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Abstract: A discretized scheme, Discretized Continuous Algorithm (DCA), for solving constrained 
quadratic optimal control problems was developed to ease the computational cumbersomeness inherent 
in some existing algorithms, particularly, the Function Space A lgorithm (FSA) by replacing the 
integral by a series of summation. In order to accomplish this numerical scheme, we resort to a finite 
approximation of it by discretizing its time interval and using finite difference method for its 
differential constraint. Using the penalty function method, an unconstrained formulation of the 
problem was obtained. With the bilinear form expression of the problem, an associated operator was 
constructed which aided the scheme for the solution of such class of problems. A sample problem was 
examined to test the effectiveness of the scheme as to convergence with relation to other existing 
schemes such as Extended Conjugate Gradient Method (ECGM), Multiplier Imbedding Extended 
Conjugate Gradient Method (MECGM) and Function Space Algorithm (FSA) for solving penalized 
functional of optimal control problem characterized by non-linear integral quadratic nature.  
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INTRODUCTION 

 
 The discretized scheme, DCA, with less 
computational rigour was proposed and compared to 
some existing algorithms, particularly the FSA which 
circumvented the use of operator, for solving a class of 
quadratic optimal control problems. ECGM and 
MECGM based on[1] on function minimization 
reviewed by[4] were ingredients to the development of 
the discretized scheme. Here, a generalized constrained 
formulation of the problem is given below for the 
discretization exercise of the scheme.  
 

MATERIALS AND METHODS 
 
Generalized problem (P1) 
 

Min ( ) ( )2

T
2

0

(ax t bu t )dt+�  

Subject to  
( ) ( ) ( )X t cX t dU t= +�          0�t�T  

X(0)=X0 =0 a ,b,c , d are in R  (1) 
 
 The constrained problem can be turned into 
unconstrained problem via the penalty method[2]. 
 The problem may be put in the following 
equivalent form; 

  ( ) { ( ) ( )

( ) ( ) ( )

T
2 2

H x,U
0

2

Z,AZ Min ax t bu t

x t cx t dux t }dt

� � = + +

µ − −

�

�

 (2) 

 
0 is the penalty cons tan t.µ ≥  

 
Discretization: By[3], discretizing (2), subdivide [0,T] 
into n equal intervals at meshpoints  
 

x0<x1<x2< x3< …<x n-1<xn 
 
with 
 

nxj = j�j, j = 0,1,2,…,n, 
 
where �j is the fixed length of each subinterval.  
 

k

0 k n 1
j 1

Let t 0 and t j, t T, k 1,2,3, ,n−
=

= = ∆ = =� �  

 
 ( ) ( ) ( ) ( )k k, k kx k =x t , u k =u t , k=0,1,2,...,n  
 
By finite difference method ,  
 

( ) ( ) ( )( ) kX k X k 1 X k / , k =0,1,2,...N-1 
•

= + − ∆  
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( ) ( ) ( )X t cx t du t becomes
•

= +  
 
  ( ) ( )( ) ( ) ( )k k k k kx k 1 x k / cx t du t+ − ∆ = +  (3) 
 
X(0) = 0 
 
We then have the discretized function in the form;  
 

( ) ( )( )
( ) ( )( ) ( ) ( )

n
2 2

k k k k k
k 0

k k k k k

min J ax t bu t

subject to x k 1 x k / cx t du t

x(0) 0

=

= ∆ +

+ − ∆ = +

=

�

 (4) 

 
Equivalent unconstrained and discretized 
formulation of the problem: (4) is turned into an 
unconstrained problem 
 

( )
( ) ( )( )

( ) ( ) ( )
( )

( ) ( )( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

2 2
k k k k k K 1

n

k k k k k
k 0 2

k k k

2 2 2
k k k k k k 1 k

2 2 2 2 2 2 2
k k k k k k k k

2
k k k k k k k k

2
k k k k k 1 k k k

k k 1 k k k

ax t bu t [x

MinJ x,u, k 1 x t cx t .

