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Abstract: This study presents a model, based on power generating system with shared load. The whole 
generating system consists of three subsystems viz: subsystem A , subsystem B and subsystem C. The 
subsystem A consists of one generating unit and one inbuilt transformer. The subsystem B also contains the 
same units and is connected in parallel to subsystem A. The output of this power system goes through the 
subsystem C that consists of one outer transformer and which may be further distributed as desired. The 
system has three types of states, viz: normal, degraded and failed. All types of failure rates and repair rates 
of inbuilt transformers are exponential while other repair rates are distributed quite generally. 
Supplementary Variable Technique has been employed to obtain various state probabilities and then the 
reliability parameters have been evaluated for the whole generating system. 
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INRODUCTION 
 

Electric energy demand has been rapidly increasing 
all over the world. This is attributed to greater 
industrialization and large-scale use of electric energy for 
agricultural purpose. The demand is likely to increase 
exponentially for many more decades to come. There are 
no signs of saturation in the foreseeable future. Electric 
supply authorities are likely to pay more attention to 
improve the utilization of generating equipment. The 
reliability of electric supply in India is very low. The 
public is likely to become more and more conscious of its 
rights to get uninterrupted supply at proper voltage. This 
would force the electric supply undertakings to analyze 
the system and take corrective measures to improve 
reliability. 
  Keeping these points in view, the author has 
considered a mathematical model by which the reliability 
of the generating system can be improved. The whole 
generating system consists of three subsystems viz, 
subsystem A, subsystem B and subsystem C. The 
subsystem A consists of one generating unit and one 
inbuilt transformer. The subsystem B, arranged in parallel 
with subsystem A, is a redundant system and also consists 
of one generating unit and one inbuilt transformer. The 
output of these two subsystems goes through the 
subsystem C that consists of one outer transformer and the 
electric supply may be further distributed from this 
subsystem C as desired. The power required at subsystem 

C is  shared  by  two  subsystems, A  and  B  which  will  
increase  the  availability  of  power in comparison to that 
which is, instead, produced by a single subsystem A. 
Supplementary Variable technique has been employed to 
evaluate various reliability parameters of the generating 
system. The mathematical model of the whole system is 
shown in the state transition diagram.  
 

ASSUMPTIONS 
 
� At time t = 0, the system is in operable state. 
� The subsystem B works as the redundant unit. 
� All the failure rates and repair rates of unit A2 and 

unit B2 (inbuilt transformers) are exponential while 
other repair rates are distributed quite generally. 

� The failure rate of all units is distinct. 
� After the complete breakdown of the system, the 

repair rate is assumed as same. 
� The system is in degraded state after the failure of 

either unit of subsystem A or subsystem B, or 
completely subsystem A or subsystem B. 

� All the units recover their functioning perfectly after 
repair. 

 
Formulation of the model: The probabilities given above 
are mutually exclusive and provide the complete 
markovian characteristic of the process. Therefore, using 
continuity arguments and elementary probability 
considerations, one   get   the   following   difference  
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differential equations governing the stochastic behaviour 
of the complex system, which is discrete in space and 
continuous in time: 
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b 1 2(x) P (x, t) 0

x t

� �  �� � ���� �
 ��� ���� 	   (2) 

 
a 1 3(x) P (x, t) 0

x t

� �  �� � �� ���
 ��� ���� 	   (3) 

 
4(z) P (z, t) 0

z t

� �  �� � �
 ��� ���� 	   (4) 

 
2 b a 5 1 1P (t) P (t)

t

� � �� ���� �� ���� � ��� ���� 	  (5) 

 
b 2 2 6(y) P (y, t) 0

y t

� �  �� �� �� �� �
 �� �� �� �� � 	  (6) 

 
7(z) P (z, t) 0

z t

� �  �� � �
 ��� ���� 	   (7) 

 
8(z) P (z, t) 0

z t

� �  �� � �
 ��� ���� 	   (8) 

 
9(z) P (z, t) 0

z t

� �  �� � �
 ��� ���� 	   (9) 

 
10(z) P (z, t) 0

z t

� �  �� � �
 ��� ���� 	   (10) 

 
b a 1 11 2 1

d
P (x, t) P (t)

dt

� ��� �� �� �� �� �� � ��� ���� 	  (11) 

 
a 1 2 12(y) P (y, t) 0

y t

� �  �� �� �� �� �
 �� �� �� �� � 	  (12) 

