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Abstract: The best discrete least squares polynomial fit to a data set is revisited. We point out some
properties related to the best polynomial and precise the dimension of vector spaces encountered to
solve the problem. Finally, we suggest a basic classification of data sets based on their increasing or
decreasing trend, and on their convexity or concavity form.
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INTRODUCTION

Let {(@.1;./;)l", be a set of m data points
where the #;’s represent the distinct values of the
independent variable, the f;’s are the values of the

measured function, and each @, is the weight

associated to the data (ti, fi ) The problem we consider
is to find a polynomial p, of degree at most n to fit

the data. To measure how well the polynomial fit the
data we use the weighted least squares deviation given
by

F(p,)= @,(fi=p, )’ (1
i=1
The best polynomial, called the weighted least squares
estimate (WLSE), is given by

*

Pn :aIgminp,,EPn F(pn) (2)
where P, is the set of polynomials of degree at most .

The motivation for this short note comes from
a mistake in the proof of Theorem 1 in ' and explained
in the Remark 2 below. The goal of this paper is to
clarify the dimension of some vector spaces
encountered in solving this problem, establish a
property useful for proving the existence of a WLSE for
exponential models ¥, and suggest a way to classify
data using the best polynomial fits. For a standard
presentation of the theory related to best (polynomial)
least squares fit see %% 71,

The best polynomial fit problem can be solved
by considering an orthogonal projection onto P, or,

equivalently, by considering an orthogonal projection
onto a subspace of IR™ . In Section 2 we briefly review
the solution of the problem in P, and specify the
dimension of subspaces of polynomials. In the first part
of the Section 3 we consider the subspaces of IR™ that

play a role in solving the problem in IR™. In the

second part of this Section 3 we solve the problem

using a projection onto a subspace of IR™ . Finally in

Section 4 we suggest a way to classify data which will

be useful in the problem of finding existence results for

weighted least squares estimator %/,

POLYNOMIAL WEIGHTED LEAST SQUARES
FITTING IN P,

In the first part of this section we present the
underlying subspaces of P= Lin{tj|j =O,1,2,...}

related to the polynomial weighted least squares
problem. In the second part we solve the problem using
a projection onto a subspace of P .

Vector spaces: Let us recall that
P, = Lin{tj|j = O,l,...n}. We consider also the
following two other polynomial subspaces

PV; =Liy, 0= +1)"|i=1..m|ch, ()
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PV =Linvg; (0=t —1)"i=1,..m}c R,

for any nonnegative integer k =0,1,2, ...

“)
The next two
results specify the dimension of these subspaces.

Theorem 1: Let Pn=Lin{rj|j=O,...,n}gP, then

dimP, =n+1 .

Theorem 2: Let k be any nonnegative integer and let
PVk+ and PV, be defined by (3) and (4).

(@ If k<m-1 then PV =P =PV, and
dim PV =k+1=dim PV .
(b) If k=m then PV cCBh PV, c B, and

dimPV; =m=dimPV .
Proof: We prove the result for P Vk+ only, the proof for

k (et

m m k

Zﬂivz,i(Z)ZZﬂi(Z[ j J

i=1 =1 \j=0

then zt Ui (=0 and
k (k

=

j( " Mh’j i —o. From Theorem 1, the set
e
{"I }j:O

"oyl =0 for j=0,...
Zi:l’u't' 0 J

this system is a Vandermonde type matrix. The rank of
this matrix in rnin{k +1, m} and the result follows.

is identical. Since

k
)3
Jj=0

if

only if

is linearly independent, it follows that

k. The matrix associated to

Polynomial weighted least squares fitting: Under the
condition that n <m, we introduce the scalar product
on P, defined by

(p.g) =Y @pt)q)
i=1

for any pair of polynomials p and ¢ in P,. In this

case (1) becomes
Fip) =|f = p.l

where |||| is the norm on P, induced by the scalar

product. For the f;’s the

fi=f@) G=1....m).

unique and is characterized by the normal equations
<f—p:,pn>=0 forall p,eP,.

we use notation

It is well known that p; is
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In this setting, to simplify the computation of
pZ, we can find a sequence of orthogonal polynomials
by applying the Gram-Schmidt
process to the standard basis {l,t,tz,

orthogonalization
" } of P,.
These orthogonal polynomials are given by

90 =1, () =t-a,

and for j=2,...,n,

q;O)=(t—-0a;)q; )= ;9,1
where
1q9; 1.9
a, = <” ) (j=12,...,n),
<qj 1’QJ l>
and
1q9; 1.9
B, = <“ ) (j=2.3.....n).
<Qj—2’qj—2>

Hence the best n -degree least squares polynomial p:
can be written as

pZ(t)=i7§q,»<t> 6)
=0
where '
7 =% (j=01,...,n).
i

The next two results will be useful for finding
sufficient conditions for the existence of the WLSE for
a 3-parametric exponential model

Theorem 3: <f - p:_l,t"> =y, ||qn||2 for
n=0,...,m-1.
Proof. For n=0 it is obvious because p:_l =0.