d u t ]

ax t bu t [x t

x t c x t d u t

2c x t 2d x t u t

2cd x t u t 2x t x t

2c x x t 2d x

+

=

+

+

+

� �∆ + + µ
� �� �µ = + − − ∆� 	
� �− ∆� �
 �

∆ + + µ

+ + ∆ + ∆

= + ∆ + ∆

+ ∆ −

− ∆ − ∆

�

( ) ( )

n

k 0

k 1 k k kt u t ]

=

+

� �
� �
� �
� �� �
� 	
� �
� �
� �
� �
 �

�

 (5) 

 
Simplifying (5), we have  
 
 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

2 2 2 2
k k k k k k k

2 2 2nn
k k k 1 k k k k k

2
k 0 k k k 1 k k k k

k 1 k k k k]

x t [a c 2c ] u t

[b d ] x t x t u t

[2d 2cd ] x t x t [ 2 2 c ]

x t u t [ 2 d ]

+

= +

+

� �∆ + µ + µ∆ + µ ∆ +
� �

∆ + µ ∆ + µ +� �
� 	

∆ µ + ∆ µ + − µ − µ ∆� �
� �+ − µ ∆
 �

�

�

(6a) 

 

 

( )
( ) ( ) ( )

( )

k k
k k k k 1 k

k k

2 2
k k k k

2 2
k k k

2
k k k

k k k k

x t
Let Z and y t x t

u t

Let a c 2c .

b d

2 d 2 cd

2 1 c , 2 d

+

� 

= =� �� �
� �

α = ∆ + µ + µ∆ + µ ∆

β = ∆ + µ ∆

λ = µ ∆ + µ ∆
δ = − µ + ∆ ρ = − µ ∆�

 (6b) 

 
(6a) becomes  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2n
k k k k k k k k k k k k

k 0 k k k k k k k k k k k

x t u t y t x t u t

y t x t y t u t=

� �α + β + µ +� �
� 	

λ + δ + ρ� �
 �
�  (7) 

 
Construction of operator a: 
Now,  
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

n

K1 k K 2 k H k K1 k K2 k k K1
k 0

k K2 k k k2 kk1

K K1 k K2 k K K1 k

K 2 k K k1 k k2 k

k k2 k k1 k k k1 k

k2 k k k1 k k2 k

Z t ,AZ t { x t x t u

t u t y t y t

x t u t u t

x t y t x t

y t x t y t

u t u t y t }

=

� � = α + β

+ µ

+ λ + λ

+ δ

+ ∂ + ρ

+ ρ

�

  (8)

 

( ) 11 12 k 2 11 k2 12 k2 [5]
K 2 k

21 22 k2 21 k2 22 K 2

A A x A x A u
AZ t by

A A u A x A u
+� 
� 
 � 


= =� �� � � �+� �� � � �
 (9) 

 
Further simplifying (8) and using[6,7], we have  
 

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )
( )

( )
( )

n

K1 k K2 k H k K1 k K 2 k k K1
k 0

k K 2 k K K1 K1

K K21 K2 K K1 K 2

K K1 K 2 K K K1 K1

K2 K K1 K K2 K 2

K K K1 K1 K 2 K K1

K K2 K 2

Z t ,AZ t { x t x t u

t u t [ x x

x x ] x u

u x x x

x x x x

x x u u

x x }

=

� � = α + β

+ µ ∆ +

∆ + + λ +

λ + δ ∆ +

+ δ ∆ +

+ ρ ∆ + + ρ

∆ +

�
�

�

�

�

�

�

 (10) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

n
2

k K1 k K 2 k k K1 k K 2 k K K1
k 0

k K2 k K K1 k K2 k K K1 k

k2K 2 k k K1 k K 2 k K K1 k

K 2 k K K1 k K 2 k K K K1 k K2

k K K1 k K 2 k K K K1 k K 2 k

K K1 k K 2 k K K K 2 k K1 k

K

{ x t x t u t u t x

t x t x t x t x t

x t x t x t x t x t

u t u t x t x t x

t x t x t x t x t

x t x t u t x t

=

•

= α + β + µ∆

+ µ∆ + µ∆

+ µ + λ

+ λ + δ ∆

+ δ + δ ∆

+ δ + ρ ∆

+ ρ

� �

� �

�

�

�

�

( ) ( )K 2 k K1 ku t x t }

 (11) 