 
13(z) P (z, t) 0

z t

� �  �� � �
 ��� ���� 	   (13) 

 
14(z) P (z, t) 0

z t

� �  �� � �
 ��� ���� 	   (14) 

 
15(z) P (z, t) 0

z t

� �  �� � �
 ��� ���� 	   (15) 

 
16(z) P (z, t) 0

z t

� �  �� � �
 ��� ���� 	   (16) 

 
17(z) P (z, t) 0

z t

� �  �� � �
 ��� ���� 	   (17) 
Boundary conditions: 

 2 a 1P (0, t) P (t)��  (18) 

 3 b 1P (0, t) P (t)��  (19) 

 4 a 3 b 2P (0, t) P (x, t)dx P (x, t)dx�� ��� �  (20) 

 6 a 5P (0, t) P (t)��  (21) 

 7 b 6P (0, t) P (y, t)dy�� �  (22) 

 8 2 6P (0, t) P (y, t)dy�� �  (23) 

 9 2 5P (0, t) P (t)��  (24) 

 10 b 5P (0, t) P (t)��  (25) 

 12 b 11P (0, t) P (t)��  (26) 

 13 1 12P (0, t) P (y, t)dy�� �  (27) 

 14 a 12P (0, t) P (y, t)dy�� �  (28) 

 15 1 11P (0, t) P (t)��  (29) 

 16 a 11P (0, t) P (t)��  (30) 

 

17 2 3

6 12 1

11 5

P (0, t) P (x, t)dx P (x, t)dx

P (x, t)dx P (x, t)dx P (t)

P (t) P (t)

� � �� �

� �� �� �

� ��

� �
� �

 (31) 
Initial conditions: P1(0) and other state probabilities are 
zero.  
 
Solution  of  the  model:  Taking  Laplace  Transform  of 
Eq. 1-31 and on further simplification one may obtain:
  

 
1

1
P (s)

A(s)
�

 (32) 

 2 a 1 1P (s) k (s)P (s)� �  (33) 
 

 3 b 2 1P (s) k (s)P (s)� �  (34) 
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 4 a b 4 3 1P (s) k (s)k (s)P (s)� � �  (35) 

 � �
1

5 1
a b 2

P (s) P (s)
s

�
�
���� �� �� ��  (36) 

 6 6 1P (s) k (s)P (s)�  (37) 

 7 7 3 1P (s) k (s)k (s)P (s)�  (38) 
 

 8 8 3 1P (s) k (s)k (s)P (s)�  (39) 
 

 9 9 3 1P (s) k (s)k (s)P (s)�  (40) 
 

 10 11 1P (s) k (s)P (s)�  (41) 
 

 � �
2

11 1
a b 1

P (s) P (s)
s

�
�
���� �� �� ��  (42) 

 

 12 12 1P (s) k (s)P (s)�  (43) 
 

 13 13 3 1P (s) k (s)k (s)P (s)�  (44) 
 

 14 14 3 1P (s) k (s)k (s)P (s)�  (45) 
 

 15 15 3 1P (s) k (s)k (s)P (s)�  (46) 
 

 16 16 3 1P (s) k (s)k (s)P (s)�  (47) 
 

 17 17 3 1P (s) k (s)k (s)P (s)�  (48) 
 
where, 
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a b 2

k (s)
s

� �
�
���� �� �� ��  

 

 

2 1 a
11

a 1

1 S (s )
k (s)

s
� ���� ��

�
���� ��  

 

 � �
b 2

12 11
a b 1

k (s) k (s)
s

� �
�
���� �� �� ��  

 

 13 1 12 14 a 12k (s) k (s), k (s) k (s)�� ��  
 

 � �
2 1

15
a b 1

k (s)
s

� �
�
���� �� �� ��  

 

 � �
a 2

16
a b 1

k (s)
s

� �
�
���� �� �� ��  

 

 

� �

� �

17 1 a b 2

2

a b 1

1
12 6

a b 2

k (s) k (s) k (s)

s

k (s) k (s)
s

� � � ��� ���

��
���� �� �� ��

��
� �� ��
���� �� �� ��  

 

 � �
11 a b

2 a b 2 1

C (s) S (s ),

C (s) k (s) k (s) S (s)


