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Abstract: We modify RSS to come up with new sampling method, namely, Multistage Median 
Ranked Set Sampling (MMRSS). The MMRSS was suggested for estimating the population median 
and to increase the efficiency of the estimator for specific value of the sample size. The MMRSS was 
compared to the Simple Random Sampling (SRS), Ranked Set Sampling (RSS) and Median Ranked 
Set Sampling (MRSS) methods. It is found that MMRSS gives an unbiased estimate of the population 
median of symmetric distributions and it is more efficient than SRS, RSS and MRSS based on the 
same number of measured units. Also, it was found that the efficiency of MMRSS increases in r (r is 
the number of stage) for specific value of the sample size. For asymmetric distributions considered in 
this study, MMRSS has a small bias, close to zero as r increases, especially with odd sample size. A 
set of real data was used to illustrate the method. 
 
Keywords: Simple random sampling; ranked set sampling; median ranked set sampling; multistage 

ranked set sampling; multistage median ranked set sampling 
 

INTRODUCTION 
 
 Many sampling methods are suggested in the 
literature for estimating the population parameters. In 
some situations where the experimental or sampling 
units in a study can be easily ranked than quantified, 
McIntyre[1] proposed the sample mean based on RSS as 
an estimator of the population mean. He found that the 
estimator based on RSS is more efficient than SRS. 
Takahasi and Wakimoto[2] provided the necessary 
mathematical theory of RSS. Muttlak[3] suggested using 
median ranked set sampling (MRSS) to estimate the 
population mean. Al-Saleh and Al-Omari[4] suggested 
that the multistage ranked set sampling (MSRSS) 
method to increase the efficiency when estimating the 
population mean for specific value of the sample size. 
Jemain and Al-Omari[5,6] proposed double percentile 
ranked set sampling (DPRSS) and multistage median 
ranked set sampling (MMRSS) methods respectively 
for estimating the population mean. They found that 
DPRSS and MMRSS are more efficient than the 
commonly used SRS for the same sample size. Jemain, 
et al.[7] suggested multistage extreme ranked set 
sampling (MERSS) method for estimating the 
population mean.  
 In this study, our objectives is to suggest MMRSS 
for estimating the population median and to compare 

the efficiency of this method with SRS, RSS and 
MRSS. 
 
Sampling methods 
Ranked set sampling: To obtain a sample of size m by 
the usual RSS as suggested by McIntyre[1], select m 
random samples each of size m from the target 
population and rank the units within each sample with 
respect to a variable of interest by visual inspection or 
any cost free method. For measurement, from the first 
sample the smallest rank unit is selected, and from the 
second sample the second smallest rank unit is selected. 
The process is continued until from the mth sample the 
mth rank unit is selected. The method is repeated n 
times if needed to get a RSS of mn. 
 
Multistage median ranked set sampling: The 
MMRSS procedure is described as follows: 
Step 1: Randomly selected 1rm +  units from the target 

population, where r is the number of stages 
and m is the sample size. 

Step 2: Allocate the 1rm +  selected units as randomly 
as possible into rm sets, each of size m.  

Step 3: For each rm  sets in Step (2), if the sample 
size m is odd, select from each rm  sets 
the ( )( )1 /2 thm +  smallest rank unit, i.e., the 
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median of each set. If the sample size m is 
even, select from the first / 2rm  sets the 
( )/ 2 thm  smallest rank unit, and from the 

second / 2rm  sets the ( )( 2) / 2 thm +  smallest 

rank unit. This step yields 1rm −  median ranked 
sets each of size m. 

Step.4: Without doing any actual quantification, if the 
sample size m is odd, select from each 1rm −  
sets the ( )( )1 /2 thm +  smallest rank unit, i.e., 
the median of each set. If the sample size m is 
even, select from the first 1 / 2rm −  sets the 
( )/ 2 thm  smallest rank unit, and from the 

second 1 / 2rm −  sets select the ( )( 2) / 2 thm +  

smallest rank unit. This step yields 2rm −  
median ranked sets each of size m, i.e., it is the 
second stage median ranked sets.  