 
Setting µK2(Tk) = 0, in (11) and by[5], we have  
 

    11 K 2 11

21 K 2 21

A x V
A x V
� 
 � 


=� � � �
� � � �

 (12) 

 
and  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

n
2

K1 k K 2 k H k K1 k K2 k K K1
k 0

k K2 k K K1 k K2 k K K1 k K 2 k

K1 k K 2 k K K1 k K 2 k K K K1 k

K2 k K K1 k K2 k K K K1 k K 2 k

K K1 k K 2 k

Z t ,W t { x t x t x

t x t x t x t x t x t

x t x t u t x t x t

x t x t x t x t x t

x t x t

=

� � = α +µ∆

+ µ∆ + µ∆

+µ + λ + δ ∆

+ δ + δ ∆

δ

� �

� � �

�

�

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

n

K1 k k k2 k K K 2 k K 2 K
k 0

K1K K 2 k K K K2 k K K 2 k k

2
k K 2 k K K 2 k K K K 2 k

K1 k K k2 k

{x t [ x t x t x t

x t x t x t ] x t

[ x t x t x t ]

u t [ x t ]}

=

•

= α + µ∆ + µ

+δ + δ ∆ + δ +

µ∆ + µ∆ + δ ∆

+ λ

� �

�

�

 (14) 

 

( ) ( ) ( ) ( ) ( )
n

K1 k 11 k K1 k 11 k K1 k 21
k 0

{x t V t x t V t u t V }
=

= + +� ��  (15) 

 
Define  
 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k K K K2 k K K K K 2 k

2
k K K2 k K K K 2 k

t 2 x t x t

and

f t x t x t

Ω = α + µ + δ + µ∆ + δ ∆

= µ∆ + µ∆ + δ

�

�

 

 
   ( ) ( ) ( )21 K1 k 21 k K K 2 kA u t V t x t .= = λ  (15a) 

 
To obtain the component A11xK1(tk)=V11(tk), where  
 

( ) ( ) ( ) ( )k 11 k k 11 k� t -V t and f t -V t�  

 
are both continuous functions on [0,T] and choosing  
  

( ) ( ) ( )K1 K1 K1x • D[0,T] x 0 x T 0.∈ ∋ = =  

 
We then have  
 

( ) ( ) ( ) ( ) ( ) ( )
T

K1 k k 11 k K1 k k 11 k
0

[5]
k

{x t [ t V t ] x t [f t V t ]}

dt 0, by

Ω − + −

=

� ��
 (16) 

 
( ) ( )k 11 kf t V t is continuously differentiable on [0,T] with− �

 

  ( ) ( ) ( ) ( )k 11 k k 11 k

d
[f t V t ] t V t

dt
− = Ω −�  (17) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
k 11 k k 11 k

11 k 11 k k k

f t V t t V t or

V t V t f t t

••
•

••
•

− = Ω −

− = − Ω
 

 

  ( ) ( ) ( ) ( ) ( )V t V t q t f t t1111 k k k k k

•• •
− = = − Ω  (18) 

 
with the initial conditions V11(0) = p0  and V11(0) = r0 
Solving (18) by Laplace method and letting  
 

( ){ } ( ) ( ){ } ( )11 k 11 kL V t V s , L q t Q s
∧

= =�  
 
We have  

( ) ( ) ( )

( ) ( )

Ù Ù
2

0 0 11

Ù
0 0

11 2 2 2

S V s -p s-r -V s =Q s

Q s p s r
V s = + +

s -1 s s -1

 

 
and taking Laplace inverse, we have But,  
 

( ) ( ) ( ) ( ) ( )
T

11 k k k k k 0 k 0 k
0

V t q s sinh t s ds p cosh t r sinh t= − + +�  

(19) 
 
    ( ) ( )11T V T 0Ω − =  (20) 
 
    ( ) ( )110 V 0 0Ω − =  (21) 
 

( ) 00 ρ=Ω  
 

( ) ( ) ( ) ( ) ( )k K K2 K K K K2 0� 0 = � +�+2� x 0 + �� +� � x 0 =��  
 

From (20) ( ) ( )�TVT 11=Ω  
 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T