�� ����

�� � �  
 

 

13 b a 4 6 2

5 6 b

C (s) S (s ), C (s) k (s) S (s),

C (s) k (s) S (s)







�� ���� � �

� �  
 

� �
a 1

26 2 b
a b 2

C (s) S (s )
s

� �
� ���� ��
���� �� �� ��

 � �
2 1

7
a b 2

C (s) S (s)
s



� �

�
���� �� �� ��  



J. Math. & Stat., 3 (4): 211-219, 2007 
 

 
 214 

 

� �
b 2

28 1 a
a b 1

C (s) S (s )
s

� �
� �� �� ��
���� �� �� ��  

 

 � �
b 1

9
a b 2

C (s) S (s)
s



� �

�
���� �� �� ��  

 

 10 12 1 11 12 aC (s) k (s) S (s), C (s) k (s) S (s)
 
� � � �  
 

 � �
1 2

12
a b 1

C (s) S (s)
s



� �

�
���� �� �� ��   

 

 � �
a 2

13
a b 1

C (s) S (s)
s



� �

�
���� �� �� ��  

 

� �
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2

a b 2
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1
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12 6

k (s) k (s) 1

s
C (s) S (s)

s
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� �� �� � � �� �� �� ��� �� �� ��� ���� �� �� �� �� ��� � �� �� ��� ��� ��� ����� �� �� ��� �� �� �� ���� �� 	 
 

OPERATIONAL AVAILABILITY AND 
NON AVAILABILITY 

 
The Laplace Transform of the probabilities that the 

system is in operable and down state at time t, are given as 
follows:  
 

� �

� �

up 1 2 113 5 6

a 1 b 2

1
12 1 6

a b 2

2
12

a b 1

P (s) P (s) P (s) P (s) P (s) P (s) P (s)

1 k (s) k (s)

P (s) P (s) k (s)
s

k (s)
s

� � � � � � �

� ��� �� �� �� �� �� � �� �� ��� �� � �� �� �� �� ����� �� �� ��� �� ��� �� ��� ��� � �� �� �� ���� �� �� ��� 	 (49) 
 

down 4 7 8 9

10 13 14 15 16 17

a b 4 7 8 9 10
1 3

13 14 15 16 17

P (s) P (s) P (s) P (s) P (s)

P (s) P (s) P (s) P (s) P (s) P (s)

k (s) k (s) k (s) k (s) k (s)
P (s)k (s)

k (s) k (s) k (s) k (s) k (s)

� � � � �

� � � � � �
� �� � � � � � ��� �� �� �� � � � �� 	 

 (50) 
It is worth noticing that: 

 
up down

1
P (s) P (s)

s
� �

 
Ergodic behaviour: Using Abel�s lemma is Laplace 
transform, viz, 

s 0 t
lim f (s) lim .f (t) f (say)
� ��

� �
 

provided that the limit on the RHS exists, the time 
independent up and down state probabilities are obtained 
as follows: 

 

� �

� �

a 1 b 2

1
up 6

a b 2

2
12

a b 1

1 k (0) k (0)

1
P k (0)

A (0)

k (0)

� �� �� �� �� �� ��� �� �� �� �� ��� �� �� � �� �� �� ��� �� �� ��� �� �� �� ��� ��� �� ���� �� �� ��� �� �� � (51) 
 

 

a b 4 7 8

down 9 10 13 14

15 16 17

k (0) k (0) k (0)
M

P k (0) k (0) k (0) k (0)
A (0)

k (0) k (0) k (0)




� �� � � � �� �� �� �� �� � � � �� �� �� � �� �� �� �� � (52) 
 

Particular Case: When all repairs follow exponential 
distribution  

Setting  
S

s





�
�
 ,  

i
i

i

S
s



�
�
 , where I = 1,2 

 

 
1

1

1
P (s)

g (s)
�

 (53) 
 

 2 2 1P (s) g (s)P (s)�  (54) 
 

 3 3 1P (s) g (s)P (s)�  (55) 
 

 4 4 1P (s) g (s)P (s)�  (56) 
 

 5 5 1P (s) g (s)P (s)�  (57) 
 

 6 6 1P (s) g (s)P (s)�  (58) 
 

 7 7 1P (s) g (s)P (s)�  (59) 
 