Step 5: The process is continued using Steps (3) and 
(4) until we end up with one rth stage median 
ranked set sample of size m from MMRSS.  

 The whole process can be repeated n times to 
obtain a sample of size nm from MMRSS. It is 
necessary to note here that the ranking at all stages are 
done by visual inspection or by any other cheap 
method, and the actual quantification is exactly done on 
the last sample of size m that is obtained at the last 
stage. To estimate a population median by a sample of 
size m using SRS method, we only randomly select m 
units and find the median. And if we use the RSS 
method for the same estimation, we have to identify m2 
units and measure only m of them. But when we use 
MMRSS, we randomly select mr+1 units and measure 
only m of them. In each method, SRS, RSS or MMRSS, 
we randomly select different number of units but 
measure only the same number of units for comparison. 
Therefore, the measured units of MMRSS, which are 
based on mr+1 unit, have more information and more 
representative of the target population when compared 
to SRS or RSS.  
 Let us consider the following example to illustrate 
the MMRSS method. 
 
Example 1: Consider the case of 3m =  and 3r = . 
Therefore, we have a random sample of size 1 81rm + =  
units as follows: 1 2 81, ,...,X X X .  

 Let ( )
( : )
r

i j mX  be the jth minimum ( 1,2,3)j =  of the 
ith set ( 1, 2,..., 27)i =  at stage r ( 1,2,3)r = . Allocate 

the 81 selected units into 27 sets each of size 3 at zero 
stage (SRS).  
 For 1r = , rank the units within each sample 
visually according to the variable of interest. After 
ranking, the sets appear as shown below: 
     { }(1) (1) (1) (1)

(1:3) (2:3) (3:3), ,i i iiA X X X= , ( 1, 2,..., 27)i = . 
 Now, select the median from the 27 sets, for 

3m = , the median is the second smallest rank unit, so 
that let  
     ( ) ( )(1)

2:3
(1) med iiX A= , ( 1, 2,..., 27)i = . 

 This step yields 27 medians which are ( )
(1)
1 2:3 ,X  

( ) ( )27 2:3
(1) (1)
2 2:3 ,...,X X . Allocate them into 9 sets each of size 

3 as: 
     ( ) ( ) ( ){ }(1) (1) (1) (1)

2:3 2:3 2:3, ,i i i iA X X X= , ( 1, 2,...,9)i = . 

 For 2r = , rank the units within the 9 sets yields 
from the first stage to get 
     ( ) ( ) ( ){ }(2) (2) (2) (2)

1:3 2:3 3:3, ,i i i iA X X X= , ( 1,2,...,9)i = , 

and then select the median from each set as: 
     ( ) ( )2:3

(2) (2)med iiX A= , (i 1,2,...,9)= . 

This step yields 9 medians, ( ) ( )
(2) (2)
1 2:3 2 2:3, ,...,X X ( )

(2)
9 2:3X , 

which are allocated into 3 sets of medians each of size 3 
as:  
     ( ) ( ) ( ){ }(2) (2) (2) (2)

2:3 2:3 2:3, ,i i i iA X X X= , ( 1, 2,3)i = . 

For 3r = , rank the units within each set yields at stage 
2 to obtain 
     ( ) ( ) ( ){ }(3) (3) (3) (3)

1:3 2:3 3:3, ,i i i iA X X X= , ( 1, 2,3)i = . 

Now, select the median of the three sets as: 
     ( ) ( )(3) (3)

2:3 med iiX A= , ( 1,2,3)i = . 

 This step yields ( ) ( ) ( ){ }(3)(3) (3)
1 2:3 2 2:3 3 2:3, ,X X X  to be third 

stage median ranked set sample. The actual 
quantification for estimating the population median of 
the variable of interest can be achieved using only these 
three units. It is clear that the number of quantified 
units, which is 3, is a small portion of 27 sampled units.  
 