11 k k k k k k K2
0

K 2K K K 0

K 2 K 2K K K K K

V t q s sinh T s ds [ 2 x

0 x 0 ]cosh T sinh T

[ 2 x T x T ]

•

• •

= − + α + µ + δ

+ µ∆ + ∆ δ + τ

= α + µ + δ + µ∆ + δ ∆

�

 

 
Therefore, 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T

0 k k k k k
0

K 2K 2 K K K

K 2 K2K K K K K

1
q s sinh T s ds [ 2

sinh T

x 0 x 0 ]cosh T

[ 2 x T x T ]

•

• •

τ = �− − − α + µ + δ

+ µ∆ + ∆ δ +

α + µ + δ + µ∆ + δ ∆ �

�

(22) 
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But, 

( ) ( ) ( )
•

K k K kq t =f t -� t  
 

  
( ) ( ) ( )

( ) ( ) ( )

T

K K k k
0

T

K K k k
0

f s sinh t s ds sinh T

f 0 f s cosh t s ds

•

•

− = −

+ −

�

�
 (23) 

 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

K2

T

k k k
0

•2
K2 K K K2

T •
2

K K2 k K K K2 K
0

T

K K K K K2 k
00

•

K2K K k k k

q s sinh T-s ds =-

sinhT{� x 0 +� �+� x 0 }k

+ {�� x t +� �+� x s }

cosh T-s ds - { � +�+2� x s

+� �+� x s }sinh T-s ds

�

�

�

�

 (24) 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 K K K 2 K K

K2 K K K 2 K K

2
K2 K K2

T
2

K K K 2 K K2 k K
0

T

K K2 k k k K K
0

K2K2 k K K k k k

1
{[ 2 x T

sinh T

x T ] [ 2 x 0

1
x 0 ]cosh T} { sinh T[ x 0

sinh T

x 0 ] { x s

x s }cosh T s ds { 2

x s x s }sinh T s ds }

•

• •

•

•

τ = α + µ + δ + ∆ µ + δ

− α + µ + δ + ∆ µ + δ

� 
− − µ∆� �
� �

� 
+∆ µ + δ + µ∆ + ∆� �
� �

µ + δ − − α + µ + δ

+ ∆ µ + δ −

�

�

 (25) 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

11 k 11 k 0 k k kk K 2

2

K 2k K k k k2

T
2

K K K 2 K K2 k
0

K K K 2 k k k k

T

K K K 2 k K K
0

K2 k kk k k

V t A t sinh t [ 2 x 0

x 0 ]cosh t sinh T{ k 0

x 0 } { x s

x s }cosh t s ds

{ 2 x s

x s }sinh t s ds

• •

•

•

= = τ + α + µ + δ

+ µ + δ ∆ − µ∆

� 
+∆ µ + δ + µ∆� �
� �

+∆ µ + δ − −

− α + µ + δ + ∆ µ + δ

−

�

�

 (26) 

 
In equation (11), setting  

( ) ( )
•

K2K2 k kx t =0®x t =0  
  
We have  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

k

n

K1 K 2 k H k K1 k K 2 k k K1 k
k 0

K1K2 k k K K K1 k K 2 kK 2 t

n

K1K1 k k K 2 k k K 2 k
k 0

k k K 2 k K1 k K K 2 k

n

K1K1 k 12 k 12 k K1
k 0

k 22 k

Z ,AZ t { u t u t x t

u t x u x t u t }

{x t [ u t u t ] x

[ u t ] u t u t }

{x t V t x V t u

t V t }

=

•

•

=

••

=

� � = β + λ

+ ρ ∆ + ρ

= λ + ρ +

ρ ∆ + β

= + +

�

�

�

 

(27) 
 
  ( ) ( ) ( )22 k 22 K 2 k K K 2 kV t A u t u t= = β  (27a) 
 
Again define  
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
k k k K2 k k k k K 2 k

k 12 k k 12 k

g t u t and h t u t

g t V t and h t V t are continuous

functions on[0,T]

•

= λ + ρ = ρ ∆

− −  

 
As before 
 

( ) ( ) ( )
T

12 k 1 k k k k 0 k 0 kV t q t sinh t s ds e cosh t l sinh t= − + +� (28) 