 8 8 1P (s) g (s)P (s)�  (60) 
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 9 9 1P (s) g (s)P (s)�  (61) 

 10 10 1P (s) g (s)P (s)�  (62) 

 11 11 1P (s) g (s)P (s)�  (63) 

 12 12 1P (s) g (s)P (s)�  (64) 

 13 13 1P (s) g (s)P (s)�  (65) 

 14 14 1P (s) g (s)P (s)�  (66) 

 15 15 1P (s) g (s)P (s)�  (67) 

 16 16 1P (s) g (s)P (s)�  (68) 
 

 17 17 1P (s) g (s)P (s)�  (69) 
where, 

1 a b 1 2 1 2 3

4 8 7 8 9 10 13

14 15 16 17 2 6 12

g (s) (s ) (g (s) g (s))

(g (s) g (s) g (s) g (s) g (s) g (s) g (s)

g (s) g (s) g (s) g (s)) (g (s) g (s))

� �� �� �� �� �� �
 �

�
 � � � � � �

� � � �
 �  
 

 

a b
2 3

b 1 a 1

g (s) , g (s)
s s

� �
� �
���� �
 �� �� �
  

 

4 a b
a 1 b 1

1 1 1
g (s)

(s s s

� ��� �� � � �� �� �� �� �� �
 ���� �
 �
� 	  
 

 

1
5

b a 2

g (s)
s

�
�
���� �� �� �� 

 
1 a

6
b a 2 2 b 2

g (s)
(s )(s )

� �
�
���� �� �� �� ���� �� �
  

 

 

1 a b
7

b a 2

2 b 2

g (s)
(s )

(s )(s )

� � �
�
���� �� �� ��

���� �� �
 �
  
 

 

1 a 2
8

b a 2

2 b 2

g (s)
(s )

(s )(s )

� � �
�
���� �� �� ��

���� �� �
 �
  
 

 

1 2
9

b a 2

g (s)
(s )(s )

� �
�
���� �� �� �� �
  

 

 

1 b
10

b a 2

g (s)
(s )(s )

� �
�
���� �� �� �� �
  

 

 

2
11

b a 1

g (s)
s

�
�
���� �� �� �� 

 
2 b

12
b a 1 1 a 2

g (s)
(s )(s )

� �
�
���� �� �� �� ���� �� �
  

 

1 2 b
13

b a 1

1 a 2

g (s)
(s )

(s )(s )

� � �
�
���� �� �� ��

���� �� �
 �
  

 

a 2 b
14

b a 1

1 a 2

g (s)
(s )

(s )(s )

� � �
�
���� �� �� ��

���� �� �
 �
  

 

1 2
15

b a 1

g (s)
(s )(s )

� �
�
���� �� �� �� �
  

 

 

a 2
16

b a 1

g (s)
(s )(s )

� �
�
���� �� �� �� �
  

 

 

2 3 5
17

6 11 12

g (s) g (s) g (s)
g (s)

g (s) g (s) g (s)(s )

� �� � �� �� � �� � �� �� ��
 � �� � 
 

 
OPERATIONAL AVAILABILITY AND 

NON AVAILABILITY 
 

The Laplace Transform of the probabilities that the 
system is in operable and down state at time t, are given as 
follows:  
 

 

up 1 2 3 5

11 126

2 3 5
1

6 11 12

P (s) P (s) P (s) P (s) P (s)

P (s) P (s) P (s)

1 g (s) g (s) g (s)
P (s)

g (s) g (s) g (s)

� � � � �

� �

� �� � � �� �� �� � �� �� �� �� � (70) 
 

 down upP (s) 1 P (s)� �  (71) 
Reliability: The reliability is given by: 

3 5 71 2 q t q t q tq t q t
1 2 3 5 7R(t) m e m e m e m e m .e� � �� �� � � � � (72) 

where, 
 

1 a b 1 2 2 b 3 aq , q , q�� �� �� �� �� �� �� �� ��  
 

5 b 2 7 a 1q , q�� �� �� �� �� ��  
1 8 9 2 3m m m 1 m m� � � � �   
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a b 1
2 3 5

a 1 2 b 1 2 a 1

2 a b
7 8 9

b 2 a 1 b 2

m , m ,m ,

m m , m

� � �
� � �
� �� �� � �� �� � ��

� � �
� � �
� �� � �� � ��  

 
MTTF: The mean time to system failure is given by: 