For n>0, since g, () =t" + p,_,(¢t) where p,_ () is
a polynomial of degree <n—1, and
Pu(0) = 7,0, () + P,y (1),

we have

A

-
-
- {
-

(72du-4.)

*

Pn=Pnt1>qn

*

Pn—

)
F o2 )+ (f =Pt . )
f=Puotst" 4P 1>

f- Pnu >
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Theorem 4: If the g s are the orthogonal polynomials

associated to {(a) t; ) the orthogonal polynomials

=1’
q;’s associated to {(a)i,?i =—ti)}:il are given by

G,0=17q;(-1.

POLYNOMIAL WEIGHTED LEAST SQUARES
FITTING IN [R"

In the first part of this section we present the

underlying subspaces of IR™ related to the polynomial
weighted least squares problem. In the second part we
solve the problem using a projection onto a subspace of

IR™.
Vector spaces: Let {ti }:’il be a set of m distinct real

numbers. For any positive integer j let us define the

= m
vectors f; € IR™ by
e IR"™.

For any positive integer k , we also define the vectors

k A
j
Or i—l,...,

>
oS (kY-
ﬁk_,i=(;—t[1) =Z(_1)J( ,]tijlk_
j=0 J

Jj=0
for i=1,...,

- k-

=(?+tif)k= £k

=+
Vk,t

m, and

m.
In this section we clarify the properties of the

following vector spaces, in particular the dimension of
the vector spaces,

T" = Lin{i 7| j=0,....,n} ©)
v =Lin{17,:,i li=1, m} (7
7 =Lin{17k_,i|i=1,...,m} ®)

for any integers n and k such that n>0 and

0<k<m-1.

Theorem 5: Let7" = Lin{?*"|j =0,...,n }g IR™
(a) If n<m, the set {f‘i }’;:0 is linearly independent

and dim7" =n+1.
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(b) If n>m, the set {fj }j‘=0 is linearly dependent
and dimT" =m

Proof: We consider zn Olifj =0. But the
J= !

Vandermonde matrix A monsl = (t 0

-1

! f") is of

rank n+1 as long as n<m, and hence /Ij =0 for

j=0,...,n. If n>2m its rank is m and there exits
non zero solutions to the system. Hence the result

follows because 7" < IR™.

Remark 1: For any positive integer [, since
e ™ = IR™, we have
m—1
7mH =Z;Lj(l)t—j’
j=0
where
Ay
~ / -
Al) = ﬂ“f) = AL = ), diagle™)
ﬂm—l(l)
and
70 0
. 0 1t :
diag\t™ )= 2
0 0 1,
Theorem 6: Let k£ be any integer such that

0<k<m-1, and let V,:’ and V, be defined by (7)
and (8), then
vii=TF=v_,
and
dimV,  =k+1=dimV, .

Proof. We prove the result for V" only, the proof for

[ m *“J

V, is identical. Since

Zﬂlvk i iﬂz

= i=1

2

= Jj=0
Zk:

j=0
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m -+ _ . .
then 2[21 My . =0 if and only if
k k m j —-k_i
z R _u;t? [t/ =0. From Theorem 5, the
j=0 j i=1
i L . .
set {t ! }j=0 is linearly independent for k<m, it

follows that »" 4t/ =0 for j=0,...k. But this
system of k+1 equations and m unknowns has a
unique solution only for k=m—1. Moreover the

matrix associated to this system, A,fl w41 18 of rank

k+1 for k<m.Hence dimV," =k+1.

For k>m we have no clear result about the
and V" as illustrated by the
following example for m = 3.

dimension of V

Example: Let m =3.
(a) For V., since we have
0 (t, -1,)
Detli;, i ,.00) =6 -1) 0
(6, =1) (-1) 0
S (R LA Y Py
if kisodd,

if kiseven,

it follows that

dim V| =

2 if kisodd,
3 if kis even.