 
Where,  

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0 k k K 2

T

0 1 k k k
0

T

K K K2 1 k k
0

k k K K 2

e g 0 u 0

l [g T q s sinh T s ds g 0

cosh T]/ sinh T

[ u T q s sinh T s

ds u 0 cshT]/ sinh T

= = λ + ρ

= − − −

= λ + ρ − −

− λ + ρ

�

�

 (29) 

 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

k

k

k

t

12 k k k K 2 k k k K2
0

t

k k k k k K2 K k k k
0

k k K2 k k k K 2

k k K 2 k k K 2

T

K K K2 K k k
0

T

K K K 2 k k
0

V t u 0 sinh t u cosh

t s ds u s sinh t s ds

sinh t
u 0 cosh t { u T

sinh T
( )u 0 cosh T u 0 sinh T

u s cosh T s ds

u sinh T s ds } (30)

= ρ ∆ − ρ ∆

− − λ + ρ − +

λ + ρ + λ + ρ −

λ + ρ − ρ ∆

+ ρ ∆ −

+ λ + ρ −

�

�

�

�
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Having constructed operator A, written as  
 

11 12

21 22

v v
A=

v v
� 

� �
� �

 

 
Where,  
 

( ) ( )
( ) ( )

11 12

21 22

v is 26 , v is 30 ,

v is 15a , v is 27a
 

 
the discretized algorithm is now applied to the 
following hypothetical problems P1 and P2 stated thus; 
 
 

EXAMPLES 
 
Example problem P1 

( ) ( )( )
1

2 2

0

Min x t +u t dt�  

such that 
 

•

x (t)=2.095x(t)+1.904u(t), 0£t£1  
 
The exact analytical solution is 1.0647 given by[7]. The 
numerical solution to this problem is obtained by 
assuming the following initial values and parameters; 
x0 = 1, u0 =.5 and.5�µ�2.5 
 
 

( )

2 2
k k k k

2 2
k k k

2
k k k

k k k k

a c 2c .

b d

2 d 2 cd

2 1 c , 2 d

α = ∆ + µ + µ∆ + µ ∆

β = ∆ + µ ∆

λ = µ ∆ + µ ∆
δ = − µ + ∆ ρ = − µ ∆

 

 
Where,  
 

k is the stepsize

the penalty cons tan t
a 1, b 1, c 2.095 and d 1.904

∆
µ

= = = =
 

 
 The problem has been solved by other numerical 
methods such as Function Space Algorithm(FSA), 
Extended Conjugate Gradient Method (ECGM) and 
Multiplier Imbedding Extended Conjugate Gradient 
Method(MECGM)[ ] with results tabulated below. The 
concern here, in this paper, is solving the discretized 
problem  numerically  using penalty constant µ, where 
µ =.5(2.5).5. The stepsize = .2 is chosen arbitrarily 
constant. Also, the efficiency of each sheme is 

determined by the value of the objective function value 
closiest to the exact solution with a level of tolerance 

.3500�  per iteration 
 
Example problem P2 
 

( ) ( )( )dttutxMin� +
1

0

22

 
 
subject to  
   

100)0(),()( ≤≤==
•

txtutx  
 
The solution to this problem is obtained by assuming 
the following initial values for the variables; 
 

0 0
1, 1ux = =  

The exact analytical solution is 0.7641 Applying the 
same algorithm to problem P2 and solving by qbasic 
programming language, we have the following table 1.2 
 

COMMENTS AND CONCLUSION 
 
 In Table 1, for parameters, 0.5�µ�2.5, we see that 
the absolute value difference between the exact solution 
1.0647 and the numerical solution per iteration in 
column 5 for DCA and MECGM all lie within the 
interval 0x - x £ .3500,  except for µ = 2.5 and µ = 0.5, 
respectively, 
 
Where, 

 0x 1.0647, x is the iterate

and .3500 is the tolerance level.