Example 2: Consider the case of 4m =  and 3r = , so 
that we have a random sample of size 1 256rm + =  units 
which are: 21 , ,...,X X 256X . Allocate the 256 units into 
64 sets each of size 4. 
For 1r = , rank the units within each set with respect to 
the variable of interest as follows: 
   { }(3:4)

(1) (1) (1) (1) (1)
(1:4) (2:4) (4:4), , ,ii i i iA X X X X= , ( 1, 2,...,64)i = . 
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 Now, select the second rank unit from the first 32 
sets, and the third rank unit from the other 32 sets as: 
          ( )(1) (1)

(2:4) 2nd mini iX A= , ( 1, 2,...,32)i = , and 

         ( )(1) (1)
(3:4) 3rd min iiX A= , ( 33,34,...,64)i = . 

 This step yields 64 units which are (1) (1)
1(2:4) 2(2:4),X X , 

(1)
32(2:4),..., X (1) (1) (1)

33(3:4) 34(3:4) 64(3:4), ,...,X X X . Allocate them into 
16 sets each of size 4, as follows: 

{ }(1) (1) (1) (1) (1)
(2:4) (2:4) (2:4) (2:4), , ,i i i i iA X X X X= , ( 1, 2,...,8)i = , and 

{ }(1) (1) (1) (1) (1)
(3:4) (3:4) (3:4) (3:4), , ,i i i i iA X X X X= , ( 9,10,...,16)i = . 

 For 2r = , rank the units within each the 16 sets 
yields from the first stage as: 
  { }(2) (2) (2) (2) (2)

(1:4) (2:4) (3:4) (4:4), , ,i i i i iA X X X X= , ( 1, 2,...,16)i = . 
 Now, from the first 8 sets select the second rank 
unit, and from the second 8 sets the third rank unit as 
shown below: 
      ( )(2) (2)

(2:4) 2nd min ,i iX A=  ( 1, 2,...,8),i =   

      ( )(2) (2)
(3:4) 3rd min ,i iX A=  ( 9,10,...,16)i = .  

 This step yields (2) (2)
1(2:4) 2(2:4), ,...,X X (2)

8(2:4)X , (2)
9(3:4)X , 

(2) (2)
10(3:4) 16(3:4),...,X X . Allocate these units into 4 sets each 

of size 4, as follows: 
      { }(2) (2) (2) (2) (2)

(2:4) (2:4) (2:4) (2:4) ,, , ,i i i i iA X X X X= ( 1, 2)i = , and  

      { }(2) (2) (2) (2) (2)
(3:4) (3:4) (3:4) (3:4) ,, , ,i i i i iA X X X X= ( 3, 4)i = . 

 For 3r = , rank the units within the last 4 sets 
yields from the second stage as: 
    { }(3) (3) (3) (3) (3)

(1:4) (2:4) (3:4) (4:4), , ,i i i i iA X X X X= , ( 1, 2,3,4)i = . 
 Now, from the first 2 sets select the second rank 
unit and from the second 2 sets the third rank unit as 
shown below: 
       ( )(3) (2)

(2:4) 2nd mini iX A= , ( 1, 2)i = , and  

       ( )(3) (3)
(3:4) 3nd mini iX A= , ( 3, 4)i = . 

The final set { }(3) (3) (3) (3)
1(2:4) 2(2:4) 3(3:4) 4(3:4), , ,X X X X  is a third 

stage median ranked set of size 4.  
 

RESULTS AND DISCUSSION 
 
 Let 1X , 2 ,...,X mX  be a random sample with pdf 

( )f x , cdf ( )F x , a finite mean µ  and variance 2σ . Let 

11X , 12X ,…, 1mX ; 21X , 22X ,…, 2mX ;…; 1mX , 2mX ,..,

mmX  be independent random variables all with the 
same distribution function ( )F x . Let ( ):i mX  denotes the 

ith order statistic of a sample of size m ( )1, 2,....i m= . 
The SRS estimator of the population median from a 
sample of size m is defined as: 
 

1
2

2 2
2

,if is odd

ˆ

, if is even
2

m

SRS m m

X m

X X

m

η

+ 
 
 

   
      

+



= +



,                    (1) 

to be the middle or the average of the two middle units 
after sorting. 

