On a Class of Nonhomogeneous Fields in Hilbert Space

Raéd Hatamleh
Department of Mathematics, Irbid National University, Irbid-Jordan

Abstract

Two-parametric semigroups of operators in Hilbert space with bounded infinitesimal doubly commuting operators are studied. The characteristics describing deviation of a semigroup from unitary one, when infinitesimal operators are unitary, in particular, nonunitary index, have been introduced. Necessary and sufficient conditions for nonunitary index finiteness have been obtained.

Keywords: Nonhomogeneous Fields, Multi-parametric Semigroup, Doubly Commuting Operators

INTRODUCTION

One-parametric semigroups of operators were studied adequately, both from theoretical and applied pointviews ${ }^{[1]}$, A few works in harmonic analysis are devoted to study multi-parametric semigroups ${ }^{[2,3]}$. We study the nonhomogeneous field $u\left(x_{1}, x_{2}\right)$ in Hilbert space H which is presented in the form
$u\left(x_{1}, x_{2}\right)=e^{i x_{1} T_{1}+i x_{2} T_{2}} u_{0}$,
where $u_{0} \in H, T_{1}$ and T_{2} are bounded doubly commuting operators ${ }^{[4]}$. Consider a scalar product
$\left\langle u\left(x_{1}, x_{2}\right), u\left(y_{1}, y_{2}\right)\right\rangle_{H}=K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$.
Then if $T_{j}=T_{j}^{*}(j=1,2)$, the function $K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ depends only on corresponding differences $K\left(x_{1}-y_{1} ; x_{2}-y_{2}\right)$ and the field is homogenous.

If $T_{1} \neq T_{1}^{*}$ or $T_{2} \neq T_{2}^{*}$ or both operators $T_{j}(j=1,2)$ are non self-adjoint operators, then the field $u\left(x_{1}, x_{2}\right)$ is nonhomogeneous. In addition, if $T_{j}(j=1,2)$ belongs to a certain class of non selfadjoint operators, one may invoke spectral theory of doubly commuting non self-adjoint operators to study the field $u\left(x_{1}, x_{2}\right)$.

Functional Characteristic of the Nonhomogeneous Field: Consider the case when $T_{j}(j=1,2)$ are doubly commuting unitary or quasi-unitary operators and introduce some numerical and functional
characteristics, describing deviation of the field in the form
$u\left(x_{1}, x_{2}\right)=e^{i x_{1} T_{1}+i x_{2} T_{2}} u_{0}$,
where T_{j} are unitary operators. Note that for unitary doubly commuting operators (we call the corresponding field to be unitary) function $K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ may be presented in the form

$$
\begin{align*}
& K\left(x_{1}-y_{1} ; x_{2}-y_{2} ; x_{1}+y_{1} ; x_{2}+y_{2}\right)= \\
& \int_{0}^{2 \pi} e^{i\left(x_{1}-y_{1}\right) \cos f_{1}(\lambda)+i\left(x_{2}-y_{2}\right) \cos f_{2}(\lambda)} \tag{1}\\
& \times e^{-\left(x_{1}+y_{1}\right) \sin f_{1}(\lambda)-\left(x_{2}+y_{2}\right) \sin f_{2}(\lambda)} d F_{\lambda}
\end{align*}
$$

where, $\quad f_{k}(\lambda)$ real-value functions, $\Delta F_{\lambda}=\left\langle\Delta E_{\lambda} u_{0}, u_{0}\right\rangle$,
and E_{λ} is the spectral function of unitary operator $T_{0}=\int_{0}^{2 \pi} e^{i \lambda} d E_{\lambda}$.
The above form of K follows from the Neuman theorem for generating operator T_{0} of a set of mutually commuting selfadjoint (unitary) operators ${ }^{[5]}$.