=
±

 

 
 All other algorithms ,namely FSA and ECGM have 
performed   less   effectively. Although,   ECGM    for 
µ = 0.5 has a numerical solution 1.0956 with a 
deviation of only 0.0309. This is the only point where 
its solution compares much more favourably to any 
other algorithm. For other values, ECGM becomes 
irrelevant as to convergence profile. 
 FSA, for all parameters, is not comparable. Hence 
it performs worst of all the algorithms. Conclusively, 
DCA and MECGM are ranked qualitatively equivalent 
but comparably better than either FSA or ECGM. 
 In Table 2, step 2, the superiority of the DCA and 
ECGM has been exhibited for all values of the 
parameters   in   1.0�µ�2.5   in column   5,   except for 
µ = 0.5, where it ranks second to ECGM with minimum  
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Table 1:  Numerical solution   of  problem  p1 compared to the exact solution (1.0647) 
Penalty    Objective Constraint  Penalized 
constants Algor Stepsize Iteration function satisfaction functional 
µ = 0.5 DCA 0.2 22 1.205379 5.231375 3.821067 
µ = 0.5 FSA 0.2 50 1.6517 11.6227   
�=-2.88 ECGM 0.2 7 1.0956 0.4544  
 MECGM 0.2 10 1.0715 1.1249  
µ = 0.1 DCA 0.2 7 1.255964 4.345529 5.601494 
µ = 0.1 FSA 0.2 50 1.6250 11.2990   
�=-6.00 ECGM 0.2 7 1.4834 0.13813   
 MECGM 0.2 4 0.7073 0.95018   
µ = 1.5 DCA 0.2 25 0.760914 3.265003 5.658419 
µ = 1.5 FSA 0.2 50 1.60017 10.9884 
� =-9.11 ECGM 0.2 6 1.5557 0.08652  
 MECGM 0.2 3 0.8686 1.1616  
µ = 2 DCA 0.2 1 1.330563 7.641839 16.61424  
µ = 2 ESA 0.2 50 1.57684 10.6902  
� = -10.57 ECGM 0.2 7 1.4686 0.03531  
 MECGM 0.2 3 0.9386 1.0477  
µ = 2.5 DCA 0.2 12 1.428915 3.642317 10.53471  
µ = 2.5 FSA 0.2 50 1.55497 10.402  
� = -10.37 ECGM 0.2 6 1.58206 8.1262*10-3  
 MECGM 0.2 2 1.0178 1.6313  
       
Table 2: Numerical results for hypothetical problem p2 compared  to the exact solution, 0.7641 
Penalty    Objective Constraint  Penalized 
constants Algor Stepsize Iteration function satisfaction functional 
µ = 0.5 DCA 0.2 1 1.6 0.8 3.821067 
µ = 0.5 FSA 0.2 50 1.9777 0.9789   
�=-2.88 ECGM 0.2 3 0.79989 0.01313  
µ = 0.1 DCA 0.2 3 0.8303 4.345529 5.601494 
µ = 0.1 FSA 0.2 50 1.9742 11.2990   
�=-6.00 ECGM 0.2 4 0.72768 0.13813   
µ = 1.5 DCA 0.2 7 0.8676 3.265003 5.658419 
µ = 1.5 FSA 0.2 50 1.971011 10.9884 
� =-9.11 ECGM 0.2 4 0.97258 0.08652  
µ = 2 DCA 0.2 11 0.8769 7.641839 16.61424  
µ = 2 ESA 0.2 50 1.9677 10.6902  
� = -10.57 ECGM 0.2 7 1.98866 0.03531  
µ = 2.5 DCA 0.2 15 0.8747 3.642317 10.53471  
µ = 2.5 FSA 0.2 50 1.9645 10.402  
� = -10.37 ECGM 0.2 6 1.92047 8.1262*10-3  
 
at 0.79989. In fact, for µ = 1.00, the optimum 0.8303 is 
attained for DCA comparable to the exact solution 
0.7641. 
 Also, DCA’s solution deviation from the exact 
solution has been within a tolerance level of ±0.1186  as 
seen in column 5 from its iterates, while other 
algorithms’s iterates fall outside this tolerance level for 
some parameters in 1.0�µ�2.5. However, FSA did 
worst of all the algorithms. 
 Conclusively, DCA, with its less computational 
rigour, has performed better absolutely than either FSA 
or ECGM. So, it is an additional algorithm for the 
solution of such class of problems under consideration  
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