The estimator of the population median η  for a 
RSS of size m is given by: 
         { }( : )ˆ median , 1, 2,...,RSS i i iX i mη = = .                   (2) 

 If the sample size m is odd, let ( )
1:

2

r
mi m

X + 
 
 

 be the 

median of the ith sample ( )1,2,...,i m=  at stage r. The 

measured units, ( )
11 :

2

r
m m

X + 
 
 

, ( )
12 :

2

r
m m

X + 
 
 

,…, ( )
1:

2

r
mm m

X + 
 
 

 are 

iid, and denote the measured MMRSSO. If the sample 
size m is even, let ( )

:
2

r
mi m

X
 
 
 

 be the ( )/ 2 thm  smallest 

rank unit of the ith sample ( )1,2,..., / 2i m= , and 
( )

2:
2

r
mi m

X + 
 
 

 be the ( )( )2 /2 thm +  smallest rank unit of 

the ith sample ( )( 2 / 2,i m= + ( ) )4 / 2,...,m m+  at stage 
r. Note that the first / 2m  units which are ( )

1 :
2

r
m m

X  
 
 

 

, ( )

2 :
2

r
m m

X
 
 
 

,…, ( )

:
2 2

r
m m m

X
 
 
 

 are iid, and the second / 2m  units 

which are ( )
2 2:

2 2

r
m m m

X + + 
 
 

,…, ( )
2:

2

r
mm m

X + 
 
 

 are iid. However,  

 
( ) ( ) ( ) ( )

1 : 2 : :
2 2 2 2

2 2:2 2

, ,..., ,r r r r
m m m mm m m m m m

X X X X
       
              

+ + ,…, ( )
2:

2

r
mm m

X + 
 
 

  

 
which denote the measured MMRSSE, are independent 
but not identically distributed.  
 The estimator of the population median using 
MMRSSO in the case of an odd sample size can be 
defined as: 

      

( ) ( )
1 11 : 2 :

2 2( )
( )

1:
2

,

ˆ median
,...,

r r
m mm m

r
MMRSSO r

mm m

X X

X
η

+ +   
   
   

+ 
 
 

 
  =  
 
  

,               (3) 

and for an even sample size, the MMRSSE estimator is 
defined as: 
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Table 1: The efficiency of RSS and MMRSS relative to SRS for estimating the population median of some symmetric distributions with 
3,4,5m =  for 1, 2,3, 4r =  

Distributions η m RSS MMRSS 
    --------------------------------------------------------------------------------- 
    r=1   r=2  r=3   r=4 
Uniform (0,1) 0.500 3 1.443 1.873 3.826 8.061 18.131 
  4 2.010 2.252 5.594 17.323 51.624 
  5 1.860 2.962 9.785 33.972 118.146 
Normal (0,1) 0.000 3 1.621 2.235 5.047 11.255 25.376 
  4 2.164 2.714 7.136 19.381 52.814 
  5 2.115 3.448 12.146 43.792 153.376 
Normal (1,2) 1.000 3 1.630 2.258 4.953 11.206 25.581 
  4 2.227 2.747 7.201 19.558 53.097 
  5 2.131 3.504 12.188 43.495 151.832 
Logistic (-1,1) -1.000 3 1.693 2.373 5.566 12.461 27.964 
  4 2.265 2.945 7.459 20.459 55.005 
  5 2.181 3.701 13.143 45.869 164.774 

 
Table 2: The efficiency of RSS and MMRSSO relative to SRS for estimating the population median of some asymmetric distributions with 

