to be starlike functions 
of order β if and only if: 
 

  ( )(z w)f (z)
f (z)

z DRe  ′ −
 
  

∈> β  (3) 

 
for some ( )0 1 .β ≤ β <  We denote by S*

w (β) the class of 
all starlike functions of order β.  
 Similarly, a functions f (z) in Sw is said to be 
convex of order β if and only if: 
 

  ( )(z w)f (z)1 z D
f (z)

Re a ′′ −
+ ∈ 

′  
> β  (4) 

 
for some ( )0 1 .β ≤ β <   
 It follows from the definitions 3 and 4 that: 
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  ( ) ( )* *f (z) S zf (z) Cw w′∈ β ⇔ ∈ β  (5) 
 
 We denote by C*

w (β) the class of all convex 
functions of order β.  
 For the function f (z) in the class Sw, we define: 
 
• 0I f (z) f (z)=  

• ( )1 2
z w

I f (z) z w f (z) α
−

′= − +  

• ( )( )2 1 2I f (z) z w I f (z) z w
α′= − + −  

 
and for k = 1,2,3,... we can write: 
 

  
( )( )

( )

k k 1

n

2I f (z) z w I f (z) z w
kn a z wnz w n 1

− α′= − + −
∞α= + −∑− =

  (6) 

 
 The differential operator I* studied extensively 
by[10,11] and in the case w = 0 was given by[9]. 
 We note that the class S*

0 (β) and various other 
subclasses of S*

0 (β) have been studied rather 
extensively by[1-8,10-12,16-25]. 
 Next, we will recall each of the following 
coefficient inequalities associated with the function 
classes S*

w (k, β) and C*
w (k, β) as well as some 

significant definitions which will contribute to this 
study. 
 
Definitions and preliminaries: Theorem A[11] if f∈Sw, 
given by 2, satisfies the coefficient inequality: 
 

  ( ) ( )1kn n ann 1
−β

∞
+β ≤ α∑

=
  (7) 

 
with ( )0 1β ≤ β < and 0 1< α ≤ ,then *f S (k, )w∈ β . 
 
Theorem B:  If  f Sw∈  , given by 2, satisfies the 
coefficient inequality: 
 

  ( ) ( )1k 1n n ann 1
−β

∞ + +β ≤ α∑
=

  (8) 

 
with ( )0 1β ≤ β <  and 0 1< α ≤ , then   *f C (k, )w∈ β . 
 
Proof:  It is easy to check that if:  
 
  ( ) ( )* *f (z) S zf (z) Cw w′∈ β ⇔ ∈ β  

 Then we have *f C (k, )w∈ β . Hence the theorem. 
 In view of Theorem A and Theorem B, we now 
introduce the subclasses ( ) ( )*

w wS STβ ⊂ β  

( ) ( )*
w wC CVβ ⊂ β  which consist of functions wf S∈  

whose Taylor-Maclaurin coefficients an satisfy the 
inequalities 3 and 4, respectively. 
 In our proposed investigation of functions in the 
classes S*

w (β) and C*
w (β) we shall also make use of 

the following definitions and results. 
 
Definition 1:  (Hadamard Product or Convolution). 
Given two functions  f, g∈Sw where f is given by  5 and 
g (z) is defined by: 
 
  ( )ng(z) b z wnz w n 1

∞α= + −∑− =
  (9) 

 
( )b 0,z D .n≥ ∈ The Hadamard product (or convolution)  
f*g is defined (as usual) by: 
 

  
( )( )

( ) ( )( )

nan
n 1

n

f g z b
z w

z w g f z

∞

=

=

∑
α∗ = +
−

− ∗
 (10) 

 
Definition 2: (Subordination Principle). For two 
functions f and g, analytic in D, we say that the function 
F (z) is subordinate to g (z) in D and write f  
f g or f (z) g(z).p p  
 If there exists a Schwarz function w (z), analytic in 
D with w (0) = 0 and |w (z)|<1 such that f (z) g(w(z))= . 
 In particular, if the function g is univalent in D, the 
above subordination is equivalent to 
f (0) g(0) and f (D) g(D).= ⊂  
 
Definition 3: (Subordinating Factor Sequence). A 
sequence { }n n 1b ∞

=   of complex numbers is said to be a 
subordinating factor sequence if, whenever f (z) of the 
form (2) is analytic, univalent and convex in D, we 
have the subordination given by: 
 

  ( )n
n

1

an
n 1

b z w f (z)

(z D,a 1)

∞

=
−∑

∈ =

p  (11) 

 
Theorem C: (cf. Wilf [26]). The sequence { }n n 1b ∞

=  is a 
subordinating factor sequence if and only if: 
 

  ( )n1 2 b z 0, z Dn
 ∞
 + > ∈∑ 
 

ℜ  (12) 



J. Math. & Stat., 4 (2): 112-116, 2008 
 

 114

Subordination results for the classes: ( )*
wS β AND 

STw (β) Our first main result (Theorem 1 below) 
provides a sharp subordination result involving the 
function class ( )*

wS β . 
 