1 2 3 5 7

0
1 2 3 5 7

m m m m m
MTTF = R(t)dt

q q q q q

�
� � � � ��

 (73) 
 

NUMERICAL ILLUSTRATIONS 
 
Analysis of availability: Setting 
 

 

a b 1

2

0.001, 0.002, 0.001,

0.002, 0.009,

� � � � � �

� � � �  
 1 2v 0.95, 0.92, 0.86� 
 � 
 �   
 
in the Eq. 70 and then taking the inverse Laplace 
transform, the operational availability is obtained as: 
 

 

31 2

5 6 74

n tn t n t
up 1 2 3

n t n t n tn t
4 5 6 7

P (t) z e z e z e

z e z e z e z e

�� �

� � ��

� � � �

� � �  (74) 
where  

 

1 a b 1 2 2 b 1

3 a 1

n , n (x),

n (x)

� � �� �� �� �� � � �� �


� � �� �
  
 

 4 a b 2 5 b 2 2n , n (y)�� �� �� ���� �� ���� �
  
 

6 a b 1 7 a 1 2n , n (y)�� �� �� ���� �� ���� �
  
 

 � �� � � �� �

1

1 4

a b
1 n n

1 2 1 3

a 1 2 b 2

4 1 5 1 1 6 6 1 7 1

z 1
n n n n

n n n n n n n n n n

�
�

� �
� � � � �

� �

� � � � �
� �

� � � � �  
 

 � �� �

a b
2 3

1 2 1 3
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Substituting different values of t is equation (74) one 
may obtain Table 1 and Fig. 1. 

 
Reliability   analysis:   Setting   �a   =   0.001,   �b  =  
0.002, �1 = 0.011, �2 = 0.015, � = 0.05 in the Eq. 72 one 
may obtain the variations in reliability of the system with 
time as shown in Table 2 and Fig. 2. 
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Fig. 1:  Availability v/s Time  
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Fig. 2: Reliability v/s Time 
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Fig. 3: M.T.T.F. v/s Failure rate of unit A1  
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Table 1: Variation of availability with time  
Time (t) Availability [Pup (t)]  
0 0.999982 
1 0.988951 
2 0.975725 
3 0.96178 
4 0.947687 
5 0.933666 
6 0.9198 
7 0.906119 
8 0.892634 
9 0.879346 
10 0.866255 
11 0.853359 
12 0.840654 
13 0.828138 
14 0.815809 
15 0.803663  
 
 
Table 2; Variation of reliability with time  
Time (t) Reliability[R (t)]  
0 1 
1 0.951056 
2 0.904185 
3 0.859332 
4 0.816437 
5 0.77544 
6 0.736279 
7 0.698895 
8 0.663224 
9 0.629205 
10 0.596777 
11 0.565881 
12 0.536456 
13 0.508444 
14 0.481789 
15 0.456433 
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Fig. 4: M.T.T.F. v/s Failure rate of unit B1  
 
Table 3: Variation of M. T. T. F. with failure rate of A1 unit 
                   M.T.T.F.  
0.001 9.712430 4.955933 3.319280 
0.002 9.699658 4.953789 3.318573 
0.003 9.687316 4.951683 3.317875 

0.004 9.675385 4.949614 3.317185 
0.005 9.66385 4.947581 3.316503 
0.006 9.652699 4.94585 3.31583 
0.007 9.641916 4.943624 3.315165 
0.008 9.63149 4.941698 3.314507 
0.009 9.621406 4.939805 3.313858 
0.001 9.712430 4.955933 3.319280  
 
MTTF analysis: 
 
� Setting the values �2 = 0.02, �1 = 0.01, �b = 0.002 and 

taking different values of �a in the Eq. 73 one may 
obtain the variations of MTTF of the system against 
the failure rate of unit A1, (�a) as shown in Table 3 
and Fig. 3. 

� Setting the values �2 = 0.02, �1 = 0.01, �a = 0.001 and 
taking different values of �b in the Eq. 73 one may 
obtain the variations of M.T.T.F. of the system 
against the failure rate of unit B1 (�b) as shown in 
Table 4 and Fig. 4. 