3m =  for  1, 2,3, 4r =  
Distributions η  RSS MMRSS 
    --------------------------------------------------------------------------------- 
    r=1   r=2  r=3   r=4 
Exponential (1) 0.693 Eff 1.802 2.582 6.175 14.042 32.954 
  Bias 0.083 0.063 0.029 0.013 0.005 
Log Normal (0,1) 1.000 Eff 2.120 3.535 9.428 22.025 51.554 
  Bias 0.148 0.104 0.044 0.020 0.006 
Weibull (1,3) 2.079 Eff 1.807 2.660 6.251 14.579 33.712 
  Bias 0.262 0.186 0.086 0.036 0.017 
Beta (7,4) 0.645 Eff 1.612 2.217 4.894 11.026 24.713 
  Bias 0.002 0.002 0.001 0.000 0.000 
Gamma (3,1) 2.674 Eff 1.690 2.307 5.348 12.002 27.321 
  Bias 0.092 0.069 0.029 0.015 0.005 
 
Table 3: The efficiency of RSS and MMRSSE relative to SRS for estimating the population median of some asymmetric distributions with 

4m =  for 1, 2,3, 4r =  
Distributions η  RSS MMRSS 
    --------------------------------------------------------------------------------- 
    r=1   r=2  r=3   r=4 
Exponential (1) 0.693 Eff 2.300 2.811 7.865 15.000 17.123 
  Bias 0.095 0.063 0.050 0.074 0.103 
Log Normal (0,1) 1.000 Eff 2.626 4.038 10.706 14.967 15.155 
  Bias 0.163 0.099 0.080 0.123 0.168 
Weibull (1,3) 2.079 Eff 2.252 3.177 7.870 14.807 15.155 
  Bias 0.286 0.174 0.149 0.225 0.311 
Beta (7,4) 0.645 Eff 2.180 2.643 6.793 18.735 48.108 
  Bias 0.003 0.002 0.002 0.002 0.004 
Gamma (3,1) 2.674 Eff 2.246 2.861 7.343 17.297 30.788 
  Bias 0.099 0.059 0.052 0.077 0.107 
 

      

( ) ( )

1 : :
2 2 2

( ) ( )
2 2:

2 2

( )
2:

2

,...,

ˆ median , ,...,

r r
m m mm m

r r
MMRSSE m m m

r
mm m

X X

X

X

η

   
   
   

+ + 
 
 

+ 
 
 

 
 
 
 

=  
 
 
 
 

.            (4) 

 The MMRSS estimator of the population median 
has the following properties: 

1. If the distribution is symmetric about the 
population mean µ  then for any stage r we have: 

a. ( )ˆ r
MMRSSη  is an unbiased estimator of a population 

median η . 

b. ( )( )ˆ ˆVar Var( )r
MMRSS SRSη η< . 

c. ( )( )ˆ ˆVar Var( )r
MMRSS RSSη η< . 

2. If the distribution is asymmetric, then 
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Table 4: The efficiency of RSS and MMRSSO relative to SRS for estimating the population median of some asymmetric distributions with 
5m =  for 1, 2,3, 4r =  

Distributions η  RSS MMRSS 
    --------------------------------------------------------------------------------- 
    r=1   r=2  r=3   r=4 
Exponential (1) 0.693 Eff 2.282 3.962 14.418 52.488 182.290 
  Bias 0.044 0.026 0.008 0.002 0.001 
Log Normal (0,1) 1.000 Eff 2.650 5.111 19.069 69.858 250.184 
  Bias 0.070 0.040 0.012 0.002 0.001 
Weibull (1,3) 2.079 Eff 2.314 3.998 14.305 51.129 186.73 
  Bias 0.131 0.079 0.027 0.007 0.006 
Beta (7,4) 0.645 Eff 2.023 3.345 11.533 41.004 145.361 
  Bias 0.001 0.001 0.000 0.000 0.000 
Gamma (3,1) 2.674 Eff 2.173 3.600 12.919 45.368 160.266 
  Bias 0.047 0.253 0.007 0.003 0.001 