Theorem 1: Let the function f defined by 2 be in the 
class ( )*

wS β . Also let Ω denote the familiar class of 
functions f ∈Sw which are also univalent and convex in 
D, then: 
 

  ( )( )1 f g z g(z)
1

+β ∗
+β+ α −αβ

p  (13) 

 
( )z D,0 1,0 1∈ ≤β< <α≤  and 

 

  ( ) ( )
1f (z)

2 1
+β+ α −αβℜ >

+β
 (14) 

 
 The following constant factor in the subordination 
result (13): 
 

1
1

+β
+β+ α −αβ

 

 
cannot be replaced by a larger one. 
 
Proof:  Let ( )*

wf S∈ β  and suppose that: 
 

( )ng(z) c z w .nz w n 1

∞α= + − ∈Ω∑− =
 

 
 Then we readily have: 
 

  
( )( )

( )

1 1f g z
1 1

nc a z wn nz w n 1
 
 
 

+β +β∗ =
+β+ α −αβ +β+α −αβ

∞α + −∑− =

  (15) 

 
 Thus, by Definition 3, the subordination result 13 
will hold true if: 
 

  1 an1 n 1
 
 
 

∞
+β

+β+ α −αβ =
  (16) 

 
is  a  subordinating  factor  sequence  (with,  of course, 
a1 = 1). 
 In view of Theorem C, this is equivalent to the 
following inequality: 

 
( )

( )

1 n1 2 a z w 0n1n 1
z D

 
 
 

∞ +βℜ + − >∑ +β+ α −αβ=
∈

   (17) 

 
 Now, since ( ) ( ),n 0 1+β ≤ β <  is an increasing 
function of n, we have: 
 

 

( )

( ) ( )

( )

( )

( )

n
n

n
n

n

11 2 a z w
1n 1

21 1 a z w
1 n 1

21 n a rn1 n 1
2 11 r 0

1
z w r 1

 
 
 
 
 
 

∞ +βℜ + −∑ +β+α −αβ=
∞

=ℜ + +β −∑+β+α −αβ =
∞

≥ − +β∑+β+α −αβ =
α −β> − >

+β+ α −αβ
− = <

  (18) 

 
where we have also made use of the assertion 7 of 
Theorem A. This evidently proves the inequality 17 and 
hence also the subordination result 13 asserted by 
Theorem 1. 
 The inequality 14 follows from 7 upon setting: 
 

 ( )

( )

1g(z)
z w 1 z w

nz w
z w n 1

 
 
 

α=
− − −
∞α= + − ∈Ω∑− =

 (19) 

 
 Next we consider the function: 
 

 
( ) ( )

( )

2 1q(z) z w
z w 1

0 1

α −βα= − −
− +β+ α −αβ

≤β <
 (20) 

 
which is a member of the class  ( )*

w .S β  Then, by using 
13, we have: 
 

 ( )
( )

1 1q(z) ,
1 z w 1 z w
z D

 
 
 

+β α
+β+ α −αβ − − −

∈

p
 (21) 

 
 It is also easily verified for the function q (z) 
defined by 20 that: 
 

 1min q(z)
1 2

  
  

  

+β −αℜ =
+β+α −αβ

 (22) 



J. Math. & Stat., 4 (2): 112-116, 2008 
 

 115

which completes the proof of Theorem 1.  
    
Corollary: Let the function f defined by 2 be in the 
class ( ) .STw β  Then the assertions 13 and 14 of 
Theorem  1 hold true. Furthermore, the following 
constant factor: 
 

1
1

+β
+β+ α −αβ

 

 
cannot be replaced by a larger one. 
 By taking α = 1 in the above corollary, we obtain. 
 
Corollary: Let the function f defined by 2 be in the 
class ( )STw β . Then 
 

   ( ) ( )( ) ( )1 1 f g z g z
2

 
 
 

+β ∗ p  (23) 

 
and 
 
   ( )( ) 1f z

1
ℜ > −

+β
 (24) 

 

 The constant factor ( )1 1
2

 
 
 

+β  in the subordination 

result 25 cannot be replaced by a larger one. 
 
Subordination results for the classes: ( )*Cw β and 

( )CVw β Our proof of Theorem 2 below is much akin 
to that of Theorem1. Here we make use of Theorem B 
in place of Theorem A. 
 
Theorem 2:  Let the function f defined by 2 be in the 
class ( )*Cw β . Then: 
 
  ( )( )1 f g z g(z)

1
+β ∗

+β+α −αβ
p  (25) 

 
( )z D,0 1,0 1∈ ≤β< <α≤ and 

 
  ( ) ( )

1f (z)
2 1

+β+α −αβℜ >
+β

 (26) 

 
 The following constant factor in the subordination 
result 25: 
 

1
1

+β
+β+α −αβ

 

cannot be replaced by a larger one. 
 
Corollary:  Let the function f defined by 2 be in the 
class ( )CVw β .  Then the assertions 25 and 26 of  
Theorem  2 hold true. Furthermore, the following 
constant factor: 
 

1
1

+ β
+ β + α − αβ

 

 
cannot be replaced by a larger one. 
 By taking α = 1 in the above corollary, we obtain. 
 
Corollary: Let the function  f defined by 2 be in the 
class ( )CVw β . Then 
 
   ( ) ( )( ) ( )1 1 f g z g z

2
 
 
 

+β ∗ p  (27) 

 
and 
 
   ( )( ) 1f z

1
ℜ > −

+β
 (28) 

 
The constant factor ( )1 1

2
 
 
 

+β in the subordination result 

27 cannot be replaced by a larger one. 
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