� Setting the values �2 = 0.02, �a = 0.001, �b = 0.002 
and taking different values of � in the Eq. 73 one may 
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Fig. 5: M.T.T.F. v/s Failure rate of unit A2 
 

Figure - 6

0

10

20

30

0 0.05 0.1 0.15

Failure rate of unit B2 

M
.T

.T
.F

. Series1

Series2

Series3

 
Fig. 6: M.T.T.F. v/s Failure rate of unit B2  
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Table 4: Variation of M. T. T. F. with failure rate of B1 unit 
M.T.T.F.  

0.001 9.716869 4.956836 3.319596 
0.002 9.71243 4.955933 3.31928 
0.003 9.708154 4.955048 3.318968 
0.004 9.704035 4.954179 3.318661 
0.005 9.700066 4.953325 3.318357 
0.006 9.696241 4.952488 3.318056 
0.007 9.692557 4.951665 3.31776 
0.008 9.689009 4.950858 3.317467 
0.009 9.68559 4.950065 3.317177 
0.01 9.682298 4.949286 3.316892  
 
Table 5: Variation of M. T. T. F. with failure rate of A2 unit 

M.T.T.F.  
0.01 22.274481 15.618896 11.988547 
0.02 20.759512 14.948854 11.634022 
0.03 19.765066 14.465042 11.362288 
0.04 19.074417 14.103583 11.149179 
0.05 18.573645 13.825957 10.978786 
0.06 18.197981 13.60778 10.840281 
0.07 17.908289 13.432982 10.726077 
0.08 17.679733 13.290612 10.630732 
0.09 17.495913 13.17299 10.550251 
0.1 17.345627 13.0746 10.481655  
 

obtain the variations of MTTF of the system against 
the failure rate of unit A1 (�a) as shown in Table 5 
and Fig. 5.  
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Fig. 7: STATE TRANSITION DIAGRAM 
 
 
Table 6: Variation of M. T. T. F. with failure rate of B2 unit 

M.T.T.F.  
0.01 24.839481 16.614389 12.47681 
0.02 24.768173 16.587769 12.464078 
0.03 24.716404 16.566874 12.453601 
0.04 24.677107 16.550035 12.444826 
0.05 24.646261 16.536179 12.437371 
0.06 24.621405 16.524572 12.430959 

0.07 24.600948 16.514713 12.425385 
0.08 24.58382 16.506235 12.420496 
0.09 24.569265 16.498861 12.416171 
0.1 24.556746 16.492395 12.412319  
 
� Setting the values �1 = 0.01, �a = 0.001, �b = 0.002 

and taking different values of � in the Eq. 73 one may 
obtain the variations of  MTTF of the system against 
the failure rate of unit B2 (�2) as shown in Table 6 
and Fig. 6. 

 
CONCLUSION 

 
The  concept  of  redundancy  of   the   generating 

unit can be applied to the areas where the electricity 
requirements are increasing at an alarming rate. The 
findings   in   Table   1  and  2  depicts  that  the  system is 
available  and  reliable  for  a  longer  time  period. The 
failures   are   considered   to   occur   purely   by   chance 
for  a  component  which  is  operating  within  its  useful 
life period. So, under these conditions the calculations 
shown  in  Table  3-6  shows  apparently  that  the  failure 
rate is the reciprocal of the mean time to system failure 
(MTTF). 
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NOTATIONS 
 
�i, �:  Failure and constant repair rate of unit A2 or B2 

(i = 1, 2). 
�j, �1(x): Failure and repair rate of unit A2 or B1 (j = a, b). 
�:   Failure rate of subsystem C. 
�(z):  Repair rate when the system is in failed state. 
�2(y):  Repair rate of both units of subsystem A or 

subsystem B. 
P1(t):  Probability that the system is in operable state at 

time t. 
Pi(x, t)�: Probability that the system is in degraded state 

at time t and elapsed repair time lies between x 
and x + �, where 9i = 2, 3) 

Pj(y, t)�: Probability that the system is in degraded state 
at time t and elapsed repair time lies between y 
and y + �, where (j = 6, 12) 
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Pk(z, t)�: Probability that the system is in failed state at 
time t and elapsed repair time lies between z 
and z + �, where (k = 4, 7, 8, 9, 10,l 13, 14, 15, 
16, 17) 

Pm(t):  Probability that the system is in degraded state 
at time t where (m = 5, 11) 

0

, Otherwise stated.
�

�� �
 

: Operable     : Degraded      : Failed 
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