 
Table 5: The efficiency of RSS and MMRSSE relative to SRS for estimating the population median of asymmetric distributions with 6m =  

for 1, 2,3, 4r =  
Distributions η  RSS MMRSS 
    --------------------------------------------------------------------------------- 
    r=1   r=2  r=3   r=4 
Exponential (1) 0.693 Eff 2.754 4.286 15.245 50.370 80.861 
  Bias 0.050 0.024 0.013 0.021 0.036 
Log Normal (0,1) 1.000 Eff 3.026 5.062 19.074 56.596 82.160 
  Bias 0.080 0.038 0.020 0.032 0.053 
Weibull (1,3) 2.079 Eff 2.749 4.224 15.059 50.120 77.384 
  Bias 0.149 0.076 0.039 0.064 0.107 
Beta (7,4) 0.645 Eff 2.663 3.839 13.332 50.740 206.501 
  Bias 0.002 0.000 0.000 0.000 0.000 
Gamma (3,1) 2.674 Eff 2.715 4.001 13.745 53.059 136.393 
  Bias 0.050 0.025 0.012 0.021 0.040 
 
Table 6: The efficiency of MMRSSO with respect to SRS for estimating median olive yields per tree for  3m = , and 1, 2,3, 4r =  
r SRS MMRSSO Efficiency 
 ---------------------------------------------------------------- ------------------------------------------------------------- 
 Median Bias MSE Median Bias MSE  
1 9.339 1.239 15.702 9.041 0.941 8.191 1.917 
2 9.382 1.282 15.942 8.758 0.658 3.594 4.435 
3 9.371 1.271 15.854 8.535 0.435 1.335 11.873 
4 9.385 1.285 15.978 8.362 0.262 0.383 41.665 

 
a. ( )ˆ r

MMRSSη  is a biased estimator of the population 
median and the bias is very small. In the case of 
odd sample size this bias is close to zero as r 
increases. 

b. ( ) ( )( )ˆ ˆMSE MSEr
MMRSS SRSη η< . 

c. ( ) ( )( )ˆ ˆMSE MSEr
MMRSS RSSη η< . 

3. The efficiency of ( )ˆ r
MMRSSη  is increasing in r for both 

distributions, either symmetric or asymmetric 
about the population mean µ . 

 
Simulation study based on MMRSS for median 
estimation: In this section, we shall compare the 
proposed estimators for the population median using 
MMRSS with SRS, RSS and MRSS methods. Several 
probability distribution functions are considered: 

uniform, normal, logistic, exponential, lognormal, 
weibull, beta and gamma. The efficiency of ˆRSSη  and 

( )ˆ r
MMRSSη  relative to ˆSRSη  if the distribution is symmetric 

is defined as: 

           ( ) ( )
( )

ˆVar
ˆ ˆ,

ˆVar
SRS

SRS RSS
RSS

eff
η

η η
η

= ,                            (5) 

     

      ( ) ( )
( )

( ) ( )
( )

ˆVar
ˆ ˆ,

ˆVar
SRSr r

SRS MMRSS r
MMRSS

eff
η

η η
η

= ,                     (6) 

 
respectively, and if the distribution is asymmetric the 
efficiency, respectively, is given by 

          ( ) ( )
( )

ˆMSE
ˆ ˆ,

ˆMSE
SRS

SRS RSS
RSS

eff
η

η η
η

= ,                            (7) 



J. Math. & Stat. 3 (2): 58-64, 2007 
 

 63

        ( ) ( )
( )

( ) ( )
( )

ˆMSE
ˆ ˆ,

ˆMSE
SRSr r

SRS MMRSS r
MMRSS

eff
η

η η
η

= .                    (8) 