Taking into the account the well-known fact for commuting operators T_{1} and T_{2} one of them is a function of another ${ }^{[5]}$. It is not difficult to verify that if T_{1} and T_{2} are the unitary commutative operators then the function $K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ satisfies the following equation
$L_{x_{j} y_{j}} K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=0, \quad(j=1,2)$
where
$L_{x y}=I-\frac{\partial^{2}}{\partial x \partial y}$.
From the applied point of view $K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ is the correlation function for some random field, because $K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ is Hermitian nonnegative function. Hence there exists Gaussian normal field for which $K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ is the correlation function and the results obtained may be interpreted as a correlation theory for nonhomogeneous random field. Here after we will consider that
$H=H_{u}=\overline{\widehat{x}_{1}, x_{2} \geq 0} T^{x_{1}} T^{x_{2}} u_{0}, \quad\left(x_{j}\right.$ are integers $)$.
Let us consider the field
$u^{*}\left(x_{1}, x_{2}\right)=e^{i x_{1} T_{1}^{*}+i x_{2} T_{2}^{*}} u_{0}$,
which, henceforth, we will call it the adjoint field.
It is obvious that for the field $e^{-i x_{1} T_{1}+i x_{2} T_{2}} u_{0}$ (T_{1} and T_{2} double commuting operators) to be unitary it is necessary and sufficient that K should be in accordance with
$L_{x_{j} y_{j}} K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=0, \quad(j=1,2)$
Lemma 1: Let $H_{u}=H_{u}^{*}=H$, and $u\left(x_{1}, x_{2}\right)=e^{i x_{1} T_{1}+i x_{2} T_{2}} u_{0}$. Then the necessary and sufficient for T_{1} and T_{2} to be commutative is that
$\frac{\partial^{2}}{\partial x_{1} \partial y_{2}} \widetilde{K}\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=$
$\frac{\partial^{2}}{\partial x_{2} \partial y_{1}} \widetilde{K}\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$,
where
$\widetilde{K}\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=\left\langle u\left(x_{1}, x_{2}\right), u^{*}\left(y_{1}, y_{2}\right)\right\rangle$.
The lemma proof follows from the definition of the function, $\widetilde{K}\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ and a relationship
$\frac{\partial^{2} \widetilde{K}}{\partial x_{\ell} \partial y_{m}}=-\left\langle T_{\ell} T_{m} u\left(x_{1}, x_{2}\right), u^{*}\left(y_{1}, y_{2}\right)\right\rangle$.
If $L_{x_{1} y_{1}} L_{x_{2} y_{2}} K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right) \neq 0$, then the function
$W\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=L_{x_{1} y_{1}} L_{x_{2} y_{2}} K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$
may be considered as a functional characteristic of deviation infinitesimal commutative operators T_{1} and T_{2} from unitary operators.

If T_{1} and T_{2} are doubly commuting operators $\left(\left(\left[T_{1}, T_{2}\right]=0,\left[T_{1}, T_{2}^{*}\right]=0\right)\right.$, then from (3) we may obtained the following presentations for W :
$W\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=$
$\left\langle\left(I-T_{1}{ }^{*} T_{1}\right)\left(I-T_{2} T_{2}\right) u\left(x_{1}, x_{2}\right), u\left(y_{1}, y_{2}\right)\right\rangle$.
The presentation (4) is significant for further studies.
Remark 1: To reconstruct $K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ by $W\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ one may solve Darboux-Goursat problem for equation
$L_{x_{1} y_{1}} L_{x_{2} y_{2}} K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=W\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ twice, and defining appropriate conditions additionally.

Remark 2: If the operators T_{1} and T_{2} are commuting operators, but are not doubly commuting, then
$W\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=$
$\left\langle\left(I-T_{1}{ }^{*} T_{1}-T_{2}{ }^{*} T_{2}+T_{2}{ }^{*} T_{1}{ }^{*} T_{1} T_{2}\right) u\left(x_{1}, x_{2}\right)\right.$,

$$
\left.u\left(y_{1}, y_{2}\right)\right\rangle
$$

and further analysis is based on assumption of commutant $\left[T_{1}, T_{2}^{*}\right]$ properties, for example $T_{1}, T_{2}{ }^{*}$ and $\left[T_{1}, T_{2}^{*}\right]$ form Lie algebra.