(b) For V,", we have
@) (+s) (+5)
Det(‘j/:wv/:z’v/&): (tz +1 )k (th )k (tz +1; )k
(t+1) (+5)  (24)
= (Stltztz )k + 2(11 +1, )k (tz +1; )k (t3 +1 )k

=2t [tf (6, +0, )" + 5, + 1) +15(, +1, )“]

This determinant can be 0. Indeed for ¢, +¢; =0and
t, =0 the determinant is 0 for odd k . It follows that

dim V,"is 2 or 3 depending on the values of #,, 1,

and 5.

Remark 2: In ! it is asserted that V, is of dimension

m which is clearly false except for m=3. As a
consequence the proof given in ! for the existence of a
WLSE for a 3-parametric exponential function is not

correct. There are also errors in the proof of the

existence of a WLSE in [,

Polynomial weighted least squares fitting: We
introduce the scalar product on /R™ defined by

m
(ﬁ,ﬁ) = Za)iuivi,
i=1

for any pair of vectors # and Vv in IR"

Uy Vi
~ Uy ~ Vo
u=| . and v=| |

Mm vm

The norm on IR™ induced by the scalar product is

il = @)

Then (1) becomes

F(pn)=”f—13n ’

E}

where
t/ h
n J
- o t -
pn:Zajtj, /=] "2 and f= f_2 i
j=0 ; '
t) S

The problem is to find the orthogonal projection of f
on T" . This projection is completely characterized by
the normal equations <f - ]32, ﬁn> =0 for all
p,eT".

Again, to simplify the computation of 13: , we
can determine an orthogonal basis {q j };:0 for T" by
applying the Gram-Schmidt process to its basis
{fj };l.:o . We obtain

where
aj _ <;#§j—l’—q/—1> (] =123, ),
<q]'—1’611—1>
and
:<f 61;-1»51,-2> (j=2.3.4,.)
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In these identities, u.v is the coordinatewise

multiplication of two vectors of IR™ defined by
vy

Uy vy

<)
<i

u,v

m- - m

Let us observe that ¢ ; € T/for j=0,...n
It follows that the projection is given by

=1
j=0
(i)

Vi=7o 2
<ijQj>
The next theorem is equivalent to Theorem 2.3.
Theorem 7: <f - ﬁz_l,f"> = 7:”%"2 for
n=0,...,

)
where

(j=0,1,....,n)

m—1.

Proof. For n=0 we have Z);_l =0 and the result

follows. For n>0, since g¢,=t"+p,, where
P,y isavectorin 7", and p, = 7.4, + Doy»
we have
Vil = < Y ,qn>

= < :l - Z):—l > §n>

= < : n>+<.]?_i):;—l’én>

= <f Pt 1" + P 1>

= <f pn 1> n>'

CLASSIFICATION OF DATA

Let {( Wt fl) be a set of m data points. If we use a
discrete least squares polynomial to fit the data with the

orthogonal basis {q j }’]":o’ the coefficients of p:; with

respect to its expansion (5) or (9) suggest the following

classification of the data.

Definition 1: The data {(o, w;.t;, f; )} _,are said to be:

(1) essentially stationary if }/1 =0;

(ii) essentially increasing, respectively decreasing, if
71* > 0, respectively }/1* <0;
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essentially linear if }/; =0;

(iii)

(iv) essentially convex, respectively concave, if

7, >0, respectively 7, <0.

Let us note that we could continue the
classification with the higher order coefficients 7: for
n=3,...,
find more realistic or complex fitting to the data with
nonlinear function (see ' * > ® - for an exponential
functions).

Finally if we apply symmetric transformations
to the data we obtain the following result.

m—1. this basic classification could help to

Theorem 8: Effect of symmetric transformations on the
data.

@ If the {(@.1;, f;)}",

resp. decreasing, then the data {(a)l ~t;, fi )}:’il are

are essentially increasing,

essentially decreasing, resp. increasing. The
stationarity, linearity, and concavity or convexity
properties are not modified by this transform.

(b) If the data {( w;,t;, fl) are essentially
increasing, resp. decreasmg, and essentially
convex, resp. concave, then the data

{(a)l,tl, fi )}l”i1 are essentially decreasing, resp.

increasing, and essentially concave, resp. convex.
The stationarity and linearity properties are not
modified by this transform.

CONCLUSION

We have revisited the polynomial weighted least
squares analysis. Doing so we have specified the
dimension of three vector subspaces of P (Theorem 1
and Theorem 2) and of IR™ (Theorem 5 and Theorem
6) used for solving this problem. We also have
established a property (Theorem 3 and Theorem 7) and
suggested a classification of data (Definition 1) which
will play a role in finding sufficient conditions for the
existence of a WLSE for a 3-parametric exponential

model 2.
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