 The efficiency values for symmetric distributions, 
which are uniform, normal and logistic for estimating 
the population median with 3,4,5m =  are presented in 
Table 1. While for asymmetric distributions, which are 
exponential, lognormal, weibull, beta and gamma, the 
efficiency and the bias values for estimating the 
population median using MMRSS with 3, 4,5,6m = , 
and 1,2,3, 4r =  are presented in Tables 2-5 
respectively. 
Based on Tables 1-5, we can conclude the followings: 
1. If the underlying distribution is symmetric, we 

have: 
a. A gain in efficiency is obtained by using MMRSS 

for different values of m. 
b. ( )ˆ r

MMRSSη  is an unbiased of the population median, 
η . 

c. The efficiency of ( )ˆ r
MMRSSη  relative to ˆSRSη  is 

increasing in r. For example, with 5m = , the 
efficiency of MMRSS for estimating the median of 
the logistic distribution for 1,2,3r =  and 4, 
respectively are 3.701, 13.143, 45.869 and 
164.774. 

d. ( )ˆ r
MMRSSη  is more efficient than ˆRSSη  for all sample 

sizes considered in this study. 
e. For 1r = , the MMRSS is same as MRSS. It is 

found that MMRSS is more efficient than MRSS 
for 2r ≥ . 

2. If the underlying distribution is asymmetric, then 
we have the followings: 

a. A gain in efficiency is obtained using MMRSS for 
estimating the population median. 

b. The efficiency of ( )ˆ r
MMRSSη  is increasing in r for 

specific value of the sample size. 
c. In the case of odd sample size, ( )ˆ r

MMRSSη  has a small 
bias which approaches to zero as r increases. For 
example, for 5m = , the efficiency of MMRSS for 
estimating the population median of an exponential 
distribution when 1r =  is 3.962 with bias 0.026, 
while when 4r = , the efficiency is 182.290, with 
bias 0.001. 

d. In the case of even sample size, although there is 
no clear pattern of the bias value for ( )ˆ r

MMRSSη  but 
this value is small and generally close to zero for 
all asymmetric distributions considered. 

e. It is found that, MMRSS is more efficient than 
MRSS. As an example, for estimating the median 

of the standard exponential distribution, with 
5m = , the efficiency of MRSS 3.962 with bias 

0.026, while the efficiency MMRSS is 182.290 
with bias 0.001 for 4r = . 

 
Application to real data set: We illustrate the 
performance of MMRSS method for median estimation 
using a set of real data consisting of the olive yields of 
64 trees. All sampling was done without replacement. 
We obtain the median and the MSE of each sample 
using SRS and MMRSS method with sample size 

3m = . We compared the averages of the 70,000 
sample estimates. 
 Let iu  be the olive yield of the ith tree 1, 2,i = …, 
64. The mean µ and the variance 2σ  of the population, 
respectively, are 

64

1

1 9.777 kg/tree
64 i

i
uµ

=

= =∑  

and 
 

64
2 2 2

1

1 ( ) 26.112 kg / tree
64 i

i
uσ µ

=

= − =∑  

 
 The coefficient of skewness and median of the 
population are 0.484 and 8.250 respectively. It is 
known that the coefficient of skewness is zero for 
symmetric distribution, but for our data the coefficient 
is 0.484, indicating that these data are asymmetrically 
distributed. For illustration, we consider 3m =  for 

1,2,3, 4r = . The efficiency of MMRSSO relative to 
SRS are computed using Equation (8) and are presented 
in Table 6 along with the associated bias. 
 It can be seen from Table 6 that the medians based 
on MMRSSO are much closer to the population median 
when compared to those obtained using SRS. It is also 
found that the efficiency of MMRSSO increases in r 
but the bias decreases in r. 
 

CONCLUSION 
 
 It can be concluded that MMRSS is more efficient 
than SRS, RSS and MRSS methods in estimating the 
population median based on the same sample size. 
Also, estimator of the population median obtained by 
MMRSS method is an unbiased when the underlying 
distribution is symmetric about its mean. If the 
underlying distribution is asymmetric the estimator is 
found to have a small bias. The MMRSS is 
recommended to be used for estimating the population 
median for symmetric distributions. For asymmetric 
distributions, this method is suggested for odd sample 
size as the bias decreases in r. 
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