Theorem 1: If $\operatorname{dim} H_{0}=r<\infty$, where
$H_{0}=\overline{\left(I-T_{1}{ }^{*} T_{1}\right)} H \cap \overline{\left(I-T_{2}{ }_{2} T_{2}\right)} H$,
then
$W\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=\sum_{\alpha=1}^{r} \lambda_{\alpha} \Phi_{\alpha}\left(x_{1}, x_{2}\right) \overline{\Phi_{\alpha}\left(y_{1}, y_{2}\right)}$,
where $\Phi_{\alpha}\left(x_{1}, x_{2}\right)=\left\langle u\left(x_{1}, x_{2}\right), h_{\alpha}\right\rangle, h_{\alpha} \in H_{0}$, and λ_{α} are real numbers.
Proof: Consider the orthonormal basis $\left\{h_{\alpha}\right\}_{\alpha=1}^{r}$ in H_{0}, consisting of eigenvector contraction of self-adjoinet operator $\left(I-T_{1}{ }^{*} T_{1}\right)\left(I-T_{2}{ }^{*} T_{2}\right)$ onto its invariant subspace H_{0}. Since
J. Math. \& Stat., 3 (4): 207-210, 2007

$$
\begin{aligned}
B_{H} & =\left(I-T_{1}^{*} T_{1}\right)\left(I-T_{2}^{*} T_{2}\right) u\left(x_{1}, x_{2}\right) \\
& =\sum_{\alpha=1}^{r}\left\langle B u\left(x_{1}, x_{2}\right), h_{\alpha}\right) h_{\alpha} \\
& =\sum_{\alpha=1}^{r}\left\langle u\left(x_{1}, x_{2}\right), B h_{\alpha}\right\rangle h_{\alpha} \\
& =\sum_{\alpha=1}^{r} \lambda_{\alpha}\left\langle u\left(x_{1}, x_{2}\right), h_{\alpha}\right\rangle h_{\alpha}
\end{aligned}
$$

where $B h_{\alpha}=\lambda_{\alpha} h_{\alpha}$ and λ_{α} are eigenvalues of the operator B.
As a result, we obtain
$W\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=$
$\sum_{\alpha=1}^{r} \lambda_{\alpha} \Phi_{\alpha}\left(x_{1}, x_{2}\right) \overline{\Phi_{\alpha}\left(y_{1}, y_{2}\right)}$.
Remark, that the function $K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ defines the Hilbert-valued function $u\left(x_{1}, x_{2}\right)$ quite completely. The next assertion is valid.
Lemma 2: Consider the two functions $u_{1}\left(x_{1}, x_{2}\right)$ and $u_{2}\left(x_{1}, x_{2}\right)$ with values belonging to the Hilbert spaces $H_{u j}=\bigvee_{x_{1}, x_{2} \geq 0} u_{j}\left(x_{1}, x_{2}\right) \quad$ respectively, where the scalar product is generated by the respective function
$K\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=\left\langle u_{j}\left(x_{1}, x_{2}\right), u_{j}\left(y_{1}, y_{2}\right)\right\rangle_{H_{j}}$
$=K_{j}\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$.
If $K_{1}\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=K_{2}\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$, then there exists a unitary transformation $U \in\left[H_{1}, H_{2}\right]$ such that $u_{2}\left(x_{1}, x_{2}\right)=U u_{1}\left(x_{1}, x_{2}\right)$. Moreover if $u\left(x_{1}, x_{2}\right)=e^{i x_{1} T_{1}+i x_{2} T_{2}} u_{0_{1}}$, then $u_{2}\left(x_{1}, x_{2}\right)$ is also generated by two-parametric semigroup of operators $u_{2}\left(x_{1}, x_{2}\right)=e^{i x_{1} B_{1}+i x_{2} B_{2}} u_{0_{2}}$.
Proof: Consider lineals
$L_{j}=\left\{\sum_{\alpha, \beta=1}^{n_{1}, n_{2}} C_{\alpha, \beta} u_{j}\left(x_{\alpha}, x_{\beta}\right)\right\} n_{1}, n_{2}<\infty$,
where, $C_{\alpha, \beta}$ are complex numbers. For $h_{1}^{(j)}, h_{2}^{(j)} \in L_{j}$ define binary form
$\left\langle h_{1}^{(j)}, h_{2}^{(j)}\right\rangle_{L_{j}}=$
$\sum_{\alpha, \beta=1}^{n_{1}, n_{2}} \sum_{p, q=1}^{m_{1}, m_{2}} C_{\alpha, \beta} Q_{p, q} K_{j}\left(x_{\alpha}, y_{p} ; x_{\beta}, y_{q}\right)$,
where,
$h_{1}^{(j)}=\sum_{\alpha, \beta=1}^{n_{1}, n_{2}} C_{\alpha, \beta} u_{j}\left(x_{\alpha}, x_{\beta}\right)$,
$h_{2}^{(j)}=\sum_{p, q=1}^{m_{1}, m_{2}} Q_{p, q} u_{j}\left(x_{p}, x_{q}\right)$.
Then L_{j} become pre-Hilbert spaces. Define isometric (by virtue of equality
$\left.K_{1}\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=K_{2}\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)\right)$, transformation of L_{1} into L_{2} :

$$
\begin{aligned}
& U\left(\sum_{\alpha, \beta=1}^{n_{1}, n_{2}} C_{\alpha, \beta} u_{1}\left(x_{\alpha}, x_{\beta}\right)\right) \\
& =\left(\sum_{\alpha, \beta=1}^{n_{1}, n_{2}} C_{\alpha, \beta} u_{2}\left(x_{\alpha}, x_{\beta}\right)\right) .
\end{aligned}
$$

Extending U for closures L_{1} and L_{2} we get the first assertion of the Lemma. The second part of the Lemma follows immediately from the evident relationships:
$u_{2}\left(x_{1}, x_{2}\right)=U u_{1}\left(x_{1}, x_{2}\right)=$
$U e^{i x_{1} T_{1}+i x_{2} T_{2}} u_{0_{1}}=e^{i x_{1} B_{1}+i x_{2} B_{2}} u_{0_{2}}$,
where $B_{j}=U T_{j} U^{-1}, u_{0_{2}}=U u_{0_{1}}$.
Nonunitary index: Let us now define a numerical characteristic for the field deviation from the unitary field. Let us call the nonunitary index the maximal rank of quadratic forms

$$
\sum_{\ell, m=1}^{n} W\left(x_{1}^{(\ell)}, y_{1}^{(\ell)} ; x_{2}^{(m)}, y_{2}^{(m)}\right) Z_{\ell} \bar{Z}_{m}, \quad n \leq \infty
$$

For the unitary field a nonunitary property coefficient is equal to 0 , since $W\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=0$.

Theorem 2: In order that the field $u\left(x_{1}, x_{2}\right)=e^{i x_{1} T_{1}+i x_{2} T_{2}} u_{0}$, has a finite nonunitary index it is necessary and sufficiently that dim $H_{0}=r<\infty$, where T_{1} and T_{2} are doubly commuting operators and
$u_{0} \in H_{0}=\overline{\left(I-T_{1}{ }^{*} T_{1}\right) H} \cap \overline{\left(I-T_{2}{ }^{*} T_{2}\right) H}$.

Proof:

Sufficiency: When $\operatorname{dim} H_{0}=r<\infty$, there exists representation (5) for $W\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ and

$$
\sum_{\ell, m=1}^{n} W\left(x_{1}^{(\ell)}, y_{1}^{(\ell)} ; x_{2}^{(m)}, y_{2}^{(m)}\right) Z_{\ell} \bar{Z}_{m}=\sum_{v=1}^{r} \lambda_{v}\left|\zeta_{v}\right|^{2}
$$

where $\zeta_{v}=\sum_{\ell=1}^{n} \Phi_{v}\left(x_{1}^{(\ell)}, x_{2}^{(\ell)}\right) Z_{\ell}$. It follows that
the rank of quadratic form does not exceed r.
Necessity: Let us consider the sequence of pares of real numbers

$$
x_{\ell}=\left(x_{1}^{(\ell)}, x_{2}^{(\ell)}\right),(\ell=\overline{1, n}) .
$$

Then

$$
\sum_{\ell, m=1}^{n} W\left(x_{\ell}, x_{m}\right) Z_{\ell} \bar{Z}_{m}=\left\langle\left(I-T_{1}{ }^{*} T_{1}\right)\left(I-T_{2}{ }^{*} T_{2}\right) h, h\right\rangle
$$

where $h=\sum_{\ell=1}^{n} Z{ }_{\ell} u\left(x_{1}^{(\ell)}, x_{2}^{(\ell)}\right)$.
Let

$$
H_{n}=\left\{h: h=\sum_{\ell=1}^{n} Z_{\ell} u\left(x_{1}^{(\ell)}, x_{2}^{(\ell)}\right)\right\}, H_{n} \subset H_{u} .
$$

Consider
the
subspace $G_{n}=P_{n}\left(I-T_{1}{ }^{*} T_{1}\right)\left(I-T_{2}{ }^{*} T_{2}\right) P_{n} H_{u}$, where P_{n} is the projection operator onto subspace H_{n}. It is obvious that $G_{n} \subseteq P_{n} H_{0}$ and the rank of form $\sum_{\ell, m=1}^{n} W\left(x_{\ell}, x_{m}\right) Z_{\ell} \bar{Z}_{m}$ is equal to $\operatorname{dim} G_{n}$. It is evident that $H_{1} \subset H_{2} \subset \ldots \subset H_{n} \subset \ldots \quad$ and $\lim _{n \rightarrow \infty} P_{n}=I$, hence rank $W>\operatorname{dim} G_{n}$ and rank $W \geq \lim _{n \rightarrow \infty} G_{n}=\operatorname{dim} H_{0}$. This implies that rank $\operatorname{dim} H_{0} \leq r$.

Similarly one may prove the next theorem.

Theorem 3: In order that the field
$u\left(x_{1}, x_{2}\right)=e^{i x_{1} T_{1}+i x_{2} T_{2}} u_{0}$,
has a finite nonunitary index it is necessary and sufficient that the subspaces

$$
H_{0}^{(j)}=\overline{\left(I-T_{j}^{*} T_{j}\right) H} \quad(j=1,2)
$$

be finite-dimensional where, $u_{0} \in H, T_{j}$ are doubly commuting operators.

Further development of suggested approach is related to the spectral theory for the doubly commuting contraction systems and their triangular and universal models ${ }^{[6]}$. Thus, one may derive canonical representation for $W\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ and perform harmonic analysis of two-parametric semigroups $e^{i x_{1} T_{1}+i x_{2} T_{2}}$ when T_{1} and T_{2} are doubly commuting contractions.

REFERENCES

1. Hille, E., Phillips, R.S., 1957. Functional Analysis and Semi-Groups, Providence, 829.
2. Livčic, Moshe S.,Waksman, Leonid L., 1987. Commuting Nonself-adjoint Operator in Hilbert Space, Lect Notes Math, \#1272, ed. Coic and E.Ecumann, 115.
3. Livčic, M. S., Kravitsky, N., Markus, A., Vinnikov, V., 1995. Theory of Commuting Nonself-adjoint Operators, Kluver academic publ., Dordrent - London, 332.
4. Zolotarev, V., 1997. Functional Models for Algebras of Linear Nonself-adjoint Operators, Zeit fur Ang. Math and Mech., 77(2): 695-696.
5. Riesz, F., Sz.-Nagy, B., 1972. Lessons D'Analyse Fonctionnelle, Akademiani Kiodo, Budapest, 587.
6. Zolotarev, V.,1976. Triangular Models of Systems of Doubly Commuting Operators (Russian), Akad. Nauk Armjan SSR Dokl 63,136-140 (Reviewer J.L. Looper) 47A 45.
